EXISTENCE AND REGULARITY OF WEAK SOLUTIONS TO THE PRESCRIBED MEAN CURVATURE EQUATION FOR A NONPARAMETRIC SURFACE

P. AMSTER, M. CASSINELLI, M. C. MARIANI, AND D. F. RIAL

Received 15 August 1998

1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric surface $X: \Omega \rightarrow \mathbb{R}^{3}, X(u, v)=(u, v, f(u, v))$ is the quasilinear partial differential equation

$$
\begin{gather*}
\left(1+f_{v}^{2}\right) f_{u u}+\left(1+f_{u}^{2}\right) f_{v v}-2 f_{u} f_{v} f_{u v}=2 h(u, v, f)\left(1+|\nabla f|^{2}\right)^{3 / 2} \quad \text { in } \Omega, \tag{1.1}\\
f=g \quad \text { in } \partial \Omega
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{2}, h: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $g \in H^{1}(\Omega)$.
We call $f \in H^{1}(\Omega)$ a weak solution of (1.1) if $f \in g+H_{0}^{1}(\Omega)$ and for every $\varphi \in C_{0}^{1}(\Omega)$

$$
\begin{equation*}
\int_{\Omega}\left(\left(1+|\nabla f|^{2}\right)^{-1 / 2} \nabla f \nabla \varphi+2 h(u, v, f) \varphi\right) d u d v=0 . \tag{1.2}
\end{equation*}
$$

It is known that for the parametric Plateau's problem, weak solutions can be obtained as critical points of a functional (see [2, 6, 7, 8, 10, 11]).

The nonparametric case has been studied for $H=H(x, y)$ (and generally $H=$ $H\left(x_{1}, \ldots, x_{n}\right)$ for hypersurfaces in $\left.\mathbb{R}^{n+1}\right)$ by Gilbarg, Trudinger, Simon, and Serrin, among other authors. It has been proved [5] that there exists a solution for any smooth boundary data if the mean curvature H^{\prime} of $\partial \Omega$ satisfies

$$
\begin{equation*}
H^{\prime}\left(x_{1}, \ldots, x_{n}\right) \geq \frac{n}{n-1}\left|H\left(x_{1}, \ldots, x_{n}\right)\right| \tag{1.3}
\end{equation*}
$$

for any $\left(x_{1}, \ldots, x_{n}\right) \in \partial \Omega$, and $H \in C^{1}(\bar{\Omega}, \mathbb{R})$ satisfying the inequality

$$
\begin{equation*}
\left|\int_{\Omega} H \varphi\right| \leq \frac{1-\epsilon}{n} \int_{\Omega}|D \varphi| \tag{1.4}
\end{equation*}
$$

Copyright © 1999 Hindawi Publishing Corporation
Abstract and Applied Analysis 4:1 (1999) 61-69
1991 Mathematics Subject Classification: 35J20, 35J65
URL: http://aaa.hindawi.com/volume-4/S1085337599000019.html
for any $\varphi \in C_{0}^{1}(\Omega, \mathbb{R})$ and some $\epsilon>0$. They also proved a non-existence result (see [5, Corollary 14.13]): if $H^{\prime}\left(x_{1}, \ldots, x_{n}\right)<(n /(n-1))\left|H\left(x_{1}, \ldots, x_{n}\right)\right|$ for some $\left(x_{1}, \ldots, x_{n}\right)$ and the sign of H is constant, then for any $\epsilon>0$ there exists $g \in C^{\infty}(\bar{\Omega})$ such that $\|g\|_{\infty} \leq \epsilon$ and that Dirichlet's problem is not solvable.

We remark that the solutions obtained in [5] are classical. In this paper, we find weak solutions of the problem by variational methods.

We prove that for prescribed h there exists an associated functional to h, and under some conditions on h and g we find that this functional has a global minimum in a convex subset of $H^{1}(\Omega)$, which provides a weak solution of (1.1). We denote by $H^{1}(\Omega)$ the usual Sobolev space, [1].

