
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 963105, 13 pages
doi:10.1155/2012/963105

Research Article
Existence of Three Solutions for a Nonlinear
Fractional Boundary Value Problem via a Critical
Points Theorem

Chuanzhi Bai

Department of Mathematics, Huaiyin Normal University, Jiangsu, Huaian 223300, China

Correspondence should be addressed to Chuanzhi Bai, czbai8@sohu.com

Received 13 May 2012; Revised 8 July 2012; Accepted 9 July 2012

Academic Editor: Bashir Ahmad

Copyright q 2012 Chuanzhi Bai. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is concerned with the existence of three solutions to a nonlinear fractional boundary
value problem as follows: (d/dt)((1/2)0Dα−1

t (C0 D
α
t u(t)) − (1/2)tDα−1

T (Ct D
α
Tu(t))) + λa(t)f(u(t)) =

0, a.e. t ∈ [0, T], u(0) = u(T) = 0, where α ∈ (1/2, 1], and λ is a positive real parameter. The
approach is based on a critical-points theorem established by G. Bonanno.

1. Introduction

Differential equations with fractional order have recently proved to be strong tools in the
modeling of many physical phenomena in various fields of physical, chemical, biology,
engineering, and economics. There has been significant development in fractional differential
equations, one can see the monographs [1–5] and the papers [6–20] and the references
therein.

Critical-point theory, which proved to be very useful in determining the existence of
solution for integer-order differential equation with some boundary conditions, for example,
one can refer to [21–25]. But till now, there are few results on the solution to fractional
boundary value problem which were established by the critical-point theory, since it is often
very difficult to establish a suitable space and variational functional for fractional boundary
value problem. Recently, Jiao and Zhou [26] investigated the following fractional boundary
value problem:

d

dt

(
1
2 0D

−β
t

(
u′(t)

)
+
1
2 tD

−β
T

(
u′(t)

))
+∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0
(1.1)
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by using the critical point theory, where 0D
−β
t and tD

−β
T are the left and right Riemann-

Liouville fractional integrals of order 0 ≤ β < 1, respectively, F : [0, T] × RN → R is a given
function and ∇F(t, x) is the gradient of F at x.

In this paper, by using the critical-points theorem established by Bonanno in [27], a
new approach is provided to investigate the existence of three solutions to the following
fractional boundary value problems:

d

dt

(
1
2 0D

α−1
t

(
C
0D

a

t u(t)
)
− 1
2 tD

α−1
T

(
C
t D

a

Tu(t)
))

+ λa(t)f(u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(1.2)

where α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville fractional

integrals of order 1 − α respectively, c
0D

α
t and c

tD
α
T are the left and right Caputo fractional

derivatives of order α respectively, λ is a positive real parameter, f : R → R is a continuous
function, and a : R → R is a nonnegative continuous function with a(t)/≡ 0.

2. Preliminaries

In this section, we first introduce some necessary definitions and properties of the fractional
calculus which are used in this paper.

Definition 2.1 (see [5]). Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order α for function f denoted by aD

−α
t f(t) and tD

−α
b
f(t),

respectively, are defined by

aD
−α
t f(t) =

1
Γ(α)

∫ t

a

(t − s)α−1f(s)ds, t ∈ [a, b], α > 0,

tD
−α
b f(t) =

1
Γ(α)

∫b

t

(s − t)α−1f(s)ds, t ∈ [a, b], α > 0,

(2.1)

provided the right-hand sides are pointwise defined on [a, b], where Γ(α) is the gamma
function.

Definition 2.2 (see [5]). Let γ ≥ 0 and n ∈ N.
(i) If γ ∈ (n − 1, n) and f ∈ ACn([a, b],RN), then the left and right Caputo fractional

derivatives of order γ for function f denoted by C
aD

γ
t f(t) and

C
t D

γ

b
f(t), respectively, exist

almost everywhere on [a, b], C
aD

γ
t f(t) and

C
t D

γ

bf(t) are represented by

C
aD

γ
t f(t) =

1
Γ
(
n − γ

)
∫ t

a

(t − s)n−γ−1f (n)(s)ds, t ∈ [a, b],

C
t D

γ

bf(t) =
(−1)n

Γ
(
n − γ

)
∫b

t

(s − t)n−γ−1f (n)(s)ds, t ∈ [a, b],

(2.2)

respectively.
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(ii) If γ = n − 1 and f ∈ ACn−1([a, b],RN), then C
aD

n−1
t f(t) and C

t D
n−1
b f(t) are

represented by

C
aD

n−1
t f(t) = f (n−1)(t), C

t D
n−1
b f(t) = (−1)(n−1)f (n−1)(t), t ∈ [a, b]. (2.3)

With these definitions, we have the rule for fractional integration by parts, and
the composition of the Riemann-Liouville fractional integration operator with the Caputo
fractional differentiation operator, which were proved in [2, 5].

