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We consider finite element Galerkin solutions for the space fractional diffusion equation with a
nonlinear source term. Existence, stability, and order of convergence of approximate solutions for
the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete
scheme. The analytical convergent orders are obtained as O(k + hγ̃ ), where γ̃ is a constant
depending on the order of fractional derivative. Numerical computations are presented, which
confirm the theoretical results when the equation has a linear source term. When the equation has
a nonlinear source term, numerical results show that the diffusivity depends on the order of frac-
tional derivative as we expect.

1. Introduction

Fractional calculus is an old mathematical topic but it has not been attracted enough for
almost three hundred years. However, it has been recently proven that fractional calculus is
a significant tool in the modeling of many phenomena in various fields such as engineering,
physics, porous media, economics, and biological sciences. One can see related references in
[1–7].

In the classical diffusion model, it is assumed that particles are distributed in a normal
bell-shaped pattern based on the Brownian motion. In general, the nature of diffusion is
characterized by the mean squared displacement

〈

(� r)2
〉

= 2dκμtμ, (1.1)

where d is the spatial dimension and κμ is the diffusion constant. The classical normal
diffusion case arises when the exponent μ = 1. When μ/= 1, anomalous diffusions arise.
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The anomalous diffusion is classified as the process is subdiffusive (diffusive slowly) when
μ < 1 or superdiffusive (diffusive fast) when μ > 1.

As mentioned before, in many real problems, it is more adequate to use anomalous
diffusion described by fractional derivatives than the classical normal diffusion [4, 5, 8–12].
One typical model for anomalous diffusion is the fractional superdiffusion equation arising
in chaotic and turbulent processes, where the usual second derivative in space is replaced by
a fractional derivative of order 1 < μ < 2.

In this paper we discuss Galerkin approximate solutions for the space fractional diffu-
sion equation with a nonlinear source term. The equation is described as

∂u(x, t)
∂t

= κμ∇μu(x, t) + f(x, t, u) (1.2)

with an initial condition

u(x, 0) = u0, x ∈ Ω ⊂ R (1.3)

and boundary conditions

u(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T, (1.4)

where κμ denotes the anomalous diffusion coefficient and ∂Ω is the boundary of the domain
Ω. And the differential operator ∇μ is

∇μ =
1
2 aD

μ
x +

1
2 xD

μ

b
, (1.5)

where aD
μ
x and xD

μ

b are called the left and the right Riemann-Liouville space fractional deriva-
tives of order μ, respectively, defined by

Dμu := aD
μ
xu(x) = Dn

aD
μ−n
x u(x) =

1
Γ
(

n − μ)
dn

dxn

∫x

a

(x − ξ)n−μ−1u(ξ)dξ,

Dμ∗u := xD
μ

b
u(x) = (−D)n xD

μ−n
b

u(x) =
(−1)n

Γ
(

n − μ)
dn

dxn

∫b

x

(ξ − x)n−μ−1u(ξ)dξ.
(1.6)

Here n is the smallest integer such that n − 1 ≤ μ < n.
Throughout this paper, we will assume that the nonlinear source term f(x, t, u) is

locally Lipschitz continuous with constants Cl and Cf such that

∥

∥f(u) − f(v)∥∥L2(Ω) ≤ Cl‖u − v‖L2(Ω), (1.7)
∥

∥f(u)
∥

∥

L2(Ω) ≤ Cf‖u‖L2(Ω) (1.8)

for u, v ∈ {w ∈ Hμ/2
0 (Ω) | ‖w‖L2(Ω) ≤ l}.
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Baeumer et al. [8, 13] have proved existence and uniqueness of a strong solution for
(1.2) using the semigroup theory when f(x, t, u) is globally Lipschitz continuous. Further-
more, when f(x, t, u) is locally Lipschitz continuous, existence of a unique strong solution
has also been shown by introducing the cut-off function.

Finite difference methods have been studied in [14–16] for linear space fractional
diffusion problems. They used the right-shifted Grüwald-Letnikov approximate for the frac-
tional derivative since the standard Grüwald-Letnikov approximate gives the unconditional
instability even for the implicit method. Using the right-shifted Grüwald-Letnikov approxi-
mation, the method of lines has been applied in [12] for numerical approximate solutions.

For the space fractional diffusion problems with a nonlinear source term, Lynch et al.
[17] used the so-called L2 and L2C methods in [6] and compared computational accuracy of
them. Baeumer et al. [8] give existence of the solution and computational results using finite
difference methods. Choi et al. [18] have shown existence and stability of numerical solutions
of an implicit finite difference equation obtained by using the right-shifted Grüwald-Let-
nikov approximation. For the time fractional diffusion equations, explicit and implicit finite
difference methods have been used in [11, 19–23].

Compared to finite difference methods on the fractional diffusion equation, finite
element methods have been rarely discussed. Ervin and Roop [24] have considered finite
element analysis for stationary linear advection dispersion equations, and Roop [25] has
studied finite element analysis for nonstationary linear advection dispersion equations.
The finite element numerical approximations have been discussed for the time and space
fractional Fokker-Planck equation in Deng [9] and for the space general fractional diffusion
equations with a nonlocal quadratic nonlinearity but a linear source term in Ervin et al. [26].

As far as we know, finite element methods have not been considered for the space
fractional diffusion equation with nonlinear source terms. In this paper, we will discuss
finite element solutions for the problem (1.2)–(1.4) under the assumption of existence of a
sufficiently regular solution u of the equation. Finite element numerical analysis of the semi-
discrete and fully discrete methods for (1.2)–(1.4) will be considered using the backward
Euler method in time and Galerkin finite element method in space as well as the semidiscrete
method.Wewill discuss existence, uniqueness, and stability of the numerical solutions for the
problem (1.2)–(1.4). Also, L2-error estimate will be considered for the problem (1.2)–(1.4).

