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The main purpose of this paper is to investigate the strong convergence of the Euler method
to stochastic differential equations with piecewise continuous arguments (SEPCAs). Firstly, it
is proved that the Euler approximation solution converges to the analytic solution under local
Lipschitz condition and the bounded pth moment condition. Secondly, the Euler approximation
solution converge to the analytic solution is given under local Lipschitz condition and the linear
growth condition. Then an example is provided to show which is satisfied with the monotone
condition without the linear growth condition. Finally, the convergence of numerical solutions to
SEPCAs under local Lipschitz condition and the monotone condition is established.

1. Introduction

Recently, differential equations with piecewise continuous arguments (EPCAs) have at-
tracted much attention, and many useful conclusions have been obtained. These systems
have applications in certain biomedical models, control systems with feedback delay in the
work of Cooke and Wiener [1]. The general theory and basic results for EPCAs have by
now been thoroughly investigated in the book of Wiener [2]. Song et al. [3] deal with the
stability analysis of numerical methods for the solution of advanced differential equations
with piecewise continuous arguments. A typical EPCA contains arguments that are constant
on certain intervals. The solutions are determined by a finite set of initial data, rather than
by an initial function, as in the case of general functional differential equation. A solution
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is defined as a continuous, sectionally smooth function that satisfies the equation within
these intervals. Continuity of a solution at a point joining any two consecutive intervals leads
to recursion relations for the solution at such points. Hence, EPCAs represent a hybrid of
continuous and discrete dynamical systems and combine the properties of both differential
and difference equations.

However, up to now there are few people who have considered the influence of noise
to EPCAs. Actually, the environment and accidental eventsmay greatly influence the systems.
Thus analyzing SEPCAs is an interesting topic both in theory and applications. There is in
general no explicit solution to an SEPCA, hence numerical solutions are required in practice.
Numerical solutions to stochastic differential equations (SDEs) have been discussed under
the local Lipschitz condition and the linear growth condition by many authors (see [4, 5]).
Mao [6] discusses numerical solutions to stochastic differential delay equations (SDDEs)
under the local Lipschitz condition and the linear growth condition. Mao and Sabanis [7]
discuss numerical solutions to SDDEs with variable delay under the local Lipschitz condition
and the linear growth condition. Mao discusses numerical solutions to SDEs and SDDEs
under the local Lipschitz condition and themonotone condition (see [8]). Dai and Liu [9] give
the mean-square stability of the numerical solutions of linear SEPCAs. However, SEPCAs do
not have the convergence results. The main aim of this paper is to establish convergence of
numerical solution for SEPCAs under the differential conditions.

The paper is organized as follows. In Section 2, we introduce necessary notations and
the Euler method. In Section 3, the strong convergence of the Euler-Maruyama method to
SEPCAs under local Lipschitz condition and the bounded pth moment condition will be
given. In Section 4, the strong convergence of the Euler-Maruyama method to SEPCAs under
local Lipschitz condition and the linear growth condition will be presented. In Section 5, an
example is provided to show which is satisfied with the monotone condition without the
linear growth condition. In Section 6, we obtain the convergence of numerical solutions to
SEPCAs under local Lipschitz condition and the monotone condition is established.

2. Preliminary Notation and Euler Method

In this paper, unless otherwise specified, let |x| be the Euclidean norm in x ∈ Rn. If A is a
vector or matrix, its transpose is defined by AT . If A is a matrix, its trace norm is defined
by |A| =

√
trace(ATA). For simplicity, we also have to denote by a ∧ b = min{a, b}, a ∨ b =

max{a, b}.
Let (Ω,F, P) be a complete probability space with a filtration {Ft}t≥0, satisfying the

usual conditions. L1([0,∞), Rn) and L2([0,∞), Rn) denote the family of all real valued Ft-
adapted process f(t)t≥0, such that for every T > 0,

∫T
0 |f(t)|dt < ∞ a.s. and

∫T
0 |f(t)|2dt <

∞ a.s., respectively. For any a, b ∈ Rwith a < b, denote C([a, b];Rn) the family of continuous
functions φ from [a, b] to Rn with the norm ‖φ‖ = supa≤θ≤b|φ(θ)|. Denote Cb