Property 1 (see [2, 5]). we have the following property of fractional integration:

∫b

a

[
aD

−γ
t f(t)

]
g(t)dt =

∫b

a

[
tD

−γ
b g(t)

]
f(t)dt, γ > 0 (2.4)

provided that f ∈ Lp([a, b],RN), g ∈ Lq([a, b],RN), and p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 + γ or
p /= 1, q /= 1, 1/p + 1/q = 1 + γ .

Property 2 (see [5]). Let n ∈ N and n − 1 < γ ≤ n. If f ∈ ACn([a, b],RN) or f ∈ Cn([a, b],RN),
then

aD
−γ
t

(
C
aD

γ

t f(t)
)
= f(t) −

n−1∑
j=0

f (j)(a)
j!

(t − a)j ,

tD
−γ
b

(
C
t D

γ

bf(t)
)
= f(t) −

n−1∑
j=0

(−1)jf (j)(b)
j!

(b − t)j ,

(2.5)

for t ∈ [a, b]. In particular, if 0 < γ ≤ 1 and f ∈ AC([a, b],RN) or f ∈ C1([a, b],RN), then

aD
−γ
t

(
C
aD

γ

t f(t)
)
= f(t) − f(a), tD

−γ
b

(
C
t D

γ

bf(t)
)
= f(t) − f(b). (2.6)

Remark 2.3. In view of Property 1 and Definition 2.2, it is obvious that u ∈ AC([0, T]) is a
solution of BVP (1.2) if and only if u is a solution of the following problem:

d

dt

(
1
20D

−β
t

(
u′(t)

)
+
1
2 tD

−β
T

(
u′(t)

))
+ λa(t)f(u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

(2.7)

where β = 2(1 − α) ∈ [0, 1).

In order to establish a variational structure for BVP (1.2), it is necessary to construct
appropriate function spaces.

Denote by C∞
0 [0, T] the set of all functions g ∈ C∞[0, T] with g(0) = g(T) = 0.
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Definition 2.4 (see [26]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is defined by the

closure of C∞
0 [0, T] with respect to the norm

‖u‖α =

(∫T

0

∣∣∣ C0Dα

t u(t)
∣∣∣2dt +

∫T

0
|u(t)|2dt

)1/2

, ∀u ∈ Eα
0 . (2.8)

Remark 2.5. It is obvious that the fractional derivative space Eα
0 is the space of functions u ∈

L2[0, T] having an α-order Caputo fractional derivative C
0D

α
t u ∈ L2[0, T] and u(0) = u(T) = 0.

Proposition 2.6 (see [26]). Let 0 < α ≤ 1. The fractional derivative space Eα
0 is reflexive and

separable Banach space.

Lemma 2.7 (see [26]). Let 1/2 < α ≤ 1. For all u ∈ Eα
0 , one has the following:

(i)

‖u‖L2 ≤ Tα

Γ(α + 1)

∥∥∥ C
0D

α

t u
∥∥∥
L2
. (2.9)

(ii)

‖u‖∞ ≤ Tα−1/2

Γ(α)(2(α − 1) + 1)1/2

∥∥∥ C
0D

α

t u
∥∥∥
L2
. (2.10)

By (2.9), we can consider Eα
0 with respect to the norm

‖u‖α =

(∫T

0

∣∣∣ C0Dα

t u(t)
∣∣∣2dt
)1/2

=
∥∥∥ C

0D
α

t u
∥∥∥
L2
, ∀u ∈ Eα

0 (2.11)

in the following analysis.