2. The associated variational problem

Given a function $f \in C^{2}(\Omega)$, the generated nonparametric surface associated to this function is the graph of f in \mathbb{R}^{3}, parametrized as $X(u, v)=(u, v, f(u, v))$.

The mean curvature of this surface is

$$
\begin{equation*}
h(u, v, f)=\frac{1}{2} \frac{E f_{v v}-2 F f_{u v}+G f_{u u}}{\left(1+f_{u}^{2}+f_{v}^{2}\right)^{3 / 2}}, \tag{2.1}
\end{equation*}
$$

where E, F, and G are the coefficients of the first fundamental form $[4,9]$.
For prescribed h, weak solutions of (1.1) can be obtained as critical points of a functional.

Proposition 2.1. Let $J_{h}: H^{1}(\Omega) \rightarrow \mathbb{R}$ be the functional defined by

$$
\begin{equation*}
J_{h}(f)=\int_{\Omega}\left(\left(1+|\nabla f|^{2}\right)^{1 / 2}+H(u, v, f)\right) d u d v \tag{2.2}
\end{equation*}
$$

where $H(u, v, z)=\int_{0}^{z} 2 h(u, v, t) d t$. Then (1.1) is the Euler Lagrange equation of (2.2).
Remark 2.2. If $f \in T=g+H_{0}^{1}(\Omega)$ is a critical point of J_{h}, then f is a weak solution of (1.1).

Proof. For $\varphi \in C_{0}^{1}(\Omega)$, integrating by parts we obtain

$$
\begin{equation*}
d J_{h}(f)(\varphi)=2 \int_{\Omega}\left(\frac{1}{2} \frac{E f_{v v}-2 F f_{u v}+G f_{u u}}{\left(1+f_{u}^{2}+f_{v}^{2}\right)^{3 / 2}}-h(u, v, f)\right) \varphi d u d v \tag{2.3}
\end{equation*}
$$

3. Behavior of the functional J_{h}

In this section, we study the behavior of the functional J_{h} restricted to T. For simplicity we write $J_{h}(f)=A(f)+B(f)$, with

$$
\begin{equation*}
A(f)=\int_{\Omega}\left(1+|\nabla f|^{2}\right)^{1 / 2} d u d v, \quad B(f)=\int_{\Omega} H(u, v, f) d u d v \tag{3.1}
\end{equation*}
$$

We will assume that h is bounded.

Lemma 3.1. The functional $A: T \rightarrow \mathbb{R}$ is continuous and convex.
Proof. Continuity can be proved by a simple computation. Let $a, b \geq 0$ such that $a+b=1$. By Cauchy inequality, it follows that

$$
\begin{equation*}
\sqrt{1+\left|\nabla\left(a f+b f_{0}\right)\right|^{2}} \leq a \sqrt{1+|\nabla f|^{2}}+b \sqrt{1+\left|\nabla f_{0}\right|^{2}} \tag{3.2}
\end{equation*}
$$

and convexity holds.
Remark 3.2. As A is continuous and convex, then it is weakly lower semicontinuous in T.

Lemma 3.3. The functional B is weakly lower semicontinuous in T.
Proof. Since h is bounded, we have

$$
\begin{equation*}
|H(u, v, z)| \leq c|z|+d \tag{3.3}
\end{equation*}
$$

From the compact immersion $H_{0}^{1}(\Omega) \hookrightarrow L^{1}(\Omega)$ and the continuity of Nemytskii operator associated to H in $L^{1}(\Omega)$, we conclude that B is weakly lower semicontinuous in T (see [3, 12]).