Ft
([a, b];Rn)

the family of all bounded Ft-measurable C([a, b];Rn)-valued random variables. Let B(t) =
(B1(t), . . . , Bd(t))

T be a d-dimensional Brownian motion defined on the probability space.
Throughout this paper, we consider stochastic differential equations with piecewise

continuous arguments:

dx(t) = f(x(t), x([t]))dt + g(x(t), x([t]))dB(t) ∀t ≥ 0, (2.1)
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with initial data x(0) = x0, where f :Rn ×Rn → Rn, g:Rn ×Rn → Rn×d, x0 is a vector, and [·]
denotes the greatest-integer function. By the definition of stochastic differential, this equation
is equivalent to the following stochastic integral equation:

x(t) = x(0) +
∫ t

0
f(x(s), x([s]))ds +

∫ t

0
g(x(s), x([s]))dB(s) ∀t ≥ 0. (2.2)

Moreover, we also require the coefficients f and g to be sufficiently smooth.
To be precise, let us state the following conditions.

(H1) The local Lipschitz condition: for every integer i ≥ 1, there exists a positive
constant Li such that

∣
∣f
(
x, y
) − f

(
x, y
)∣∣2 ∨ ∣∣g(x, y) − g

(
x, y
)∣∣2 ≤ Li

(
|x − x|2 + ∣∣y − y

∣
∣2
)
, (2.3)

for those x, x, y, y ∈ Rn with |x| ∨ |x| ∨ |y| ∨ |y| ≤ i.

(H2) Linear growth condition: there exists a positive constant K such that

∣∣f
(
x, y
)∣∣2 ∨ ∣∣g(x, y)∣∣2 ≤ K

(
1 + |x|2 + ∣∣y∣∣2

)
, (2.4)

for all (x, y) ∈ Rn × Rn.

(H3)Monotone condition: there exists a positive constant K1 such that

xTf
(
x, y
)
+
p − 1
2
∣∣g
(
x, y
)∣∣2 ≤ K1

(
1 + |x|2 + ∣∣y∣∣2

)
, (2.5)

for all (x, y) ∈ Rn × Rn.

(H4) The bounded pth moment condition: there exists a pair of constants p > 2 and
K2 > 0 such that

E

[

sup
0≤t≤T

|x(t)|p
]

∨ E

[

sup
0≤t≤T

∣∣y(t)
∣∣p
]

≤ K2. (2.6)

Let us first give the definition of the solution.

Definition 2.1 (see [10]). An Rn-valued stochastic process {x(t)} is called a solution of (2.1)
on [0,∞), if it has the following properties:

(1) {x(t)} is continuous on [0,∞) and Ft adapted;

(2) {f(x(t), x([t]))} ∈ L1([0,∞), Rn) and {g(x(t), x([t]))} ∈ L2([0,∞), Rn×d);

(3) Equation (2.2) is satisfied on each interval [n, n+1) ⊂ [0,∞)with integral end points
almost surely. A solution {x(t)} is said to be unique if any other solution {x(t)} is
indistinguishable from {x(t)}, that is,

P{x(t) = x(t) ∀t ∈ [0,∞)} = 1. (2.7)
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Let h = 1/m be a given stepsize with integer m ≥ 1 and the grid points tn defined by tn =
nh (n = 0, 1, 2, . . .). For simplicity, we assume T = Nh. We consider the Euler-Maruyama
method to (2.1),

yn+1 = yn + f
(
yn, y

h([nh])
)
h + g

(
yn, y

h([nh])
)
ΔBn, (2.8)

for n = 0, 1, 2, . . ., whereΔBn = B(tn)−B(tn−1), yh([nh]) is approximation to the exact solution
x([nh]). Let n = km + l (k = 0, 1, 2, . . . , l = 0, 1, 2, . . . , m − 1). The adaptation of the Euler
method to (2.1) leads to a numerical process of the following type:

ykm+l+1 = ykm+l + f
(
ykm+l, ykm

)
h + g

(
ykm+l, ykm

)
ΔBkm+l, (2.9)