Lemma 2.8 (see [26]). Let 1/2 < α ≤ 1, then for all any u ∈ Eα
0 , one has

|cos(πα)|‖u‖2α ≤ −
∫T

0

C
0D

α

t u(t) · C
t D

α
Tu(t)dt ≤

1
|cos(πα)| ‖u‖

2
α. (2.12)

Our main tool is the critical-points theorem [27]which is recalled below.

Theorem 2.9 (see [27]). Let X be a separable and reflexive real Banach space; Φ : X → R be
a nonnegative continuously Gateaux differentiable and sequentially weakly lower semicontinuous
functional whose Gateaux derivative admits a continuous inverse on X∗; Ψ : X → R be a
continuously Gateaux differentiable function whose Gateaux derivative is compact. Assume that there
exists x0 ∈ X such that Φ(x0) = Ψ(x0) = 0, and that

(i) lim‖x‖→+∞ (Φ(x) − λΨ(x)) = +∞, forallλ ∈ [0,+∞]. Further, assume that there are
r > 0, x1 ∈ X such that
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(ii) r < Φ(x1);

(iii) sup
x∈Φ−1 ( ]−∞,r[ )

w Ψ(x) < (r/(r + Φ(x1)))Ψ(x1).

Then, for each

λ ∈ Λ1 =

⎤
⎥⎥⎦ Φ(x1)
Ψ(x1) − sup

x∈Φ−1( ]−∞,r[ )
w Ψ(x)

,
r

sup
x∈Φ−1( ]−∞,r[ )

w Ψ(x)

⎡
⎢⎢⎣ , (2.13)

the equation

Φ′(x) − λΨ′(x) = 0 (2.14)

has at least three solutions in X and, moreover, for each h > 1, there exists an open interval

Λ2 ⊂
[
0,

hr

(r(Ψ(x1)/Φ(x1))) − sup
x∈Φ−1( ]−∞,r[ )

w Ψ(x)

]
(2.15)

and a positive real number σ such that, for each λ ∈ Λ2, (2.14) has at least three solutions in X whose
norms are less than σ.

3. Main Result

For given u ∈ Eα
0 , we define functionals Φ,Ψ : Eα → R as follows:

Φ(u) := −1
2

∫T

0

C
0D

α

t u(t) · C
t D

α

Tu(t)dt,

Ψ(u) :=
∫T

0
a(t)F(u(t))dt,

(3.1)

where F(u) =
∫u
0 f(s)ds. Clearly, Φ and Ψ are Gateaux differentiable functional whose

Gateaux derivative at the point u ∈ Eα
0 are given by

Φ′(u)v = −1
2

∫T

0

(
C
0D

α

t u(t) · C
t D

α

Tv(t) +
C
t D

α

Tu(t) · C
0D

α

t v(t)
)
dt,

Ψ′(u)v =
∫T

0
a(t)f(u(t))v(t)dt = −

∫T

0

∫ t

0
a(s)f(u(s))ds · v′(t)dt,

(3.2)



6 Abstract and Applied Analysis

for every v ∈ Eα
0 . By Definition 2.2 and Property 2, we have

Φ′(u)v =
∫T

0

(
1
20D

α−1
t

(
C
0D

α

t u(t)
)
− 1
2 tD

α−1
T

(
C
t D

α

Tu(t)
))

· v′(t)dt. (3.3)

Hence, Iλ = Φ − λΨ ∈ C1(Eα
0 ,R). If u∗ ∈ Eα

0 is a critical point of Iλ, then

0 = I ′λ(u∗)v

=
∫T

0

(
1
20D

α−1
t

(
C
0D

α

t u∗(t)
)
− 1
2 tD

α−1
T

(
C
t D

α

Tu∗(t)
)

+λ
∫ t

0
a(s)f(u∗(s))ds

)
· v′(t)dt,

(3.4)

for v ∈ Eα
0 . We can choose v ∈ Eα

0 such that

v(t) = sin
2kπt
T

or v(t) = 1 − cos
2kπt
T

, k = 1, 2, . . . . (3.5)

The theory of Fourier series and (3.4) imply that

1
20D

α−1
t

(
C
0D

α

t u∗(t)
)
− 1
2 tD

α−1
T

(
C
t D

α

Tu∗(t)
)