4. Weak solutions as critical points of J_{h}

Let us assume that $g \in W^{1, \infty}$, and consider for each $k>0$, the following subset of T :

$$
\begin{equation*}
\bar{M}_{k}=\left\{f \in T:\|\nabla(f-g)\|_{\infty} \leq k\right\} . \tag{4.1}
\end{equation*}
$$

\bar{M}_{k} is nonempty, closed, convex, bounded, then it is weakly compact.
Remark 4.1. As $g \in W^{1, \infty}$, taking $p>2$ we obtain, for any $f \in \bar{M}_{k}$:

$$
\begin{equation*}
\|f-g\|_{p} \leq c\|\nabla(f-g)\|_{p} . \tag{4.2}
\end{equation*}
$$

Then, by Sobolev imbedding, $\|f-g\|_{\infty} \leq c_{1}\|f-g\|_{1, p} \leq \bar{c} k$ for some constant \bar{c}. We deduce that $f \in W^{1, \infty}$ and $f(\Omega) \subset K$ for some fixed compact $K \subset \mathbb{R}$. Thus, the assumption $\|h\|_{\infty}<\infty$ is not needed.

Let ρ be the slope of J_{h} in \bar{M}_{k} defined by

$$
\begin{equation*}
\rho\left(f_{0}, \bar{M}_{k}\right)=\sup \left\{d J_{h}\left(f_{0}\right)\left(f_{0}-f\right) ; f \in \bar{M}_{k}\right\} \tag{4.3}
\end{equation*}
$$

(see [7, 11]), then the following result holds.
Lemma 4.2. If $f_{0} \in \bar{M}_{k}$ verifies

$$
\begin{equation*}
J_{h}\left(f_{0}\right)=\inf \left\{J_{h}(f): f \in \bar{M}_{k}\right\} \tag{4.4}
\end{equation*}
$$

then $\rho\left(f_{0}, \bar{M}_{k}\right)=0$.

Proof.

$$
\begin{align*}
d J_{h}\left(f_{0}\right)\left(f-f_{0}\right) & =\lim _{\varepsilon \rightarrow 0} \frac{J_{h}\left(f_{0}+\varepsilon\left(f-f_{0}\right)\right)-J_{h}\left(f_{0}\right)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{J_{h}\left((1-\varepsilon) f_{0}+\varepsilon f\right)-J_{h}\left(f_{0}\right)}{\varepsilon} . \tag{4.5}
\end{align*}
$$

When $0<\varepsilon<1$ we have that $(1-\varepsilon) f_{0}+\varepsilon f \in \bar{M}_{k}$, and then $d J_{h}\left(f_{0}\right)\left(f_{0}-f\right) \leq 0$ for all $f \in \bar{M}_{k}$. As $d J_{h}\left(f_{0}\right)\left(f_{0}-f_{0}\right)=0$, we conclude that $\rho\left(f_{0}, \bar{M}_{k}\right)=0$.

Remark 4.3. Let J_{h} be weakly semicontinuous and let \bar{M}_{k} be a weakly compact subset of T, then J_{h} achieves a minimum f_{0} in \bar{M}_{k}. By Lemma 4.2, $\rho\left(f_{0}, \bar{M}_{k}\right)=0$.

As in [7], if f_{0} has zero slope, we call it a ρ-critical point. The following result gives sufficient conditions to assure that if f_{0} is a ρ-critical point, then it is a critical point of J_{h}.

Theorem 4.4. Let $f_{0} \in \bar{M}_{k}$ such that $\rho\left(f_{0}, \bar{M}_{k}\right)=0$, and assume that one of the following conditions holds:
(i) $d J_{h}\left(f_{0}\right)\left(f_{0}-g\right) \geq 0$
(ii) $\left\|\nabla\left(f_{0}-g\right)\right\|_{\infty}<k$.

Then $d J_{h}\left(f_{0}\right)=0$.
Proof. As $\rho\left(f_{0}, \bar{M}_{k}\right)=0$, we have that $d J_{h}\left(f_{0}\right)\left(f_{0}-f\right) \leq 0$, and then $d J_{h}\left(f_{0}\right)\left(f_{0}-g\right)$ $\leq d J_{h}\left(f_{0}\right)(f-g)$ for any $f \in \bar{M}_{k}$.