where ΔBkm+l = B(tkm+l) − B(tkm+l−1), ykm+l and ykm are approximations to the exact solution
x(tkm+l) and x([tkm+l]), respectively. The continuous Euler-Maruyama approximate solution
is defined by

y(t) = y(0) +
∫ t

0
f(z(s), z([s]))ds +

∫ t

0
g(z(s), z([s]))dB(s), (2.10)

where z(t) = ykm+l and z([t]) = ykm for t ∈ [tkm+l, tkm+l+1). It is not difficult to see that
y(tkm+l) = z(tkm+l) = ykm+l for k = 0, 1, 2, . . . , l = 0, 1, 2, . . . , m− 1. For sufficiently large integer
i, define the stopping times ηi = inf{t ≥ 0 : |x(t)| ≥ i}, θi = inf{t ≥ 0 : |y(t)| ≥ i}, τi = ηi ∧ θi.

3. Convergence of the Euler-Maruyama Method under the
Bounded pth Moment

We will show the strong convergence of the EM method on (2.1) under local Lipschitz
condition and the bounded pth moment condition. The following lemma shows that both
y(t) and z(t) are close to each other.

Lemma 3.1. Under the condition (H1), let T > 0 be arbitrary. Then

E sup
0≤t≤T

∣∣y(t) − z(t)
∣∣2 ≤ C1(x0, i)h, (3.1)

where C1(x0, i) = 4Li(T + 4)K2.



Abstract and Applied Analysis 5

Proof. For t ∈ [0, T), there are two integers k and l such that t ∈ [tkm+l, tkm+l+1). By the Hölder
inequality, we compute

∣
∣y(t) − z(t)

∣
∣2 =

∣
∣∣
∣
∣

∫ t

tkm+l

f(z(s), z([s]))ds +
∫ t

tkm+l

g(z(s), z([s]))dB(s)

∣
∣∣
∣
∣

2

≤ 2

∣
∣
∣
∣
∣

∫ t

tkm+l

f(z(s), z([s]))ds

∣
∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣
∣

∫ t

tkm+l

g(z(s), z([s]))dB(s)

∣
∣
∣
∣
∣

2

≤ 2T
∫ t

tkm+l

∣
∣f(z(s), z([s]))

∣
∣2ds + 2

∣
∣
∣
∣
∣

∫ t

tkm+l

g(z(s), z([s]))dB(s)

∣
∣
∣
∣
∣

2

.

(3.2)

This implies that, for any 0 ≤ t1 ≤ T ,

E sup
0≤t≤t1

∣∣y(t) − z(t)
∣∣2 ≤ 2TE sup

0≤t≤t1

∫ t

tkm+l

∣∣f(z(s), z([s]))
∣∣2ds

+ 2E sup
0≤t≤t1

∣∣∣∣∣

∫ t

tkm+l

g(z(s), z([s]))dB(s)

∣∣∣∣∣

2

.

(3.3)

By the Doob martingale inequality, we have

E sup
0≤t≤t1

∣∣y(t) − z(t)
∣∣2 ≤ 2TE

∫ t1

tkm+l

∣∣f(z(s), z([s]))
∣∣2ds + 8E

∫ t1

tkm+l

∣∣g(z(s), z([s]))
∣∣2ds. (3.4)

Using the local Lipschitz conditions

E sup
0≤t≤t1

∣∣y(t) − z(t)
∣∣2 ≤ 2Li(T + 4)E

∫ t1

tkm+l

(
|z(s)|2 + |z([s])|2

)
ds

≤ 4Li(T + 4)
∫ t1

tkm+l

(

E sup
0≤u≤s

∣∣y(u)
∣∣2
)

ds

≤ C1(x0, i)h,

(3.5)

where C1(x0, i) = 4Li(T + 4)K2. The proof is completed.