The outline of the paper is as follows. We introduce some properties of the space
fractional derivatives in Section 2, which will be used in later discussion. In Section 3, the
semidiscrete variational formulation for (1.2) based on Galerkin method is given. Existence,
stability and L2-error estimate of the semidiscrete solution are analyzed. In Section 4, exis-
tence and unconditional stability of approximate solutions for the fully discrete backward
Euler method are shown following the idea of the semidiscrete method. Further, L2-error
estimates are obtained, whose convergence is of O(k + hγ̃), where γ̃ = μ if μ/= 3/2 and γ̃ =
μ − ε, 0 < ε < 1/2, if μ = 3/2. Finally, numerical examples are given in order to see the
theoretical convergence order discussed in Section 5. We will see that numerical solutions of
fractional diffusion equations diffuse more slowly than that of the classical diffusion problem
and diffusivity depends on the order of fractional derivatives.

2. The Variational Form

In this sectionwewill consider the variational form of problem (1.2)–(1.4) and show existence
and stability of the weak solution. We first recall some basic properties of Riemann-Liouville
fractional calculus [9, 24].
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For any given positive number μ > 0, define the seminorm

|u|JμL (R) = ‖Dμu‖L2(R) (2.1)

and the norm

‖u‖JμL (R) =
(

‖u‖2L2(R) + |u|2
J
μ

L (R)

)1/2
, (2.2)

where the left fractional derivative space JμL(R) denotes the closure of C
∞
0 (R) with respect to

the norm ‖ · ‖JμL (R).
Similarly, we may define the right fractional derivative space JμR(R) as the closure of

C∞
0 (R)with respect to the norm ‖ · ‖JμR(R), where

‖u‖JμR(R) =
(

‖u‖2L2(R) + |u|2
J
μ

R(R)

)1/2
(2.3)

and the seminorm

|u|JμR(R) = ‖Dμ∗u‖L2(R). (2.4)

Furthermore, with the help of Fourier transform we define a seminorm

|u|Hμ(R) =
∥

∥|ω|μû∥∥L2(R) (2.5)

and the norm

‖u‖Hμ(R) =
(

‖u‖2L2(R) + |u|2Hμ(R)

)1/2
. (2.6)

Here Hμ(R) denotes the closure of C∞
0 (R) with respect to ‖ · ‖Hμ(R). It is known in [24] that

the spaces JμL(R), J
μ

R(R), andH
μ(R) are all equal with equivalent seminorms and norms. Ana-

logously, when the domain Ω is a bounded interval, the spaces JμL,0(Ω), JμR,0(Ω), and H
μ

0 (Ω)
are equal with equivalent seminorms and norms [24, 27].

The following lemma on the Riemann-Liouville fractional integral operators will be
used in our analysis, which can be proved by using the property of Fourier transform [24].

Lemma 2.1. For a given μ > 0 and a real valued function u

(Dμu,Dμ∗u) = cos
(

πμ
)‖Dμu‖2L2(R). (2.7)

Remark 2.2. It follows from (2.7) that we may use the following norm:

‖u‖2
H

μ/2
0 (R)

= ‖u‖2L2(R) + κμ
∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|u|2
H

μ/2
0 (R)

(2.8)

instead of the norm ‖u‖Hμ(R).
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For the seminorm on H
μ

0 (Ω) with Ω = (a, b), the following fractional Poincaré-
Friedrich’s inequality holds. For the proof, we refer to [9, 24].

Lemma 2.3. For u ∈ Hμ

0 (Ω), there is a positive constant C such that

‖u‖L2(Ω) ≤ C|u|Hμ

0 (Ω) (2.9)

and for 0 < s < μ, s /=n − 1/2, n − 1 ≤ μ < n, n ∈ N,

|u|Hs
0 (Ω) ≤ C|u|Hμ

0 (Ω). (2.10)

Hereafter, a positive numberCwill denote a generic constant. Also the semigroup pro-
perty and the adjoint property hold for the Riemann-Liouville fractional integral operators
[9, 24]: for all μ, ν > 0, if u ∈ Lp(Ω), p ≥ 1, then

aD
−μ
x aD

−ν
x u(x) = aD

−μ−ν
x u(x), ∀x ∈ Ω,

xD
−μ
b xD

−ν
b u(x) = xD

−μ−ν
b

u(x), ∀x ∈ Ω,
(2.11)

and specially

(

aD
−μ
x u, v

)

L2(Ω)
=
(

u, xD
−μ
b v
)

L2(Ω)
, ∀u, v ∈ L2(Ω). (2.12)

In the rest of this section, we will consider a weak problem for (1.2)–(1.4)with 1 < μ <
2: find a function u ∈ Hμ/2

0 (Ω) such that

(ut, v) =
(

κμ∇μu, v
)

+
(

f(u), v
)

, ∀v ∈ Hμ/2
0 (Ω). (2.13)

Since there is a weak solution of (2.13) when f is locally Lipschitz continuous as in
[8, 13], we here only discuss the stability of the weak solution, to show that we need the
following lemma.

Lemma 2.4. For all v ∈ Hμ/2
0 (Ω), the following inequality holds:

−(κμ∇μv, v
) ≥ κμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|v|2
H

μ/2
0 (Ω)

. (2.14)
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Proof. Following the ideas in [9, 26], we obtain the following inequality by using the pro-
perties (2.11)-(2.12) and Lemmas 2.1–2.3:

−(κμ∇μv, v
)

= −κμ
2

{(

aD
μ
xv, v

)

+
(

xD
μ

bv, v
)}

= −κμ
2

{

∫b

a

(

D2
aD

−(2−μ)
x v

)

v dx +
∫b

a

(

(−D)2xD
−(2−μ)
b

v
)

v dx

}

=
κμ

2

{

∫b

a

(

DaD
−(2−μ)
x v

)

Dvdx +
∫b

a

(

DxD
−(2−μ)
b

v
)

Dvdx

}

=
κμ

2

{

∫b

a

(

aD
−(2−μ)
x Dv

)

Dvdx +
∫b

a

(

xD
−(2−μ)
b

Dv
)

Dvdx

}

=
κμ

2

{

∫b

a

(

aD
−(2−μ)/2
x aD

−(2−μ)/2
x Dv

)

Dvdx

+
∫b

a

(

xD
−((2−μ)/2)
b xD

−(2−μ)/2
b

Dv
)

Dvdx

}

=
κμ

2

{

∫b

a

(

aD
−(2−μ)/2
x Dv

)(

xD
−(2−μ)/2
b Dv

)

dx

+
∫b

a

(

xD
−(2−μ)/2
b Dv

)(

aD
−(2−μ)/2
x Dv

)

dx

}

= −κμ
(

Dμ/2v,D(μ/2)∗v
)

= −κμ cos
(

π · μ
2

)∥

∥

∥Dμ/2v
∥

∥

∥

2

L2(Ω)

≥ κμ
∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|v|2
H

μ/2
0 (Ω)

.