We will prove that $d J_{h}\left(f_{0}\right)(\varphi)=0$ for any $\varphi \in C_{0}^{1}$. Let $\widetilde{\varphi}=k \varphi / 2\|\nabla \varphi\|_{\infty}$, then $\pm \widetilde{\varphi}+g \in \bar{M}_{k}$, and then $d J_{h}\left(f_{0}\right)\left(f_{0}-g\right) \leq \pm d J_{h}\left(f_{0}\right)(\widetilde{\varphi})$.

Suppose that $d J_{h}\left(f_{0}\right)(\widetilde{\varphi}) \neq 0$, then $d J_{h}\left(f_{0}\right)\left(f_{0}-g\right)<0$.
If (i) holds, we immediately get a contradiction. On the other hand, if (ii) holds, there exists $r>1$ such that $g+r\left(f_{0}-g\right) \in \bar{M}_{k}$. Then $d J_{h}\left(f_{0}\right)\left(f_{0}-g\right) \leq r d J_{h}\left(f_{0}\right)\left(f_{0}-g\right)$, a contradiction.

Examples

Let us assume that $\int_{\Omega}\left((\nabla(f-g) \nabla g) / \sqrt{1+|\nabla f|^{2}}\right) d u d v \geq 0$ for any $f \in \bar{M}_{k}$. Then condition (i) of Theorem 4.4 is fulfilled for example if
(a) $|h(u, v, z)| \leq c(z-g(u, v))_{+}$for every $(u, v) \in \Omega, z \in \mathbb{R}^{3}$, for some constant c small enough.
(b) $\int_{\Omega} h(u, v, f)(f-g) d u d v \geq 0$ for every $f \in \bar{M}_{k}$. As a particular case, we may take $h(u, v, z)=c(z-g(u, v))$ for any $c \geq 0$.
(c) $h(u, v, z)=-c(z-g(u, v))$ for some $c>0$ small enough.

Indeed, in all the examples the inequality $d J_{h}(f)(f-g) \geq 0$ holds for any $f \in \bar{M}_{k}$, since

$$
\begin{align*}
d J_{h}(f)(f-g) & =\int_{\Omega}\left(\frac{\nabla f \nabla(f-g)}{\sqrt{1+|\nabla f|^{2}}}+2 h(u, v, f)(f-g)\right) d u d v \\
& =\int_{\Omega}\left(\frac{|\nabla(f-g)|^{2}}{\sqrt{1+|\nabla f|^{2}}}+2 h(f-g)\right) d u d v+\int_{\Omega} \frac{\nabla(f-g) \nabla g}{\sqrt{1+|\nabla f|^{2}}} d u d v \\
& \geq \int_{\Omega}\left(\frac{|\nabla(f-g)|^{2}}{\sqrt{1+|\nabla f|^{2}}}+2 h(f-g)\right) d u d v \tag{4.6}
\end{align*}
$$

Then the result follows immediately in example (b). In examples (a) and (c), being $\|\nabla(f-g)\|_{\infty} \leq k$ we can choose \tilde{k} such that $\sqrt{1+\|\nabla f\|_{\infty}^{2}} \leq \tilde{k}$. Then

$$
\begin{align*}
\int_{\Omega}\left(\frac{|\nabla(f-g)|^{2}}{\sqrt{1+|\nabla f|^{2}}}+2 h(u, v, f)(f-g)\right) d u d v & \geq \int_{\Omega}\left(\frac{|\nabla(f-g)|^{2}}{\tilde{k}}-2 c(f-g)^{2}\right) d u d v \\
& \geq \frac{1}{\tilde{k}}\|\nabla(f-g)\|_{2}^{2}-2 c c_{1}^{2}\|\nabla(f-g)\|_{2}^{2} \\
& =\left(\frac{1}{\tilde{k}}-2 c c_{1}^{2}\right)\|\nabla(f-g)\|_{2}^{2} \tag{4.7}
\end{align*}
$$

