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Abstract. A convergence result is given for discrete descent based on
Sobolev gradients arising from differential equations which may be expressed
as quadratic forms. The argument is an extension of the result of David G.
Luenberger on Euclidean descent and compliments the work of John W.
Neuberger on Sobolev descent.

1. Introduction

Sobolev descent was introduced by J. W. Neuberger [7] and since that
time, discrete Sobolev descent has been used with considerable success to
solve specific problems [1], [8] and has been shown vastly superior to Eu-
clidean descent in [5] and [6]. Neuberger proved convergence for general
continuous settings and for a specific discrete problem in [6] and we prove
a convergence result for the class of equations which may be expressed as
a quadratic form which is symmetric and positive definite when restricted
to the perturbation space arising from the boundary conditions of the dif-
ferential equation under consideration. Note that this does not require that
the gradient operator itself be symmetric. The proof generalizes the result of
Luenberger [4] from discrete Euclidean descent to descent based on gradients
arising from Sobolev inner products. Related methods such as generalized
gradient methods and variable metric methods are treated in detail in [3].
An example is provided which indicates the improvements based on comput-
ing using a weighted Sobolev gradient versus Sobolev or Euclidean gradients
on Legendre’s equation.
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2. Notation and Statement of Theorem

Let n ∈ N, 〈·, ·〉 represent the Euclidean inner product, and E represent
Euclidean n+1-space,

(�n+1, 〈·, ·〉). Suppose A ∈ L(E,E) is positive definite
and symmetric. Define a (Sobolev) inner product by 〈·, ·〉H = 〈A·, ·〉 . Ap-
propriate choices for A yield inner product spaces leading to vastly improved
numerical results in terms of the number of iterations and time required to
solve a given differential equation. See [5], [6], and the example in Section
4. Let H denote the space,

(�n+1, 〈·, ·〉H

)
and H0 the subspace of H which

inherits the inner product and represents the perturbation space associated
with the boundary conditions of the differential equation under considera-
tion. If B : H → � is a linear operator on H representing the boundary
conditions, let H0 be the subspace of H defined by H0 = {u ∈ H|Bu = 0} .

Suppose the functional representing the differential equation is given by

J(·) = 1/2 〈·, Q·〉

where Q ∈ L(E,E) is symmetric and positive definite when restricted to
H0.

Definition 1. If S is any Hilbert space, J : S → �+ is a bounded linear
functional, and for all s ∈ S we define ∇SJ(s) to be the unique element in
S such that J ′(s)(r) = 〈∇SJ(s), r〉S for all r ∈ S.

The Euclidean gradient, (∇J)(u), the Sobolev gradient, (∇HJ) (u), and
the Sobolev gradient based on the perturbation space, (∇H0J) (u), may now
be defined based on this definition. If A was chosen based on the differential
equation then (∇H0J) now represents both the differential equation and the
boundary conditions.

Theorem 1. Suppose x∗ is a minimizer of J and that x0 and x∗ satisfy
both the boundary conditions and the condition, ‖x0 − x∗‖H < ‖x0 − y∗‖H

for any minimizer y∗ = x∗, then limk→∞ xk = x∗ where

xk+1 = xk − δk (∇H0J) (xk) k = 0, 1, ...

and δk minimizes J(xk − δk (∇H0J) (xk)).

3. Proof of Theorem

Lemma 1. For u ∈ E, ∇J(u) = Qu.

Proof. The proof is by direct computation and is omitted.

Lemma 2. (Neuberger) If P denotes the orthogonal projection of E onto
H0 under the Euclidean inner product, then for u ∈ E, PA (∇H0J) (u) =
P (∇J)(u).
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Proof. Given u ∈ E we have for every h ∈ H0,

〈P (∇J)(u), h〉 = 〈(∇J)(u), h〉
= J ′(u)(h)
= 〈(∇H0J) (u), h〉H

= 〈A (∇H0J) (u), h〉
= 〈PA (∇H0J) (u), h〉 .

Lemma 3. The gradient operator, G = (∇H0J) is positive definite with
respect to 〈·, ·〉H when restricted to H0.

Proof. Let G = (∇H0J) and x ∈ H0. Determining y = Gx is equivalent to
solving any of the following three systems over H0 :

PAy = PQx

(PA)|H0y = (PQ)|H0x

A|H0y = Q|H0x.

Hence, G = A|−1
H0Q|H0 and〈

x,A|−1
H0Q|H0x

〉
H

=
〈
x,AA|−1

H0Q|H0x
〉
= 〈x,Q|H0x〉 > 0.

The following lemma shows that a given function is bounded away from
zero. In the case for the Euclidean inner product where the operator is
symmetric, Kantorovich’s inequality, [4], may be applied. However, bounds
for the non-symmetric Sobolev case are not available.

Lemma 4. If

F (x) =
〈x, x〉H

〈
Gx,G−1x

〉
H

〈Gx, x〉H 〈G−1x, x〉H

then there exists a real number, c, such that for all x ∈ H0 − {0}, F (x) ≥
c > 0.

Proof. 〈x, x〉H , 〈Gx, x〉H , and
〈
G−1x, x

〉
H are clearly positive on H0 − {0}.

Since A is positive definite, we have〈
Gx,G−1x

〉
H

=
〈
A|−1

H0Q|H0x,Q|−1
H0A|H0x

〉
H

=
〈
Q|H0x,Q|−1

H0A|H0x
〉

= 〈x,A|H0x〉 > 0.