(2.15)

This completes the proof.

We consider the stability of a weak solution u for (2.13).

Theorem 2.5. Let u be a solution of (2.13). Then there is a constant C such that

‖u(t)‖L2(Ω) ≤ C‖u(0)‖L2(Ω). (2.16)

Proof. Taking v = u(t) in (2.13), we obtain

(ut, u) −
(

κμ∇μu, u
)

=
(

f(u), u
)

. (2.17)
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Since the second term on the left hand side is nonnegative from Lemma 2.4, we have

1
2
d

dt
‖u‖2L2(Ω) ≤

1
2
d

dt
‖u‖2L2(Ω) + κμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|u|2
H

μ/2
0 (Ω)

≤ ∥∥f(u)∥∥L2(Ω)‖u‖L2(Ω)

≤ Cf‖u‖2L2(Ω).

(2.18)

Integrating both sides with respect to t, we obtain

‖u(t)‖2L2(Ω) ≤ ‖u(0)‖2L2(Ω) + C
∫ t

0
‖u(s)‖2L2(Ω)ds. (2.19)

An application of Gronwall’s inequality gives that there is a constant C such that

‖u(t)‖2L2(Ω) ≤ C‖u(0)‖2L2(Ω). (2.20)

This completes the proof.

3. The Semidiscrete Variational Form

In this section, we will analyze the stability and error estimates of Galerkin finite element
solutions for the semidiscrete variational formulation for (1.2).

Let Sh be a partition of Ω with a grid parameter h such that Ω = {∪K | K ∈ Sh} and
h = maxK∈ShhK, where hK is the width of the subintervalK. Associated with the partition Sh,
we may define a finite-dimensional subspace Vh ⊂ H

μ/2
0 (Ω) with a basis {ϕi}Ni=1 of piecewise

polynomials. Then the semidiscrete variational problem is to find uh ∈ Vh such that

(uh,t, v) =
(

κμ∇μuh, v
)

+
(

f(uh), v
)

, ∀v ∈ Vh, (3.1)

uh(x, 0) = u0, (3.2)

uh(a, t) = uh(b, t) = 0. (3.3)

Since uh can be represented as

uh(x, t) =
N
∑

i=1

αi(t)ϕi(x), (3.4)

we may rewrite (3.1) in a matrix form:

Au̇(t) + Bu = F(u), (3.5)



8 Abstract and Applied Analysis

whereN ×N matrices A and B and vectors u and F are

A =
(

aij
)

, aij =
(

ϕi, ϕj
)

,

B =
(

bij
)

, bij = −κμ
2

[(

Dμ/2ϕi,D(μ/2)∗ϕj
)

+
(

Dμ/2ϕj,D(μ/2)∗ϕi
)]

,

F(u) =
(

Fj
)

, Fj =

(

f

(

N
∑

l=1

αlϕl

)

, ϕj

)

,

u = (α1(t), α2(t), . . . , αN(t))T .

(3.6)

It follows from
∑N

i,j=1 αiαj(ϕi, ϕj) = (
∑N

i=1 αiϕi,
∑N

j=1 αjϕj) ≥ 0 and Lemma 2.4 that mat-
rices A and B are nonnegative definite and nonsingular. Thus this system (3.5) of ordinary
differential equations has a unique solution since f is locally Lipschitz continuous.

The stability for the semidiscrete variational problem (3.1) can be obtained by follow-
ing the proof of Theorem 2.5, which is

‖uh‖L2(Ω) ≤ C‖u0‖L2(Ω). (3.7)

Now we will consider estimates of error between the weak solution of (2.13) and the
one of semidiscrete form (3.1). The finite dimensional subspace Vh ⊂ H

μ/2
0 (Ω) is chosen so

that the interpolation Ihu of u satisfies an approximation property [9, 28]: for u ∈ Hγ(Ω),
0 < γ ≤ n, and 0 ≤ s ≤ γ , there exists a constant C depending only on Ω such that

∥

∥

∥u − Ihu
∥

∥

∥

Hs(Ω)
≤ Chγ−s‖u‖Hγ (Ω). (3.8)

Since the norm ‖ · ‖Hs(Ω) is equivalent to the seminorm | · |Hs(Ω), we may replace (3.8) by the
relation

∥

∥

∥u − Ihu
∥

∥

∥

Hs(Ω)
≤ Chγ−s|u|Hγ (Ω). (3.9)

Further we need an adjoint problem to find w ∈ Hμ(Ω) ∩Hμ/2
0 (Ω) satisfying

−κμ∇μw = g, in Ω,

w = 0, on ∂Ω.
(3.10)

Bai and Lü [29] have proved existence of a solution to the problem (3.10). We assume as in
Ervin and Roop [24] that the solution w satisfies the regularity

‖w‖Hμ(Ω) ≤ C
∥

∥g
∥

∥

L2(Ω), μ /=
3
2
, (3.11)

‖w‖Hμ−ε(Ω) ≤ C
∥

∥g
∥

∥

L2(Ω), μ =
3
2
, 0 < ε <

1
2
. (3.12)
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Let ũh = Phu be the elliptic projection Ph : Hμ/2
0 (Ω) → Vh of the exact solution u,

which is defined by

−κμ(∇μ(u − ũh), v) = 0, ∀v ∈ Vh. (3.13)

Let θ = uh − ũh and ρ = ũh − u. Then the error is expressed as

eh = uh − u = (uh − ũh) + (ũh − u) = θ + ρ. (3.14)

First, we consider the following estimates on ρ.