where c_{1} is the Poincaré's constant associated to Ω.
Thus, the result holds for $c \leq 1 / 2 \tilde{k} c_{1}^{2}$.
Remark 4.5. As in the preceding examples, it can be proved that if $d J_{h}(f)(f-g) \geq 0$ for any $f \in \bar{M}_{k}$, then g is a weak solution of (1.1). Indeed, if $d J_{h}(g) \neq 0$, from Theorem 4.4 it follows that $\rho\left(g, \bar{M}_{k}\right)>0$. As J_{h} achieves a minimum in every \bar{M}_{k}, we may take $k \geq k_{n} \rightarrow 0$, and f_{n} such that $\rho\left(f_{n}, \bar{M}_{k_{n}}\right)=0$. As $\bar{M}_{k_{n}} \subset \bar{M}_{k}$, condition (i) in Theorem 4.4 holds, and then $d J_{h}\left(f_{n}\right)=0$. It is immediate that $f_{n} \rightarrow g$ in $W^{1, \infty}$, and then it follows easily that $d J_{h}(g)=0$.

Furthermore, for constant g we can see that if $d J_{h}(f)(f-g) \geq 0$ for any $f \in \bar{M}_{k}$, then g is a global minimum of J_{h} in \bar{M}_{k} : let us define $\varphi(t)=J_{h}(t f+(1-t) g)$, then $\varphi^{\prime}(t)=d J_{h}(t f+(1-t) g)(f-g)$. As $0 \leq d J_{h}(t f+(1-t) g)(t f+(1-t) g-g)=$ $t d J_{h}(t f+(1-t) g)(f-g)$ it follows that $J_{h}(f)-J_{h}(g)=\varphi(1)-\varphi(0)=\varphi^{\prime}(c) \geq 0$.

5. Multiple solutions

In this section, we study the multiplicity of weak solutions of (1.1). Consider

$$
\begin{equation*}
\bar{N}_{k}=\left\{f \in \bar{M}_{k} \cap H^{2}:\left\|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\|_{2} \leq k\right\}, \tag{5.1}
\end{equation*}
$$

66 Existence and regularity of weak solutions to the prescribed...
\bar{N}_{k} is a nonempty, closed, bounded, and convex subset of T, therefore \bar{N}_{k} is weakly compact.

Then we obtain the following theorem, which is a variant of the mountain pass lemma.

Theorem 5.1. Let $f_{0} \in \bar{N}_{k}$ be a local minimum of J_{h} and assume that $J_{h}\left(f_{1}\right)<J_{h}\left(f_{0}\right)$ for some $f_{1} \in \bar{N}_{k}$. Let

$$
\begin{equation*}
c=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} J_{h}(\gamma(t)), \tag{5.2}
\end{equation*}
$$

where $\Gamma=\left\{\gamma \in C\left([0,1], \bar{N}_{k}\right): \gamma(0)=f_{0}, \gamma(1)=f_{1}\right\}$. Then there exists $f \in \bar{N}_{k}$ such that $J_{h}(f)=c$ and $\rho\left(f, \bar{N}_{k}\right)=0$.

We remark that f is not a local minimum of J_{h}. This kind of f is called an unstable critical point.

The proof of Theorem 5.1 follows from Theorem 3 in [7] and Lemmas 5.2, 5.3, and 5.4 below.

Lemma 5.2. The functional J_{h} is $C^{1}\left(\bar{N}_{k}\right)$.
Proof. Let $f, f_{0} \in \bar{N}_{k}$. Then

$$
\begin{align*}
& \left|d J_{h}(f)(\varphi)-d J_{h}\left(f_{0}\right)(\varphi)\right| \\
& \quad \leq\|\varphi\|_{H_{0}^{1}}\left(\left\|\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}-\frac{\nabla f_{0}}{\sqrt{1+\left|\nabla f_{0}\right|^{2}}}\right\|_{2}+\left\|N_{h}\left(f_{0}\right)-N_{h}(f)\right\|_{2}\right), \tag{5.3}
\end{align*}
$$