+ λ

∫ t

0
a(s)f(u∗(s))ds = C (3.6)

a.e. on [0, T] for some C ∈ R. By (3.6), it is easy to know that u∗ ∈ Eα
0 is a solution of BVP

(1.2).
By Lemma 2.7, if α > 1/2, we have for each u ∈ Eα

0 that

‖u‖∞ ≤ Ω

(∫T

0

∣∣∣ C0Dα

t u(t)
∣∣∣2dt
)1/2

= Ω‖u‖α, (3.7)

where

Ω =
Tα−1/2

Γ(α)
√
2(α − 1) + 1

. (3.8)

Given two constants c ≥ 0 and d /= 0, with c /=
√
(2A(α)/| cos(πα)|)Ω · d, where Ω as in

(3.8).
For convenience, set

A(α) :=
8Γ2(2 − α)
Γ(4 − 2α)

T1−2α
((

1 + 33−2α
)
24α−5 − 22α−3 − 1

)
. (3.9)
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Theorem 3.1. Let f : R → R be a continuous function, a : R → R be a nonnegative continuous
function with a(t)/≡ 0, and 1/2 < α ≤ 1. Put F(x) =

∫x
0 f(s)ds for every x ∈ R, and assume that

there exist four positive constants c, d, μ, and p, with c <
√
(2A(α)/| cos(πα)|)Ω · d and p < 2,

such that

(H1) F(x) ≤ μ(1 + |x|p), for all x ∈ R;

(H2) F(x) ≥ 0for all x ∈ [0,Γ(2 − α)d], and

F(x) <
|cos(πα)|c2

(|cos(πα)|c2 + 2Ω2A(α)d2)
∫T
0 a(t)dt

×
[
F(Γ(2 − α)d)

∫3T/4

T/4
a(t)dt

+
T

4Γ(2 − α)d

∫Γ(2−α)d

0
b(s)F(s)ds

]
, ∀x ∈ [−c, c],

(3.10)

where b(s) = a((T/4Γ(2 − α)d)s) + a(T − (T/4Γ(2 − α)d)s). Then, for each

λ ∈ Λ1

=

⎤
⎦ A(α)d2

�a +� ∫Γ(2−α)d0 b(x)F(x)dx − ∫T0 a(t)dt ·max|x|≤c F(x)
,

c2|cos(πα)|
2Ω2
∫T
0 a(t)dt ·max|x|≤c F(x)

⎡
⎣ ,
(3.11)

where�a and� denote F(Γ(2−α)d) ∫3T/4T/4 a(t)dt and T/(4Γ(2−α)d) respectively, the problem (1.2)
admits at least three solutions in Eα

0 and, moreover, for each h > 1, there exists an open interval

Λ2 ⊂
⎡
⎣0, hA(α)d2

�a +� ∫2Γ(2−α)0 b(x)F(x)dx − (2Ω2A(α)d2/c2|cos(πα)|) ∫T0 a(t)dt ·max|x|≤c F(x)

⎤
⎦

(3.12)

such that, for each λ ∈ Λ2, the problem (1.2) admits at least three solutions in Eα
0 whose norms are

less that σ.

Proof. Let Φ,Ψ be the functionals defined in the above. By the Lemma 5.1 in [26], Φ is
continuous and convex, hence it is weakly sequentially lower semicontinuous. Moreover,
Φ is coercive, continuously Gateaux differentiable functional whose Gateaux derivative
admits a continuous inverse on Eα

0 . The functional Ψ is well defined, continuously Gateaux
differentiable and with compact derivative. It is well known that the critical point of the
functional Φ − λΨ in Eα

0 is exactly the solution of BVP (1.2).
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From (H1) and (2.12), we get

lim
‖u‖α →+∞

(Φ(u) − λΨ(u)) = +∞, (3.13)

for all λ ∈ [0,+∞[. Put

u1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4Γ(2 − α)d
T

t, t ∈
[
0,

T

4

[
,

Γ(2 − α)d, t ∈
[
T

4
,
3T
4

]
,

4Γ(2 − α)d
T

(T − t), t ∈
]
T

4
, T

]
.