Lemma 3.1. Let ũh be a solution of (3.13) and let u ∈ Hμ(Ω)∩Hμ/2
0 (Ω) be the solution of (2.13). Let

ρ(t) = ũh(t) − u(t). Then there is a constant C such that

∥

∥ρ(t)
∥

∥

L2(Ω) ≤ Chγ̃‖u(t)‖Hγ (Ω),

∥

∥ρt(t)
∥

∥

L2(Ω) ≤ Chγ̃‖u(t)‖Hγ (Ω),
(3.15)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2 if μ = 3/2.

Proof. It follows from the fractional Poincaré-Friedrich’s inequality and the adjoint property
(2.12) that for ψ, χ ∈ Vh ⊂ Hμ/2

0 (Ω)

(

Dμψ, χ
)

=
∫b

a

(

Dμ/2ψ
)

D(μ/2)∗χdx

≤ ∣∣ψ∣∣
J
μ/2
L,0 (Ω)

∣

∣χ
∣

∣

J
μ/2
R,0 (Ω)

≤ C∥∥ψ∥∥
H

μ/2
0 (Ω)

∥

∥χ
∥

∥

H
μ/2
0 (Ω).

(3.16)

Similarly we obtain

(

Dμ∗ψ, χ
)

=
∫b

a

(

D(μ/2)∗ψ
)

Dμ/2χdx ≤ C∥∥ψ∥∥
H

μ/2
0 (Ω)

∥

∥χ
∥

∥

H
μ/2
0 (Ω). (3.17)

It follows from Lemma 2.4 that for v ∈ Vh

κμ
∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|u − ũh|2
H

μ/2
0 (Ω)

≤ −κμ(∇μ(u − ũh), u − ũh)

≤ −κμ(∇μ(u − ũh), u − v) − κμ(∇μ(u − ũh), v − ũh)
≤ C‖u − ũh‖Hμ/2

0 (Ω)‖u − v‖
H

μ/2
0 (Ω).

(3.18)
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Using the equivalence of seminorms and norms, we obtain

‖u − ũh‖Hμ/2
0 (Ω) ≤ C inf

v∈Vh
‖u − v‖

H
μ/2
0 (Ω) ≤ C

∥

∥

∥u − Ihu
∥

∥

∥

H
μ/2
0 (Ω)

. (3.19)

In case of μ/= 3/2 and v ∈ Vh, by taking g = ρ in (3.10) and using (3.13), (3.16)-(3.17)
and the adjoint property (2.12), we have

(

ρ, ρ
)

= −κμ
(∇μw, ρ

)

= −κμ
(∇μ(w − v), ρ) − κμ

(∇μρ, v
)

= −κμ
(∇μ(w − v), ρ)

≤ C‖w − v‖
H

μ/2
0 (Ω)

∥

∥ρ
∥

∥

H
μ/2
0 (Ω).

(3.20)

Taking v = Ihw in the previously mentioned inequalities, we have

∥

∥ρ
∥

∥

2
L2(Ω) ≤ C

∥

∥

∥w − Ihw
∥

∥

∥

H
μ/2
0 (Ω)

∥

∥ρ
∥

∥

H
μ/2
0 (Ω)

≤ Chμ/2‖w‖Hμ(Ω)

∥

∥

∥u − Ihu
∥

∥

∥

H
μ/2
0 (Ω)

≤ Chμ/2∥∥ρ∥∥L2(Ω)h
μ/2‖u‖Hμ(Ω).

(3.21)

Thus we obtain

∥

∥ρ
∥

∥

L2(Ω) ≤ Chμ‖u‖Hμ(Ω). (3.22)

We now differentiate (3.13). Then we obtain −κμ(∇μρt, v) = 0 for all v ∈ Vh. Using the pre-
vious duality arguments again, we have

∥

∥ρt
∥

∥

L2(Ω) ≤ Chμ‖u‖Hμ(Ω). (3.23)

In case of μ = 3/2, we can similarly prove (3.15) by applying the assumption (3.12).
This completes the proof.

We now consider the estimates on θ.

Lemma 3.2. Let uh and ũh be the solutions of (3.1)–(3.3) and (3.13), respectively. Let θ(t) = uh(t)−
ũh(t). Then there is a constant C such that

‖θ(t)‖L2(Ω) ≤ Chγ̃ , (3.24)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2 if μ = 3/2.
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Proof. It follows from (3.1) and (3.13) that for v ∈ Vh,

(θt, v) − κμ(∇μθ, v) =
(

f(uh) − f(u), v
) − (ρt, v

)

. (3.25)

Replacing v = θ in (3.25), we obtain

1
2
d

dt
‖θ‖2L2(Ω) ≤ Cl‖uh − u‖L2(Ω)‖θ‖L2(Ω) +

∥

∥ρt
∥

∥

L2(Ω)‖θ‖L2(Ω). (3.26)

Using Young’s inequality

d

dt
‖θ‖2L2(Ω) ≤ C

(

‖uh − ũh‖L2(Ω) + ‖ũh − u‖L2(Ω)

)

‖θ‖L2(Ω) +
∥

∥ρt
∥

∥

L2(Ω)‖θ‖L2(Ω)

≤ C
(

‖θ‖L2(Ω) +
∥

∥ρ
∥

∥

L2(Ω) +
∥

∥ρt
∥

∥

L2(Ω)

)

‖θ‖L2(Ω)

≤ C1‖θ‖2L2(Ω) + C2
∥

∥ρ
∥

∥

2
L2(Ω) + C3

∥

∥ρt
∥

∥

2
L2(Ω).

(3.27)

Integration on time t gives

‖θ(t)‖2L2(Ω) ≤ ‖θ(0)‖2L2(Ω) + C
∫ t

0
‖θ‖2L2(Ω)ds + C

∫ t

0

(

∥

∥ρ
∥

∥

2
L2(Ω) +

∥

∥ρt
∥

∥

2
L2(Ω)

)

ds. (3.28)

Applying Gronwall’s inequality, we obtain

‖θ(t)‖2L2(Ω) ≤ C1‖θ(0)‖2L2(Ω) + C2

∫ t

0

(

∥

∥ρ
∥

∥

2
L2(Ω) +

∥

∥ρt
∥

∥

2
L2(Ω)

)

ds. (3.29)

Since

‖θ(0)‖L2(Ω) ≤ ‖uh(0) − u(0)‖L2(Ω) + ‖ũh(0) − u(0)‖L2(Ω)

≤ Chγ̃‖u0‖Hγ (Ω),
(3.30)

we obtain the desired inequality

‖θ(t)‖L2(Ω) ≤ Chγ̃ , (3.31)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2, if μ = 3/2.
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Combining Lemmas 3.1 and 3.2, we obtain the following error estimates.