where N_{h} is the Nemytskii operator associated to h. Let

$$
\begin{align*}
&\left\|\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}-\frac{\nabla f_{0}}{\sqrt{1+\left|\nabla f_{0}\right|^{2}} \|_{2}}\right\| \leq\left\|\sqrt{1+\left|\nabla f_{0}\right|^{2}} \nabla f-\sqrt{1+|\nabla f|^{2}} \nabla f_{0}\right\|_{2} \tag{5.4}\\
& \leq \kappa\left\|f_{0}-f\right\|_{H_{0}^{1}}
\end{align*}
$$

and $N_{h}: L^{2} \rightarrow L^{2}$ continuous, the result holds.
Lemma 5.3. The slope ρ is H^{1}-continuous.
Proof. Let $f_{n} \in \bar{N}_{k}$ such that $f_{n} \rightarrow f_{0}$ in H_{0}^{1}. For $\epsilon>0$ we take $g_{n} \in \bar{N}_{k}$ such that $\rho\left(f_{n}, \bar{N}_{k}\right)-\epsilon / 2<d J_{h}\left(f_{n}\right)\left(f_{n}-g_{n}\right)$. Then

$$
\begin{align*}
\rho\left(f_{n}, \bar{N}_{k}\right)-\rho\left(f_{0}, \bar{N}_{k}\right) \leq & d J_{h}\left(f_{n}\right)\left(f_{n}-g_{n}\right)+\frac{\epsilon}{2}-d J_{h}\left(f_{0}\right)\left(f_{0}-g_{n}\right) \\
\leq & \left\|d J_{h}\left(f_{n}\right)\right\|_{\left(H_{0}^{1}\right) *}\left\|\left(f_{n}-f_{0}\right)\right\|_{H_{0}^{1}} \tag{5.5}\\
& +\left\|d J_{h}\left(f_{n}\right)-d J_{h}\left(f_{0}\right)\right\|_{\left(H_{0}^{1}\right)^{*}}\left\|\left(f_{0}-g_{n}\right)\right\|_{H_{0}^{1}}+\frac{\epsilon}{2}<\epsilon
\end{align*}
$$

for $n \geq n_{0}$. Operating in the same way with $\rho\left(f_{0}, \bar{N}_{k}\right)-\rho\left(f_{n}, \bar{N}_{k}\right)$, we conclude that $\rho\left(f_{n}, \bar{N}_{k}\right) \rightarrow \rho\left(f_{0}, \bar{N}_{k}\right)$.

Lemma 5.4 (Palais Smale condition). Let $\left(f_{n}\right)_{n \in N} \subset \bar{N}_{k}$ such that $\lim _{n \rightarrow \infty} \rho\left(f_{n}, \bar{N}_{k}\right)=$ 0 . Then $\left(f_{n}\right)_{n \in N}$ has a convergent subsequence in $H_{0}^{1}(\Omega)$.

Proof. As $f_{n} \in \bar{N}_{k}$, we may suppose that $f_{n} \rightarrow f$ weakly. Let $\Psi_{n}=f_{n}-f$. We will see that $\Psi_{n} \rightarrow 0$. Indeed,

$$
\begin{align*}
d J_{h}\left(f_{n}\right)\left(\Psi_{n}\right)= & \int_{\Omega}\left(\frac{\nabla f_{n}}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}} \nabla \Psi_{n}+2 h\left(u, v, f_{n}\right) \Psi_{n}\right) d u d v \\
= & \int_{\Omega} \frac{1}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}}\left|\nabla \Psi_{n}\right|^{2} d u d v+\int_{\Omega} \frac{\nabla \Psi_{n}}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}} \nabla f d u d v \tag{5.6}\\
& +\int_{\Omega} 2 h\left(u, v, f_{n}\right) \Psi_{n} d u d v
\end{align*}
$$

Then for some constant c

$$
\begin{equation*}
c\left\|\nabla \Psi_{n}\right\|_{2}^{2} \leq \rho\left(f_{n}, \bar{N}_{k}\right)-\int_{\Omega} \frac{\nabla \Psi_{n}}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}} \nabla f d u d v-\int_{\Omega} 2 h\left(u, v, f_{n}\right) \Psi_{n} d u d v \tag{5.7}
\end{equation*}
$$