Theorem 3.2. Under the conditions (H1) and (H4), the EM approximate solution converges to the
exact solution of (2.1) in the sense that

lim
h→ 0

E

[

sup
0≤t≤T

∣∣y(t) − x(t)
∣∣2
]

= 0. (3.6)
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Proof. Fix a p > 2; let e(t) = x(t) − y(t); it is easy to see that

E

[

sup
0≤t≤T

|e(t)|2
]

= E

[

sup
0≤t≤T

|e(t)|21{θi>T andηi>T}

]

+ E

[

sup
0≤t≤T

|e(t)|21{θi≤T orηi≤T}

]

= E

[

sup
0≤t≤T

|e(t)|21{τi>T}
]

+ E

[

sup
0≤t≤T

|e(t)|21{θi≤T orηi≤T}

]

≤ E

[

sup
0≤t≤T

|e(t ∧ τi)|2
]

+ E

[

sup
0≤t≤T

|e(t)|21{θi≤T orηi≤T}

]

.

(3.7)

By the Young inequality xy ≤ (xp/p) + (yq/q), for any a, b, p, q, δ > 0, (1/p) + (1/q) = 1, we
have

ab ≤ aδ1/p b

δ1/p
≤
(
aδ1/p)p

p
+

bq

qδq/p
=

apδ

p
+

bq

qδq/p
. (3.8)

Thus for any δ > 0, we have

E

[

sup
0≤t≤T

|e(t)|21{θi≤T orηi≤T}

]

≤ 2δ
p
E

[

sup
0≤t≤T

|e(t)|p
]

+
1 − (2/p)

δ2/(p−2) P
{
θi ≤ T orηi ≤ T

}
. (3.9)

By condition (H4), we have

P(θi ≤ T) = E

[

1{θi≤T}

∣∣y(θi)
∣∣p

ip

]

≤ 1
ip
E

[

sup
0≤t≤T

∣∣y(t)
∣∣p
]

≤ K2

ip
. (3.10)

Similarly, the result is

P
(
ηi ≤ T

) ≤ K2

ip
. (3.11)

So that

P
(
θi ≤ T orηi ≤ T

) ≤ P(θi ≤ T) + P
(
ηi ≤ T

) ≤ 2K2

ip
. (3.12)

Using these bounds, then

E

[

sup
0≤t≤T

|e(t)|p
]

≤ 2p−1
(

E

[

sup
0≤t≤T

|x(t)|p
]

+ E

[

sup
0≤t≤T

∣∣y(t)
∣∣p
])

≤ 2pK2.

E

[

sup
0≤t≤T

|e(t)|21{θi≤T orηi≤T}

]

≤ 2p+1δK2

p
+
2
(
p − 2

)
K2

pδ2/(p−2)ip
.

(3.13)
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By the definitions of x(t) and y(t), we have

∣
∣x(t ∧ τi) − y(t ∧ τi)

∣
∣2 ≤ 2

∣
∣
∣
∣
∣

∫ t∧τi

0

[
f(x(s), x([s]) − f(z(s), z([s]))

]
ds

∣
∣
∣
∣
∣

2

+ 2

∣∣
∣
∣
∣

∫ t∧τi

0

[
g(x(s), x([s]) − g(z(s), z([s]))

]
dB(s)

∣∣
∣
∣
∣

2

.

(3.14)

Thus, for any t1 ∈ [0, T]

E sup
0≤t≤t1

∣∣x(t ∧ τi) − y(t ∧ τi)
∣∣2 ≤ 2E sup

0≤t≤t1

∣
∣
∣∣∣

∫ t∧τi

0

[
f(x(s), x([s]) − f(z(s), z([s]))

]
ds

∣
∣
∣∣∣

2

+ 2E sup
0≤t≤t1

∣∣∣∣∣

∫ t∧τi

0

[
g(x(s), x([s]) − g(z(s), z([s]))

]
dB(s)

∣∣∣∣∣

2

.

(3.15)

By the Hölder inequality, condition (H1), and Lemma 3.1, one gets

E sup
0≤t≤t1

∣∣∣∣∣

∫ t∧τi

0

[
f(x(s), x([s]) − f(z(s), z([s]))

]
ds

∣∣∣∣∣

2

≤ TE

∫ t1∧τi

0
|f(x(s), x([s]) − f(z(s), z([s]))

∣∣2ds

= TE

∫ t1

0
|f(x(s ∧ τi), x([s ∧ τi]) − f(z(s ∧ τi), z([s ∧ τi]))