(3.14)

It is easy to check that u1(0) = u1(T) = 0 and u1 ∈ L2[0, T]. The direct calculation shows

C
0D

α
t u1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4d
T
t1−α, t ∈

[
0,

T

4

[
,

4d
T

(
t1−α −

(
t − T

4

)1−α)
, t ∈

[
T

4
,
3T
4

]
,

4d
T

(
t1−α −

(
t − T

4

)1−α
−
(
t − 3T

4

)1−α)
, t ∈

]
3T
4
, T

]
,

‖u1‖2α =
∫T

0

(
C
0D

α

t u1(t)
)2
dt =

∫T/4

0
+
∫3T/4

T/4
+
∫T

3T/4

(
C
0D

α

t u1(t)
)2
dt

=
16d2

T2

[∫T

0
t2(1−α)dt +

∫T

T/4

(
t − T

4

)2(1−α)
dt +

∫T

3T/4

(
t − 3T

4

)2(1−α)
dt

− 2
∫T

T/4
t1−α
(
t − T

4

)1−α
dt − 2

∫T

3T/4
t1−α
(
t − 3T

4

)1−α
dt

+2
∫T

3T/4

(
t − T

4

)1−α(
t − 3T

4

)1−α
dt

]

=
16d2

T2

[(
1 +
(
3
4

)3−2α
+
(
1
4

)3−2α) T3−2α

3 − 2α
− 2
∫T

T/4
t1−α
(
t − T

4

)1−α
dt

−2
∫T

3T/4
t1−α
(
t − 3T

4

)1−α
dt + 2

∫T

3T/4

(
t − T

4

)1−α(
t − 3T

4

)1−α
dt

]
< ∞ .

(3.15)
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That is, C
0D

α
t u1 ∈ L2[0, T]. Thus, u1 ∈ Eα

0 . Moreover, the direct calculation shows

C
t D

α
Tu1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4d
T

(
(T − t)1−α −

(
3T
4

− t

)1−α
−
(
T

4
− t

)1−α)
, t ∈

[
0,

T

4

[
,

4d
T

(
(T − t)1−α −

(
3T
4

− t

)1−α)
, t ∈

[
T

4
,
3T
4

]
,

4d
T
(T − t)1−α, t ∈

]
3T
4
, T

]
,

Φ(u1) = − 1
2

∫T

0

C
0D

α

t u1(t) · C
t D

α

Tu1(t)dt

= − 8d2

T2

[∫T/4

0
t1−α
(
(T − t)1−α −

(
3T
4

− t

)1−α
−
(
T

4
− t

)1−α)
dt

+
∫3T/4

T/4

(
t1−α −

(
t − T

4

)1−α)(
(T − t)1−α −

(
3T
4

− t

)1−α)
dt

+
∫T

3T/4

(
t1−α −

(
t − T

4

)1−α
−
(
t − 3T

4

)1−α)
(T − t)1−αdt

]

= − 8d2

T2

[∫T

0
t1−α(T − t)1−αdt −

∫T/4

0
t1−α
(
T

4
− t

)1−α
dt

+
∫3T/4

T/4

(
t − T

4

)1−α(3T
4

− t

)1−α
dt −

∫T

3T/4

(
t − 3T

4

)1−α
(T − t)1−αdt

−
∫3T/4

0
t1−α
(
3T
4

− t

)1−α
−
∫T

T/4

(
t − T

4

)1−α
(T − t)1−αdt

]

=
8Γ2(2 − α)
Γ(4 − 2α)

T1−2αd2
((

1 + 33−2α
)
24α−5 − 22α−3 − 1

)
= A(α)d2,

Ψ(u1) =
∫T

0
a(t)F(u1(t))dt

=
∫T/4

0
a(t)F

(
4Γ(2 − α)d

T
t

)
dt +

∫3T/4

T/4
a(t)F(Γ(2 − α)d)dt

+
∫T

3T/4
a(t)F

(
4Γ(2 − α)d

T
(T − t)

)
dt

= F(Γ(2 − α)d)
∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d

∫Γ(2−α)d

0
b(x)F(x)dx.