Theorem 3.3. Let uh and u be the solutions of (3.1)–(3.3) and (1.2)–(1.4), respectively. Then there is
a constant C(u) such that

‖u(t) − uh(t)‖L2(Ω) ≤ C(u)hμ, μ /=
3
2
,

‖u(t) − uh(t)‖L2(Ω) ≤ C(u)hμ−ε, μ =
3
2
, 0 < ε <

1
2
.

(3.32)

4. The Fully Discrete Variational Form

In this section, we consider a fully discrete variational formulation of (1.2). Existence and
uniqueness of numerical solutions for the fully discrete variational formulation are discussed.
The corresponding error estimates are also analyzed.

For the temporal discretization let k = T/M for a positive integerM and tm = mk. Let
um be the solution of the backward Euler method defined by

um+1 − um
k

= κμ∇μum+1 + f
(

um+1
)

(4.1)

with an initial condition

u0(x) = u0, x ∈ Ω = (a, b) (4.2)

and boundary conditions

um+1(a) = um+1(b) = 0, m = 0, 1, . . . ,M − 1. (4.3)

Then we get the fully discrete variational formulation of (1.2) to find um+1 ∈ H
μ/2
0 (Ω) such

that for all v ∈ Hμ/2
0 (Ω)

(

um+1, v
)

− k
(

κμ∇μum+1, v
)

=
(

kf
(

um+1
)

, v
)

+ (um, v). (4.4)

Thus a finite Galerkin solution um+1
h

∈ Vh ⊂ Hμ/2
0 (Ω) is a solution of the equation

(

um+1
h , vh

)

− kκμ
(

∇μum+1
h , vh

)

= k
(

f
(

um+1
h

)

, vh
)

+
(

umh , vh
)

, ∀vh ∈ Vh (4.5)

with an initial condition

u0h = u0 (4.6)
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and boundary conditions

um+1
h (a) = um+1

h (b) = 0, m = 0, 1, . . . ,M − 1. (4.7)

Now we prove the existence and uniqueness of solutions for (4.5) using the Brouwer
fixed-point theorem.

Theorem 4.1. There exists a unique solution um+1
h

∈ Vh ⊂ Hμ/2
0 (Ω) of (4.5)–(4.7).

Proof. Let

G
(

um+1
h

)

= um+1
h − kκμ∇μum+1

h − kf
(

um+1
h

)

− umh . (4.8)

ThenG(v) is obviously a continuous function from Vh to Vh. In order to show the existence of
solution for G(v) = 0, we adopt the mathematical induction. Assume that u0

h
, u1

h
, . . . , um

h
exist

form <M. It follows from (1.8), Lemma 2.4, and Young’s inequality that

(G(v), v) = (v, v) − (umh , v
) − k(κμ∇μv, v

) − k(f(v), v)

≥ ‖v‖2L2(Ω) −
∥

∥umh
∥

∥

L2(Ω)‖v‖L2(Ω) + kκμ
∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|v|2
H

μ/2
0 (Ω)

− Cfk‖v‖2L2(Ω)

≥ ‖v‖2L2(Ω) −
∥

∥umh
∥

∥

L2(Ω)‖v‖L2(Ω) − Cfk‖v‖2L2(Ω)

≥ ‖v‖2L2(Ω) −
1
2

(

∥

∥umh
∥

∥

2
L2(Ω) + ‖v‖2L2(Ω)

)

− Cfk‖v‖2L2(Ω)

=
(

1
2
− Cfk

)

‖v‖2L2(Ω) −
1
2
∥

∥umh
∥

∥

2
L2(Ω).

(4.9)

If we take sufficiently small k so that k < 1/2Cf and ‖v‖L2(Ω) > ‖umh ‖L2(Ω)/(1−2Cfk), then the
Brouwer’s fixed-point theorem implies the existence of a solution.

For the proof of the uniqueness of solutions, we assume that u and v are two solutions
of (4.5). Then we obtain

(

u − v, ψ) = kκμ
(∇μ(u − v), ψ) + k(f(u) − f(v), ψ), ∀ψ ∈ Vh ⊂ Hμ/2

0 (Ω). (4.10)

Replacing ψ = u − v in the above equation and applying Lemma 2.4, we obtain

‖u − v‖2L2(Ω) ≤ −kκμ
∣

∣

∣cos
(

π · μ
2

)∣

∣

∣|u − v|
H

μ/2
0 (Ω) + k

∥

∥f(u) − f(v)∥∥L2(Ω)‖u − v‖L2(Ω)

≤ k∥∥f(u) − f(v)∥∥L2(Ω)‖u − v‖L2(Ω)

≤ kCl‖u − v‖2L2(Ω).

(4.11)

This implies u − v = 0 since u(0) = v(0).
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The following theorem presents the unconditional stability for (4.4).

Theorem 4.2. The fully discrete scheme (4.4) is unconditionally stable. In fact, for anym

∥

∥

∥um+1
∥

∥

∥

L2(Ω)
≤ C‖u0‖L2(Ω). (4.12)

Proof. It follows from (1.8), Lemma 2.4, and Young’s inequality that by taking v = um+1 in
(4.4), we obtain

0 =
(

um+1, um+1
)

− k
(

κμ∇μum+1, um+1
)

− k
(

f
(

um+1
)

, um+1
)

−
(

um, um+1
)

≥
∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
+ kκμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣

∣

∣

∣um+1
∣

∣

∣

2

H
μ/2
0 (Ω)

− Cfk
∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
− ‖um‖L2(Ω)

∥

∥

∥um+1
∥

∥

∥

L2(Ω)

≥ 1
2

∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
+ kκμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣

∣

∣

∣um+1
∣

∣

∣

2

H
μ/2
0 (Ω)

− Cfk
∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
− 1
2
‖um‖2L2(Ω).