By Rellich-Kondrachov theorem $\Psi_{n} \rightarrow 0$ in $L^{2}(\Omega)$, and then

$$
\begin{align*}
& \left|\int_{\Omega} 2 h\left(u, v, f_{n}\right) \Psi_{n} d u d v\right| \leq 2\|h\|_{\infty}|\Omega|^{1 / 2}\left\|\Psi_{n}\right\|_{2} \longrightarrow 0, \tag{5.8}\\
& \left|\int_{\Omega} \frac{\nabla \Psi_{n}}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}} \nabla f d u d v\right| \\
& =\left|-\int_{\Omega} \frac{\Delta f}{\sqrt{1+\left|\nabla f_{n}\right|^{2}}} \Psi_{n} d u d v-\int_{\Omega} \Psi_{n} \nabla\left(1+\left|\nabla f_{n}\right|^{2}\right)^{-1 / 2} \nabla f d u d v\right| \tag{5.9}\\
& \leq\|\Delta f\|_{2}\left\|\Psi_{n}\right\|_{2}+\left\|\nabla f_{n}\right\|_{\infty}\|\nabla f\|_{\infty}\left\|D^{2} f_{n}\right\|_{2}\left\|\Psi_{n}\right\|_{2} \longrightarrow 0 .
\end{align*}
$$

Example 5.5. Now we will show with an example that problem (1.1) may have at least three ρ-critical points in N_{k}.

Let $g=g_{0}$ be a constant, and $h(u, v, z)=-c\left(z-g_{0}\right)$ for some constant $c>0$. Then, g_{0} is a minimum of J_{h} in $\bar{M}_{k_{1}}$ for k_{1} small enough, and a local minimum in M_{k} for any $k \geq k_{1}$.

Moreover, taking $\Omega=B_{R}, f(u, v)=g_{0}+R^{2}-\left(u^{2}+v^{2}\right)$, it follows that

$$
\begin{equation*}
J_{h}(f)-J_{h}\left(g_{0}\right)=2 \pi\left(o\left(R^{3}\right)-\frac{c}{6} R^{6}\right) \tag{5.10}
\end{equation*}
$$

and taking $k=2 \sqrt{\pi} R$ it holds that $f \in \bar{N}_{k}$. Hence, if R is big enough, it follows that g_{0} is not a global minimum in \bar{N}_{k}. Furthermore, we see that the proof of Lemma 4.2 may be repeated in \bar{N}_{k}, and then the minimum of J_{h} in \bar{N}_{k} is a ρ-critical point. From Theorem 5.1 there is a third ρ-critical point which is not a local minimum of J_{h}.

6. Regularity

As we proved, problem (1.1) admits (for an appropriate $k>0$) a weak solution in a subset $\bar{M}(k)=\left\{f \in T /\|\nabla(f-g)\|_{\infty} \leq k\right\}$.

Consider $p>2$, and $f_{0} \in W^{2, p}(\Omega) \hookrightarrow C^{1}(\bar{\Omega})$ a weak solution of (1.1). Then $L_{f_{0}} f_{0}=2 h\left(u, v, f_{0}\right)\left(1+\nabla f_{0}^{2}\right)^{3 / 2}$ in Ω where for any $f \in C^{1}(\bar{\Omega}) L_{f}: W^{2, p} \rightarrow L^{p}$ is the strictly elliptic operator given by

$$
\begin{equation*}
L_{f} \phi=\left(1+f_{v}^{2}\right) \phi_{u u}+\left(1+f_{u}^{2}\right) \phi_{v v}-2 f_{u} f_{v} \phi_{u v} \tag{6.1}
\end{equation*}
$$

In order to prove the regularity of f_{0}, we study equation (6.2)

$$
\begin{equation*}
L_{f_{0}} \phi=2 h\left(u, v, f_{0}\right)\left(1+\nabla f_{0}^{2}\right)^{3 / 2} \quad \text { in } \Omega, \phi=g \text { in } \partial \Omega . \tag{6.2}
\end{equation*}
$$

Proposition 6.1. Let us assume that $\partial \Omega \in C^{2, \alpha}, g \in C^{2, \alpha}$, and $h \in C^{\alpha}$ for some $0<\alpha \leq 1-2 / p$. Then, if $\phi \in W^{2, p}$ is a strong solution of (6.2), $\phi \in C^{2, \alpha}(\bar{\Omega})$.