If L parameterizes a line through the origin then direct computation shows
that F ◦L is constant on �n+1−{0}. Suppose there exists a sequence pk such
that F (pk) → 0. After normalizing the sequence, there exists a convergent
subsequence, qk, and F (qk) → 0. Yet qk → q implies F (qk) → F (q), but
F (q) = 0, a contradiction. We conclude, F is bounded away from zero on
H0 − {0}.



70 W. T. MAHAVIER

Lemma 5. If E(x) = 1
2 〈x − x∗, G(x − x∗)〉H and gk = Gxk then

E(xk+1) =

{
1 − 〈gk, gk〉H

〈
Ggk, G

−1gk

〉
H

〈Ggk, gk〉H 〈G−1gk, gk〉H

}
E(xk)

Proof. The proof is a generalization of the argument in [4]. Putting yk =
xk − x∗ and using the facts that yk = G−1gk and Gxk = Gyk it may be
shown that

E(xk) − E(xk+1)
E(xk)

=
〈gk, gk〉H

〈
Ggk, G

−1gk

〉
H

〈Ggk, gk〉H 〈G−1gk, gk〉H

.

Hence, E(xk) → 0 and by the positive definite nature of G|H0 with respect
to 〈·, ·〉H , xk → x∗ as desired.

4. Example

As our example, we consider Legendre’s equation. Suppose Ku = 0 where
Ku = ((1−t2)u′)′+2u on I = [0, 1] with u(0) = 0 (a forced initial condition),
u(1) = 1, and u ∈ C2

I . General solutions are u(t) = c1t + c2
2 t ln(1+t

1−t)
and only u(t) = t satisfies the boundary conditions. The development of
the continuous spaces, weighted derivatives, and generalized gradients on
which the discrete theory is based provides motivation for the choices of the
gradients and spaces considered here. A detailed treatment of the problem
may be found in [5].

Denote the Euclidean norm by ‖ · ‖ and x ∈ �n+1 by x = (x0, . . . , xn).
We assume no two consecutive components of x are zero. Suppose n is the
number of divisions into which the interval [0, 1] is partitioned and δ = 1/n.
Let tk = a+ (k − 1)δ and wk =

√
1 − t2k for all k = 1, 2, . . . , n+ 1.

Define discrete versions of the identity and weighted derivative operators,
D0 : �n+1 → �n, Dw

1 : �n+1 → �n, and Dw : �n+1 → �2n by

D0(x) =




x1+x2
2
...

xn+xn+1
2


 , Dw

1 (x) =




(w2+w1
2

) (x2−x1
δ

)
...(

wn+wn+1
2

) (
xn+1−xn

δ

)



and

Dw(x) =
(
D0(x)
Dw

1 (x)

)
.

Define the unweighted derivative operator by D1 = Dw
1 , where w is the

vector (1, 1, . . . , 1).
We now consider descent based on the three spaces and refer to the

three processes as Euclidean descent, Sobolev descent, and weighted Sobolev
descent. The spaces are

(�n+1, 〈·, ·〉), (�n+1, 〈·, ·〉H

)
, and

(
�n+1, 〈·, ·〉Hw

)
where

〈u, v〉Hw
= 〈D0(u), D0(v)〉 + 〈Dw

1 (u), D
w
1 (v)〉
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Table 1. Legendre’s Equation

(1 − t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 100
Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

L 5948 24 10−6 10−1 6.6 × 10−1

H 1998 7 10−6 10−6 3.7 × 10−5

Hw 64 1 10−6 10−7 8.0 × 10−6

(1 − t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 10,000
Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

H 2142 82 10−6 10−6 3.4 × 10−5

Hw 85 3 10−6 10−6 1.2 × 10−5

(1 − t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 100,000
Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

Hw 325 125 10−15 10−14 1.7 × 10−14

for all u, v ∈ �n+1. Notice that 〈·, ·〉Hw
= 〈·, A·〉 where A = Dt

0D0+(Dw
1 )

tDw
1 .

To define the perturbation spaces associated with the equation, let Bx =
(x0, xn), S =

{
x ∈ �n+1|Bx = 0

}
, E0 = E ∩ S, H0 = H ∩ S, and H0

w =
Hw ∩ S. Let y ∈ �n+1, and define J : (�n+1, ‖ · ‖Hw

) → � by

J(u) =
1
2

n∑
k=1

(
1 −

(
tk+1 + tk

2

)2
)(

uk+1 − uk

δ

)2

+

(
uk+1 + uk

2

)2

Using Definition 1 to construct three gradients based on E0, H0, and H0
w

the descent process is now,

xk+1 = xk − δk∇J(xk) k = 0, 1, ...

where ∇ represents the Euclidean, Sobolev, or weighted Sobolev gradient
and δk minimizes J(xk − δk∇J(xk)). The algorithm is terminated when
‖ynew − y‖ < ε where y and ynew denote successive approximations to the
solution. Table 1 represents the results based on these three descent pro-
cesses.

5. Conclusions

Mathematicians and scientists have oft sought solutions to differential
equations using descent based on the Euclidean gradient. The numerical
work in this paper indicates that the choice of the underlying space and
gradient are crucial for developing efficient numerical methods.

Boundary conditions are maintained at each step of the descent process
guaranteeing exact boundary conditions for the solution and the method
gives results on a small number of divisions which are representative of the
results obtained on a large number of divisions making the method a candi-
date for multigrid techniques.
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All work was performed on a NeXTstation 33 MHz 68040 Unix platform
using the GNU C compiler. Codes for the problems and Mathematica codes
for computing the necessary matrices are available from the author by e-mail
at math-wtm@nich-nsunet.nich.edu.
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