(4.13)

Then

1
2

∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
≤ 1

2

∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
+ kκμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣

∣

∣

∣um+1
∣

∣

∣

2

H
μ/2
0 (Ω)

≤ Cfk
∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
+
1
2
‖um‖2L2(Ω).

(4.14)

Adding the above inequality fromm = 0 tom, we obtain

(

1 − 2Cfk
)

∥

∥

∥um+1
∥

∥

∥

2

L2(Ω)
≤ ‖u0‖2L2(Ω) + 2Cfk

m
∑

j=1

∥

∥

∥uj
∥

∥

∥

2

L2(Ω)
. (4.15)

Applying the discrete Gronwall’s inequality with sufficiently small k such that k < 1/2Cf ,
we obtain the desired result.

The following theorem is an error estimate for the fully discrete problem (4.4).

Theorem 4.3. Let u be the exact solution of (1.2) and let um be the solution of (4.4). Then there is a
constant C such that

‖u(tm) − um‖L2(Ω) ≤ Ck. (4.16)
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Proof. Let em = u(tm) − um be the error at tm. It follows from (1.2) and (4.4) that for any v ∈
H

μ/2
0 (Ω)

(

em+1, v
)

− k
(

κμ∇μem+1, v
)

= k
(

f(u(tm+1)) − f
(

um+1
)

, v
)

+ (em, v) +
(

krm+1, v
)

, (4.17)

where r = O(k). Taking v = em+1,

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
≤
∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
+ kκμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣

∣

∣

∣em+1
∣

∣

∣

2

H
μ/2
0 (Ω)

≤ k
∥

∥

∥f(u(tm+1)) − f(um+1)
∥

∥

∥

L2(Ω)

∥

∥

∥em+1
∥

∥

∥

L2(Ω)

+ ‖em‖L2(Ω)

∥

∥

∥em+1
∥

∥

∥

L2(Ω)
+
∥

∥

∥krm+1
∥

∥

∥

L2(Ω)

∥

∥

∥em+1
∥

∥

∥

L2(Ω)
.

(4.18)

Applying the locally Lipschitz continuity of f and Young’s inequality, we obtain

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
≤ kCl

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
+ ‖em‖L2(Ω)

∥

∥

∥em+1
∥

∥

∥

L2(Ω)
+
∥

∥

∥krm+1
∥

∥

∥

L2(Ω)

∥

∥

∥em+1
∥

∥

∥

L2(Ω)

≤ kCl

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
+ ε1‖em‖2L2(Ω) +

1
4ε1

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)

+ ε2
∥

∥

∥krm+1
∥

∥

∥

2

L2(Ω)
+

1
4ε2

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
.

(4.19)

That is,

(

1 − 1
4ε1

− 1
4ε2

)

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
≤ kCl

∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
+ ε1‖em‖2L2(Ω) + ε2

∥

∥

∥krm+1
∥

∥

∥

2

L2(Ω)
. (4.20)

Denoting ε0 = 1 − 1/4ε1 − 1/4ε2 and adding the above equation fromm = 0 tom, we obtain

(ε0 − kCl)
∥

∥

∥em+1
∥

∥

∥

2

L2(Ω)
≤ ε1
∥

∥

∥e0
∥

∥

∥

2

L2(Ω)
+ (kCl + ε1 − ε0)

m
∑

i=1

∥

∥

∥ei
∥

∥

∥

2

L2(Ω)
+ ε2

m+1
∑

i=1

∥

∥

∥kri
∥

∥

∥

2

L2(Ω)
. (4.21)

Applying the discrete Gronwall’s inequality with sufficiently small k such that (ε0 − ε1)/Cl <
k < ε0/Cl, we obtain the desired result since

∑m+1
i=1 ‖kri‖L2(Ω) ≤ Ck and ‖e0‖L2(Ω) = ‖u(0) −

u0‖L2(Ω) = 0.

As in the previous section, denote θm+1 = um+1
h − ũm+1

h and ρm+1 = ũm+1
h − u(tm+1). Here

ũm+1
h

is the elliptic projection of u(tm+1) defined in (3.13). Then

em+1
h = θm+1 + ρm+1. (4.22)
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Theorem 4.4. Let u be the exact solution of (1.2)–(1.4) and let {umh }Mm=0 be the solution of (4.5)–
(4.7). Then when μ/= 3/2

∥

∥

∥u(tm+1) − um+1
h

∥

∥

∥

L2(Ω)
≤ Ck + Chμ‖u(tm+1)‖Hμ(Ω) (4.23)

and when μ = 3/2, 0 < ε < 1/2,

∥

∥

∥u(tm+1) − um+1
h

∥

∥

∥

L2(Ω)
≤ Ck + Chμ−ε‖u(tm+1)‖Hμ−ε(Ω). (4.24)

Proof. Since we know the estimates on ρ from Lemma 3.1, we have only to show boundedness
of θm+1. Using the property (3.13), we obtain for v ∈ Vh

(

θm+1, v
)

− k
(

κμ∇μθm+1, v
)

= k
(

f
(

um+1
h

)

− f(u(tm+1)), v
)

+
(

umh − u(tm), v
)

−
(

krm+1, v
)

−
(

ρm+1, v
)

,

(4.25)

where r = O(k).
Taking v = θm+1 and applying Lemma 2.4, the locally Lipschitz continuity of f ,

Young’s inequality, and the triangle inequality, we obtain

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
≤
∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
+ kκμ

∣

∣

∣cos
(

π · μ
2

)∣

∣

∣

∣

∣

∣θm+1
∣

∣

∣

2

H
μ/2
0 (Ω)

≤ k
∥

∥

∥f(um+1
h ) − f(u(tm+1))

∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)
+
∥

∥emh
∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)