(3.16)

Let r = (| cos(πα)|/2Ω2)c2. Since c <
√
(2A(α)/| cos(πα)|)Ω · d, we obtain r < Φ(u1).
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By (2.12) and (3.7), one has Φ(u) ≤ r ⇒ ‖u‖∞ ≤ c. Thus,

sup
u∈Φ−1( ]−∞,r[ )

w

Ψ(u) = sup
u∈Φ−1( ]−∞,r ])

Ψ(u) ≤ max
|x|≤c

F(x)
∫T

0
a(t)dt. (3.17)

Moreover, we have

r

r + Φ(u1)
Ψ(u1)

=

(|cos(πα)|/2Ω2)c2
(|cos(πα)|/2Ω2)c2 +A(α)d2

×
[
F(Γ(2 − α)d)

∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d

∫Γ(2−α)d

0
b(x)F(x)dx

]

=
|cos(πα)|c2

|cos(πα)|c2 + 2Ω2A(α)d2

×
[
F(Γ(2 − α)d)

∫3T/4

T/4
a(t)dt +

T

4Γ(2 − α)d

∫Γ(2−α)d

0
b(x)F(x)dx

]
.

(3.18)

Hence, from (H2) one has

sup
u∈Φ−1( ]−∞,r[ )

w

Ψ(u) <
r

r + Φ(u1)
Ψ(u1). (3.19)

Now, taking into account that

Φ(u1)
Ψ(u1) − sup

u∈Φ−1( ]−∞,r[ )
w Ψ(u)

≤ A(α)d2

�a +� ∫Γ(2−α)d0 b(x)F(x)dx − ∫T0 a(t)dt ·max|x|≤c F(x)
,

r

sup
u∈Φ−1( ]−∞,r[ )

w Ψ(u)
≥ c2|cos(πα)|

2Ω2
∫T
0 a(t)dt ·max|x|≤c F(x)

,

hr

r(Ψ(u1)/Φ(u1)) − sup
u∈Φ−1( ]−∞,r[ )

wΨ(u)

≤ hA(α)d2

�a +� ∫2Γ(2−α)0 b(x)F(x)dx − (2Ω2A(α)d2/c2|cos(πα)|) ∫T0 a(t)dt ·max|x|≤c F(x)

= m.

(3.20)



Abstract and Applied Analysis 11

Thus, by Theorem 2.9 it follows that, for each λ ∈ Λ1, BVP (1.2) admits at least three solutions,
and there exists an open interval Λ2 ⊂ [0, m] and a real positive number σ such that, for each
λ ∈ Λ2, BVP (1.2) admits at least three solutions in Eα

0 whose norms are less than σ.
Finally, we give an example to show the effectiveness of the results obtained here.
Let α = 0.8, T = 1, a(t) ≡ 1, and f(u) = e−uu8(9 − u) +

√
u. Then BVP (1.2) reduces to

the following boundary value problem:

d

dt

(
1
20D

−0.2
t

(
C
0D

0.8
t u(t)

)
− 1
2 tD

−0.2
1

(
C
t D

0.8
1 u(t)

))
+ λ
(
e−uu8(9 − u) +

√
u
)

= 0, a.e. t ∈ [0, 1],

u(0) = u(1) = 0.

(3.21)

Example 3.2. Owing to Theorem 3.1, for each λ ∈]0.291, 0.318[, BVP (3.21) admits at least
three solutions. In fact, put c = 1 and d = 2, it is easy to calculate that Ω = 1.1089, A(0.8) =
1.3313, and

√
2A(0.8)

|cos(0.8π)|Ω · d = 4.0235 > 1 = c. (3.22)

Since

F(x) =
∫x

0
f(s)ds = e−xx9 +

2
3
x3/2, (3.23)

we have that condition (H1) holds. Moreover, F(x) ≥ 0 for each x ∈ [0, 2Γ(1.2)], and

|cos(0.8π)|
|cos(0.8π)| + 2Ω2A(0.8) · 22

[
1
2
F(2Γ(1.2)) +

1
4Γ(1.2)

∫2Γ(1.2)

0
F(s)ds

]

> 1.064 > 1.0345 = e−1 +
2
3
≥ F(x), |x| ≤ 1,

(3.24)

which implies that condition (H2) holds. Thus, by Theorem 3.1, for each λ ∈ ]0.291, 0.318[,
the problem (3.21) admits at least three nontrivial solutions in E0.8

0 . Moreover, for each h > 1,
there exists an open interval Λ ⊂]0, 3.4674h[ and a real positive number σ such that, for each
λ ∈ Λ, the problem (3.21) admits at least three solutions in E0.8

0 whose norms are less than σ.
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