∣∣2ds

≤ TLiE

∫ t1

0

(
|x(s ∧ τi) − z(s ∧ τi)|2 + |x([s ∧ τi]) − z([s ∧ τi])|2

)
ds

≤ 2TLi

∫ t1

0

(
E
∣∣x(s ∧ τi) − y(s ∧ τi)

∣∣2 + E
∣∣x([s ∧ τi]) − y([s ∧ τi])

∣∣2
)
ds

+ 2TLi

∫ t1

0

(
E
∣∣∣y(s ∧ τi) − z(s ∧ τi)|2 + E

∣∣∣y([s ∧ τi]) − z([s ∧ τi])|2
)
ds

≤ 2TLi

∫ t1

0

(
E
∣∣x(s ∧ τi) − y(s ∧ τi)

∣∣2 + E
∣∣x([s ∧ τi]) − y([s ∧ τi])

∣∣2
)
ds + 4T2LiC1(x0, i)h

≤ 4TLi

∫ t1

0
E sup
0≤ν≤s∧τi

∣∣x(ν) − y(ν)
∣∣2ds + 4T2LiC1(x0, i)h.

(3.16)
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Similarly, by the Burkhôlder-Davis-Gundy inequality, then

E sup
0≤t≤t1

∣
∣
∣
∣∣

∫ t∧τi

0

[
g(x(s), x([s])) − g(z(s), z([s]))

]
dB(s)

∣
∣
∣
∣∣

2

≤ 4E
∫ t∧τi

0

∣
∣g(x(s), x([s])) − g(z(s), z([s]))

∣
∣2ds

≤ 16Li

∫ t1

0
E sup
0≤ν≤s∧τi

∣
∣x(ν) − y(ν)

∣
∣2ds + 16TLiC1(x0, i)h.

(3.17)

Substituting (3.16) and (3.17) into (3.15) gives

E sup
0≤t≤t1

∣∣x(t ∧ τi) − y(t ∧ τi)
∣∣2 ≤ 8(T + 4)Li

∫ t1

0
E sup
0≤ν≤s∧τi

∣∣x(ν) − y(ν)
∣∣2ds + 8T(T + 4)LiC1(x0, i)h.

(3.18)

By the Gronwall inequality, we must get

E sup
0≤t≤T

∣∣x(t ∧ τi) − y(t ∧ τi)
∣∣2 ≤ C2(x0, i)h, (3.19)

where C2(x0, i) = 8T(T + 4)LiC1(x0, i)e8T(T+4)Li . So we have

E

[

sup
0≤t≤T

|e(t)|2
]

≤ E

[

sup
0≤t≤T

|e(t ∧ τi)|2
]

+ E

[

sup
0≤t≤T

|e(t)|21{θi<T orηi<T}

]

≤ C2(x0, i)h +
2p+1δK2

p
+
2
(
p − 2

)
K2

pδ2/(p−2)ip
.

(3.20)

Given any ε > 0, we can choose δ sufficiently small for

2p+1δK2

p
<

ε

3
, (3.21)

then choose i sufficiently large for

2
(
p − 2

)
K2

pδ2/(p−2)ip
<

ε

3
, (3.22)
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and finally choose h sufficiently small, so that

C2(x0, i)h <
ε

3
. (3.23)

Thus E[sup0≤t≤T |e(t)|2] < ε. The proof is completed.

4. Convergence of the Euler-Maruyama Method under
Linear Growth Condition

We will show the strong convergence of the EM method on (2.1) under local Lipschitz
condition and the linear growth condition. In the following we will show that the linear
growth condition (H2) implies the bounded pth moment condition (H4).

Lemma 4.1. Under the linear growth conditions (H2), there exists a positive constant C3 such that
the solution of (2.1) satisfies

E sup
0≤t≤T

|x(t)|p ≤ C3
(
1 + |x0|p

)
, (4.1)

where C3 = C3(p, T,K) is a constant independent of h.

Proof. It follows from (2.2) that

|x(t)|p =

∣∣∣∣∣
x(0) +

∫ t

0
f(x(s), x([s]))ds +

∫ t

0
g(x(s), x([s]))dB(s)

∣∣∣∣∣

p

≤ 3p−1
[

|x(0)|p +
∣∣∣∣∣

∫ t

0
f(x(s), x([s]))ds

∣∣∣∣∣

p

+

∣∣∣∣∣

∫ t

0
g(x(s), x([s]))dB(s)

∣∣∣∣∣

p]

.