+
∥

∥

∥krm+1
∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)
+
∥

∥

∥ρm+1
∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)

≤ kCl

∥

∥

∥em+1
h

∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)

+
(

‖θm‖L2(Ω) +
∥

∥ρm
∥

∥

L2(Ω)

)∥

∥

∥θm+1
∥

∥

∥

L2(Ω)

+
∥

∥

∥krm+1
∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)
+
∥

∥

∥ρm+1
∥

∥

∥

L2(Ω)

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)

≤ kCl

(

1 +
1
4ε6

)

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
+
(

1
4ε3

+
1
4ε4

+
1
4ε5

+
1
4ε6

)

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)

+ ε3‖θm‖2L2(Ω) + ε4
∥

∥

∥krm+1
∥

∥

∥

2

L2(Ω)
+ ε5
∥

∥ρm
∥

∥

2
L2(Ω) + (1 + kCl)ε6

∥

∥

∥ρm+1
∥

∥

∥

2

L2(Ω)
.

(4.26)
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This implies that

(

1 − 1
4ε3

− 1
4ε4

− 1
4ε5

− 1
4ε6

)

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)

≤ kCl

(

1 +
1
4ε6

)

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
+ ε3‖θm‖2L2(Ω) + ε4

∥

∥

∥krm+1
∥

∥

∥

2

L2(Ω)

+ ε5
∥

∥ρm
∥

∥

2
L2(Ω) + (1 + kCl)ε6

∥

∥

∥ρm+1
∥

∥

∥

2

L2(Ω)
.

(4.27)

Denote ε7 = 1 − 1/4ε3 − 1/4ε4 − 1/4ε5 − 1/4ε6 and ε8 = 1 + 1/4ε6. Then adding the above
inequality fromm = 0 tom, we obtain

(ε7 − kClε8)
∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
≤ ε3
∥

∥

∥θ0
∥

∥

∥

2

L2(Ω)
+ (kClε8 + ε3 − ε7)

m
∑

i=1

∥

∥

∥θi
∥

∥

∥

2

L2(Ω)

+ ε4
m+1
∑

i=1

∥

∥

∥kri
∥

∥

∥

2

L2(Ω)
+ ε5

m
∑

i=0

∥

∥

∥ρi
∥

∥

∥

2

L2(Ω)

+ (1 + kCl)ε6
m+1
∑

i=1

∥

∥

∥ρi
∥

∥

∥

2

L2(Ω)
.

(4.28)

Applying the discrete Gronwall’s inequality with sufficiently small k such that (ε7 − ε3)/
ε8Cl < k < ε7/Clε8,

∥

∥

∥θm+1
∥

∥

∥

2

L2(Ω)
≤ C1

∥

∥

∥θ0
∥

∥

∥

2

L2(Ω)
+ C2

m+1
∑

i=1

∥

∥

∥kri
∥

∥

∥

2

L2(Ω)
+ C3

m+1
∑

i=0

∥

∥

∥ρi
∥

∥

∥

2

L2(Ω)
. (4.29)

Also, using Lemma 3.1 and the initial conditions (1.3) and (4.6), we obtain

∥

∥

∥θ0
∥

∥

∥

L2(Ω)
≤
∥

∥

∥u0h − u(0)
∥

∥

∥

L2(Ω)
+
∥

∥

∥ũ0h − u(0)
∥

∥

∥

L2(Ω)

≤ Chγ̃‖u0‖Hγ (Ω).

(4.30)

Since
∑m+1

i=1 ‖kri‖L2(Ω) ≤ Ck, we get

∥

∥

∥θm+1
∥

∥

∥

L2(Ω)
≤ Ck + C(u)hγ̃ , (4.31)

where γ̃ = μ if μ/= 3/2 and γ̃ = μ − ε, 0 < ε < 1/2, if μ = 3/2. Thus we obtain the desired
result.
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Table 1: L2-error and order of convergence in x when μ = 1.6.

h
‖u − uh‖L2(Ω)

Error Order
1/4 8.37811e − 03 —
1/8 2.73537e − 03 1.615
1/16 8.75752e − 04 1.643
1/32 2.83167e − 04 1.629

5. Numerical Experiments

In this section, we present numerical results for the Galerkin approximations which supports
the theoretical analysis discussed in the previous section.

Let Sh denote a uniform partition of Ω and let Vh denote the space of continuous
piecewise linear functions defined on Sh. In order to implement the Galerkin finite element
approximation, we adapt finite element discretization on the spatial axis and the backward
Euler finite difference scheme along the temporal axis. We associate shape functions of space
Vh with the standard basis of the functions on the uniform interval with length h.

Example 5.1. We first consider a space fractional linear diffusion equation:

∂u(x, t)
∂t

= ∇μu(x, t) +
2t

t2 + 1
u(x, t) −

(

t2 + 1
)

×

⎛

⎜

⎝

{

x2−μ + (1 − x)2−μ
}

Γ
(

3 − μ) −
6
{

x3−μ + (1 − x)3−μ
}

Γ
(

4 − μ) +
12
{

x4−μ + (1 − x)4−μ
}

Γ
(

5 − μ)

⎞

⎟

⎠

(5.1)

with an initial condition

u(x, 0) = x2(1 − x)2, x ∈ [0, 1] (5.2)

and boundary conditions

u(0, t) = u(1, t) = 0. (5.3)

In this case, the exact solution is

u(x, t) =
(

t2 + 1
)

x2(1 − x)2. (5.4)

Tables 1, 2, and 4 show the order of convergence and L2-error between the exact solu-
tion and the Galerkin approximate solution of the fully discrete backward Euler method for
(5.1)when μ = 1.6, μ = 1.8 and μ = 1.5, respectively. For numerical computation, the temporal
step size k = 0.001 is used in all three cases. Table 3 shows L2-errors and orders of convergence
for the Galerkin approximate solution when μ = 1.8 and the spatial step size h = 0.0625.
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Table 2: L2-error and order of convergence in x when μ = 1.8.

h
‖u − uh‖L2(Ω)