Proof. By Sobolev imbedding $\phi \in C^{1, \alpha}(\bar{\Omega})$. Then $L_{f_{0}} \phi \in C^{\alpha}(\bar{\Omega})$ and the coefficients of the operator $L_{f_{0}}$ belong to C^{α}. By Theorem 6.14 in [5], the equation $L w=L_{f_{0}} \phi$ in $\Omega, w=g$ in $\partial \Omega$ is uniquely solvable in $C^{2, \alpha}(\bar{\Omega})$, and the result follows from the uniqueness in Theorem 9.15 in [5].

Remark 6.2. As a simple consequence, we obtain that $f_{0} \in C^{2, \alpha}(\bar{\Omega})$, by the uniqueness in $W^{2, p}$ given by [5, Theorem 9.15].

Corollary 6.3. Let us assume that $\partial \Omega \in C^{k+2, \alpha}, g \in C^{k+2, \alpha}$, and $h \in C^{k, \alpha}$ for some $0<\alpha \leq 1-2 / p$. Then $f_{0} \in C^{k+2, \alpha}(\bar{\Omega})$.

Proof. It is immediate from Proposition 2.1 and Theorem 6.19 in [5].

Acknowledgement

The authors thank specially Prof. J. P. Gossez for the careful reading of the manuscript and his suggestions and remarks.

References

[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London, 1975. MR 56\#9247. Zbl 314.46030.
[2] H. Brézis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149-187. MR 85i:53010. Zbl 537.49022.
[3] D. G. Costa, Tópicos em Analise não Linear e Aplicacões as Ecuacões Diferenciais, I.M.PA., 1986.
[4] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall Inc., Englewood Cliffs, NJ, 1976. MR 52\#15253.
[5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. MR 86c:35035. Zbl 562.35001.
[6] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97-114. MR 41\#932. Zbl 181.38703.
[7] E. Lami Dozo and M. C. Mariani, A Dirichlet problem for an H-system with variable H, Manuscripta Math. 81 (1993), no. 1-2, 1-14. MR 94k:35107. Zbl 804.53012.
[8] , Solutions to the Plateau problem for the prescribed mean curvature equation via the mountain pass lemma, Stud. Appl. Math. 96 (1996), no. 3, 351-358. MR 97b:58033. Zbl 857.49028.
[9] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold Co., New York, 1969. MR 41\#934. Zbl 209.52901.
[10] M. Struwe, Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 93 (1986), no. 2, 135-157. MR 87c:53014. Zbl 603.49027.
[11] \qquad , Plateau's Problem and the Calculus of Variations, Mathematical Notes, vol. 35, Princeton University Press, Princeton, NJ, 1988. MR 90h:58016. Zbl 694.49028.
[12] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day Inc., San Francisco, Calif., 1964. MR 31\#638. Zbl 122.35501.
P. Amster: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, UBA. PAB I, Ciudad Universitaria, 1428. Buenos Aires, Argentina

E-mail address: pamster@dm.uba.ar
M. Cassinelli: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, UBA. PAB I, Ciudad Universitaria, 1428. Buenos Aires, Argentina
M. C. Mariani: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, UBA. PAB I, Ciudad Universitaria, 1428. Buenos Aires, Argentina

E-mail address: mcmarian@dm.uba.ar
D. F. Rial: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, UBA. PAB I, Ciudad Universitaria, 1428. Buenos Aires, Argentina