(4.2)

By the Hölder inequality, we obtain

|x(t)|p ≤ 3p−1
[

|x(0)|p + Tp−1
∫ t

0

∣∣f(x(s), x([s]))
∣∣pds +

∣∣∣∣∣

∫ t

0
g(x(s), x([s]))dB(s)

∣∣∣∣∣

p]

. (4.3)

This implies that, for any 0 ≤ t1 ≤ T ,

E sup
0≤t≤t1

|x(t)|p ≤ 3p−1
[

|x(0)|p + Tp−1E sup
0≤t≤t1

∫ t

0

∣∣f(x(s), x([s]))
∣∣pds

+E sup
0≤t≤t1

∣∣∣∣∣

∫ t

0
g(x(s), x([s]))dB(s)

∣∣∣∣∣

p]

.

(4.4)
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By the Burkholder-Davis-Gundy inequality and the Hölder inequality, it is not difficult to
show that

E sup
0≤t≤t1

|x(t)|p ≤ 3p−1
[

|x(0)|p + Tp−1E
∫ t1

0

∣
∣f(x(s), x([s]))

∣
∣pds

+CpT
p/2−1E

∫ t1

0

∣
∣g(x(s), x([s]))

∣
∣pds

]

,

(4.5)

where Cp is a constant. Note from the linear growth conditions that

E sup
0≤t≤t1

|x(t)|p ≤ 3p−1
[

|x(0)|p + Tp−1E
∫ t1

0
Kp/2

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

+CpT
p/2−1E

∫ t1

0
Kp/2

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

]

≤ 3p−1|x(0)|p + 3(3p/2)−2Kp/2
(
Tp−1 + CpT

p/2−1
)

× E

∫ t1

0

(
1 + |x(s)|p + |x([s])|p)ds

≤ 3p−1|x(0)|p + 3(3p/2)−2Kp/2
(
Tp + CpT

p/2
)

+ 2 × 3(3p/2)−2Kp/2
(
Tp−1 + CpT

p/2−1
)
E sup
0≤u≤s

|x(u)|pds.

(4.6)

By the Gronwall inequality, we must get

E sup
0≤t≤T

|x(t)|p ≤ C3
(
1 + |x0|p

)
, (4.7)

where C3 = C3(p, T,K) is a constant independent of h.

The following lemma shows that the continuous Euler-Maruyama approximate so-
lution has bounded pth moments.

Lemma 4.2. Under the linear growth conditions (H2), there exists a positive constant C4 such that
the continuous approximate solution of the Euler-Maruyama (2.10) satisfies

E sup
0≤t≤T

∣∣y(t)
∣∣p ≤ C4

(
1 + |x0|p

)
, (4.8)

where C4 = C4(p, T,K) is a constant independent of h.
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Proof. By the inequality |a+b+c|2 ≤ 3|a|2+3|b|2+3|c|2 and (2.10), in the sameway as Lemma 4.1,
for any 0 ≤ t1 ≤ T , we can obtain

E sup
0≤t≤t1

∣
∣y(t)

∣
∣p ≤ 3p−1

[
∣
∣y(0)

∣
∣p + Tp−1E

∫ t1

0

∣
∣f(z(s), z([s]))

∣
∣pds

+CpT
(p/2)−1E

∫ t1

0

∣
∣g(z(s), z([s]))

∣
∣pds

]

,

(4.9)

where Cp is a constant. Note from the linear growth conditions that

E sup
0≤t≤t1

∣∣y(t)
∣∣p ≤ 3p−1

[
∣∣y(0)

∣∣p + Tp−1E
∫ t1

0
Kp/2

(
1 + |z(s)|2 + |z([s])|2

)p/2
ds

+CpT
p/2−1E

∫ t1

0
Kp/2

(
1 + |z(s)|2 + |z([s])|2

)p/2
ds

]

≤ 3p−1
∣∣y(0)

∣∣p + 3(3p/2)−2Kp/2
(
Tp−1 + CpT

p/2−1
)

× E

∫ t1

0

(
1 + |z(s)|p + |z([s])|p)ds

≤ 3p−1
∣∣y(0)

∣∣p + 3(3p/2)−2Kp/2
(
Tp + CpT

p/2
)

+ 2 × 3(3p/2)−2Kp/2
(
Tp−1 + CpT

p/2−1
)
E sup
0≤u≤s

∣∣y(u)
∣∣pds.