Error Order
1/4 8.03045e − 03 —
1/8 2.28959e − 03 1.810
1/16 6.32962e − 04 1.855
1/32 1.76406e − 04 1.843

Table 3: L2-error and order of convergence in t when μ = 1.8.

k
‖u − uh‖L2(Ω)

Error Ratio
1/20 4.20420e − 03 —
1/30 2.94873e − 03 0.951
1/40 2.31793e − 03 0.954
1/50 1.93046e − 03 0.961

Table 4: L2-error and order of convergence in x when μ = 1.5.

h
‖u − uh‖L2(Ω)

Error Order
1/4 5.47750e − 03 —
1/8 2.20129e − 03 1.315
1/16 8.86858e − 04 1.312
1/32 3.57629e − 04 1.310

According to Tables 1–3, we may find the order of convergence of O(k + hμ) for
this linear fractional diffusion problem (5.1)–(5.3)when μ/= 3/2. Furthermore, Table 4 shows
orders of numerical convergence for the problem when μ = 3/2, where we may see that the
order of convergence is of O(k + hμ−ε), 0 < ε < 1/2. It follows from Tables 1–4 that numerical
computations confirm the theoretical results.

We plot the exact solution and approximate solutions obtained by the backward Euler
Galerkin method using h = 1/32 and k = 1/1000 for (5.1) with μ = 1.6 and μ = 1.8. Figure 1
shows the contour plots of an exact solution and numerical solutions at t = 1, and Figure 2
shows log-log graph for the order of convergence.

Example 5.2. We consider a space fractional diffusion equation with a nonlinear Fisher type
source term which is described as

∂u(x, t)
∂t

= κμ∇μu(x, t) + λu(x, t)
(

1 − βu(x, t)) (5.5)
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Figure 1: Exact and numerical solutions with μ = 1.6 and μ = 1.8.
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Figure 2: Log-log plots of the error for the rate of convergence.

with an initial condition

u(x, 0) = u0(x) (5.6)

and boundary conditions

u(−1, t) = u(1, t) = 0. (5.7)
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Figure 3: Numerical solutions for (5.5)with (5.8).

In fact, we will consider the case of κμ = 0.1, β = 1 in (5.5) with an initial condition

u0(x) =

{

e−10x, x ≥ 0,
e10x, x < 0.

(5.8)

For numerical computations, we have to take care of the nonlinear term f(u) = λu(1 −
βu). This gives a complicated nonlinear matrix. In order to avoid the difficulty of solving non-
linear system, we adopted a linearized method replacing λun+1(1 − βun+1) by λun+1(1 − βun).
Figure 3 shows contour plots of numerical solutions at t = 1 for (5.5)–(5.8) with λ = 0.25.
For numerical computations, step sizes h = 0.01 and k = 0.005 are used. From the numerical
results we may find that numerical solutions converge to the solution of classical diffusion
equation as μ approaches to 2.

Example 5.3. We now consider (5.5)with κμ = 0.1, β = 1 and boundary conditions

lim
|x|→∞

u(x, t) = 0. (5.9)

We will consider an initial condition with a sharp peak in the middle as

u0(x) = sech2(10x) (5.10)

and an initial condition with a flat roof in the middle as

u0(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−10(x−1), x > 1,
1, −1 < x ≤ 1,
e10(x+1), x ≤ −1.

(5.11)

Tang and Weber [30] have obtained computational solutions for (5.5) with initial con-
ditions (5.10) and (5.11) using a Petrov-Galerkin method when (5.5) is a classical diffusion
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Figure 4: Numerical solutions at t = 1 for (5.5) and (5.10)with λ = 0.25.
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Figure 5: Numerical solutions at t = 4 for (5.5) and (5.10)with λ = 1.

problem. We obtain computational results using the method as in Example 5.2. Figure 4
shows contour plots of numerical solutions at t = 1 for (5.5) with an initial condition (5.10)
when Ω = (−2, 2) and λ = 0.25. Figure 5 shows also contour plots of numerical solutions at
t = 4 for (5.5) and (5.10) when Ω = (−4, 4) and λ = 1. In both cases, step sizes h = 0.01 and
k = 0.005 are used for computation. According to Figures 4 and 5, we may see that the diffu-
sivity depends on μ but it is far less than that of the classical solution. That is, the fractional
diffusion problem keeps the peak in the middle for longer time than the classical one does.

Figure 6 shows contour plots of numerical solutions for (5.5) with an initial condition
(5.10) when μ = 1.8, Ω = (−2, 2) and λ = 1. In this case, step sizes h = 0.01 and k = 0.005
are also used for computation. But the period of time is from t = 0 to t = 5. According to
Figure 6, we may see that the peak goes down rapidly for a short time, and it begins to go up
after the contour arrives at the lowest level.

Figure 7 shows contour plots of numerical solutions at t = 1 for (5.5) with an initial
condition (5.11) when Ω = (−4, 4) and λ = 0.25. In this case, step sizes h = 0.01 and k =
0.005 are also used for computation. According to Figure 7, we may find that the fractional
diffusion problem keeps the flat roof in the middle for longer time than the classical one does.
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Figure 6: Numerical solutions for (5.5) and (5.10) with λ = 1.
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Figure 7: Numerical solutions for (5.5) and (5.11) with λ = 0.25.

6. Concluding Remarks

Galerkin finite element methods are considered for the space fractional diffusion equation
with a nonlinear source term. We have derived the variational formula of the semidiscrete
scheme by using the Galerkin finite element method in space. We showed existence and sta-
bility of solutions for the semidiscrete scheme. Furthermore, we derived the fully time-space
discrete variational formulation using the backward Euler method. Existence and uniqueness
of solutions for the fully discrete Galerkin method have been discussed. Also we proved that
the scheme is unconditionally stable, and it has the order of convergence of O(k + hγ̃), where
γ̃ is a constant depending on the order of fractional derivative. Numerical computations
confirm the theoretical results discussed in the previous section for the problem with a linear
source term. For the fractional diffusion problem with a nonlinear source term, we may find
that the diffusivity depends on the order of fractional derivative, and numerical solutions of
fractional order problems are less diffusive than the solution of a classical diffusion problem.
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