(4.10)

By the Gronwall inequality, we must get

E sup
0≤t≤T

∣∣y(t)
∣∣p ≤ C4

(
1 + |x0|p

)
, (4.11)

where C4 = C4(p, T,K) is a constant independent of h.

According to Theorem 3.2, we have the following theorem.

Theorem 4.3. Under the conditions (H1) and (H2), the EM approximate solution converges to the
exact solution of (2.1) in the sense that

lim
h→ 0

E

[

sup
0≤t≤T

∣∣y(t) − x(t)
∣∣2
]

= 0. (4.12)
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5. A Motivating Example

In the above section, we give the strong convergence numerical solution of SEPCAs under
the local Lipschitz condition (H1) and the linear growth condition (H2). However, there are
many SEPCAs that do not satisfy the linear growth condition, consider the following SEPCA:

dx(t) =
[
−x3(t) + x([t])

]
dt +

[
sinx2(t) + x([t])

]
dB(t) ∀t ≥ 0. (5.1)

Clearly, the equation do not satisfy the linear growth condition (H2). But the example is
analyzed under condition (H3) which covers many nonlinear SEPCAs. On the other hand,
we have

x
(
−x3 + y

)
+
1
2

(
sinx2 + y

)2 ≤ −x4 + xy +
(
sinx2

)2
+ y2 ≤ 2

(
1 + x2 + y2

)
. (5.2)

In other words, the equation satisfies condition (H3). Moreover, we also have

2xTf
(
x, y
)
+
∣∣g
(
x, y
)∣∣2 ≤ |x|2 + 2K

(
1 + |x|2 + ∣∣y∣∣2

)
≤ (1 + 2K)

(
1 + |x|2 + ∣∣y∣∣2

)
. (5.3)

We see clearly that (H3) follows from (H2). Therefore, The following result is more general
than Theorem 3.2. Let us now turn to establish the convergence of the Euler-Maruyama
method to (2.1) under the conditions (H1) and (H3).

6. Convergence of the Euler-Maruyama Method
under Monotone Condition

In this section, we give the convergence of the EM method to (2.1) under the local Lipschitz
condition (H1) and the monotone condition (H3). We prove the bounded pth moment
property of the EM approximate solution and the exact solution to (2.1) under the monotone
condition (H3).

Lemma 6.1. Under the monotone condition (H3), there exists a positive constant C5 such that the
solution of (2.1) satisfies

E sup
0≤t≤T

|x(t)|p ∨ E sup
0≤t≤T

∣∣y(t)
∣∣p ≤ C5, (6.1)

where C5 = C5(p, T,K1, x0) is a constant independent of h.
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Proof. By Itô formula, for all t ≥ 0, we have

(
1 + |x(t)|2

)p/2

=
(
1 + |x(0)|2

)p/2
+
∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2

×
[
x(t)Tf(x(s), x([s])) +

p − 1
2
∣
∣g(x(s), x([s]))

∣
∣2
]
ds

+
∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2
x(s)Tg(x(s), x([s]))dB(s)

≤
(
1 + |x(0)|2

)p/2
+
∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2[
K1

(
1 + |x(s)|2 + |x([s])|2

)]
ds

+
∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2
x(s)Tg(x(s), x([s]))dB(s).

(6.2)

For any t1 ∈ [0, T], we have

E sup
0≤t≤t1

(
1 + |x(t)|2

)p/2

≤
(
1 + |x(0)|2

)p/2
+ E sup

0≤t≤t1

∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2[
K1

(
1 + |x(s)|2 + |x([s])|2

)]
ds

+ E sup
0≤t≤t1

∣∣∣∣∣

∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2
x(s)Tg(x(s), x([s]))dB(s)

∣∣∣∣∣
.

(6.3)

By the Burkholder-Davis-Gundy inequality and Exercise 2.5 in [8], it is not difficult to show
that

E sup
0≤t≤t1

∣∣∣∣∣

∫ t

0
p
(
1 + |x(t)|2

)(p−2)/2
x(s)Tg(x(s), x([s]))dB(s)

∣∣∣∣∣

≤ 3E

(∫ t1

0
p2
(
1 + |x(t)|2

)p−2
|x(s)|2∣∣g(x(s), x([s]))∣∣2ds

)1/2

≤ 3E

(

sup
0≤t≤t1

(
1 + |x(t)|2

)p/2 ∫ t1

0
p2
(
1 + |x(t)|2

)(p−2)/2∣∣g(x(s), x([s]))
∣∣2ds

)1/2
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≤ 3E

(

sup
0≤t≤t1

(
1 + |x(t)|2

)p/2 ∫ t1

0
p2K1

(
1 + |x(t)|2

)(p−2)/2(
1 + |x(s)|2 + |x([s])|2

)
ds

)1/2

≤ 0.5E sup
0≤t≤t1

(
1 + |x(t)|2

)p/2
+ 4.5E

∫ t1

0
p2K1

(
1 + |x(t)|2

)(p−2)/2(
1 + |x(s)|2 + |x([s])|2

)
ds.

(6.4)

Substituting (6.4) into (6.3) and using the Hölder inequality

E sup
0≤t≤t1

(
1 + |x(t)|2

)p/2

≤ 2
(
1 + |x(0)|2

)p/2
+ 2pK1

(
1 + 4.5p

)
E

∫ t1

0

(
1 + |x(t)|2

)(p−2)/2(
1 + |x(s)|2 + |x([s])|2

)
ds

≤ 2
(
1 + |x(0)|2

) p/2

+ 2pK1
(
1 + 4.5p

)
(

E

∫ t1

0

(
1 + x(t)|2

)p/2
ds

)(p−2)/p

×
(

E

∫ t1

0

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

)2/p

≤ 2
(
1 + |x(0)|2

)p/2

+ 2pK1
(
1 + 4.5p

)
(

TE sup
0≤t≤t1

(
1 + |x(t)|2

)p/2
)(p−2)/p

×
(

E

∫ t1

0

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

)2/p

.

(6.5)

So we obtain

E sup
0≤t≤t1

(
1 + |x(t)|2

)p/2

≤
[

2
(
1 + |x(0)|2

)p/2
+ 2pK1

(
1 + 4.5p

)
T (p−2)/p(E

∫ t1

0

(
1 + |x(s)|2 + |x([s])|2)p/2ds

)2/p]p/2

≤ 2(p/2)−1
[
2
(
1 + |x(0)|2

)p/2]p/2

+ 2(p/2)−1
⎡

⎣2pK1
(
1 + 4.5p

)
T (p−2)/p

(

E

∫ t1

0

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

)2/p
⎤

⎦

p/2
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≤ 2p−1
(
1 + |x(0)|2

)p2/4
+ 2p−1

[
pK1
(
1 + 4.5p

)
T (p−2)/p

]p/2
E

∫ t1

0

(
1 + |x(s)|2 + |x([s])|2

)p/2
ds

≤ 2p−1
(
1 + |x(0)|2

)p2/4
+ 2(3p/2)−1

[
pK1
(
1 + 4.5p

)
T (p−2)/p

]p/2 ∫ t1

0
E sup
0≤u≤s

(
1 + |x(u)|2

)p/2
ds.

(6.6)

By the Gronwall inequality, we must get

E sup
0≤t≤T

(|x(t)|p) ≤ C5, (6.7)

where C5 = C5(p, T,K, x0) is a constant independent of h. Similarly, we can show that

E sup
0≤t≤T

(∣∣y(t)
∣∣p) ≤ C5. (6.8)

The proof is completed.

According to Theorem 3.2, we obtain the following.

Theorem 6.2. Under the conditions (H1) and (H3), the EM approximate solution converges to the
exact solution of (2.1) in the sense that

lim
h→ 0

E

(

sup
0≤t≤T

∣∣y(t) − x(t)
∣∣2
)

= 0. (6.9)
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