EXISTENCE AND REGULARITY OF WEAK SOLUTIONS TO THE PRESCRIBED MEAN CURVATURE EQUATION FOR A NONPARAMETRIC SURFACE

P. AMSTER, M. CASSINELLI, M. C. MARIANI, AND D. F. RIAL

Received 15 August 1998

1. Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric surface $X : \Omega \to \mathbb{R}^3$, X(u, v) = (u, v, f(u, v)) is the quasilinear partial differential equation

$$(1+f_v^2) f_{uu} + (1+f_u^2) f_{vv} - 2f_u f_v f_{uv} = 2h(u, v, f) (1+|\nabla f|^2)^{3/2} \quad \text{in } \Omega,$$

$$f = g \quad \text{in } \partial\Omega,$$
 (1.1)

where Ω is a bounded domain in \mathbb{R}^2 , $h: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is continuous and $g \in H^1(\Omega)$.

We call $f \in H^1(\Omega)$ a weak solution of (1.1) if $f \in g + H^1_0(\Omega)$ and for every $\varphi \in C^1_0(\Omega)$

$$\int_{\Omega} \left(\left(1 + |\nabla f|^2 \right)^{-1/2} \nabla f \nabla \varphi + 2h(u, v, f) \varphi \right) du \, dv = 0.$$
(1.2)

It is known that for the parametric Plateau's problem, weak solutions can be obtained as critical points of a functional (see [2, 6, 7, 8, 10, 11]).

The nonparametric case has been studied for H = H(x, y) (and generally $H = H(x_1, ..., x_n)$ for hypersurfaces in \mathbb{R}^{n+1}) by Gilbarg, Trudinger, Simon, and Serrin, among other authors. It has been proved [5] that there exists a solution for any smooth boundary data if the mean curvature H' of $\partial\Omega$ satisfies

$$H'(x_1,...,x_n) \ge \frac{n}{n-1} |H(x_1,...,x_n)|$$
 (1.3)

for any $(x_1, \ldots, x_n) \in \partial \Omega$, and $H \in C^1(\overline{\Omega}, \mathbb{R})$ satisfying the inequality

$$\left|\int_{\Omega} H\varphi\right| \le \frac{1-\epsilon}{n} \int_{\Omega} |D\varphi| \tag{1.4}$$

Copyright © 1999 Hindawi Publishing Corporation Abstract and Applied Analysis 4:1 (1999) 61–69 1991 Mathematics Subject Classification: 35J20, 35J65 URL: http://aaa.hindawi.com/volume-4/S1085337599000019.html

for any $\varphi \in C_0^1(\Omega, \mathbb{R})$ and some $\epsilon > 0$. They also proved a non-existence result (see [5, Corollary 14.13]): if $H'(x_1, \ldots, x_n) < (n/(n-1))|H(x_1, \ldots, x_n)|$ for some (x_1, \ldots, x_n) and the sign of H is constant, then for any $\epsilon > 0$ there exists $g \in C^{\infty}(\overline{\Omega})$ such that $\|g\|_{\infty} \le \epsilon$ and that Dirichlet's problem is not solvable.

We remark that the solutions obtained in [5] are classical. In this paper, we find weak solutions of the problem by variational methods.

We prove that for prescribed *h* there exists an associated functional to *h*, and under some conditions on *h* and *g* we find that this functional has a global minimum in a convex subset of $H^1(\Omega)$, which provides a weak solution of (1.1). We denote by $H^1(\Omega)$ the usual Sobolev space, [1].

2. The associated variational problem

Given a function $f \in C^2(\Omega)$, the generated nonparametric surface associated to this function is the graph of f in \mathbb{R}^3 , parametrized as X(u, v) = (u, v, f(u, v)).

The mean curvature of this surface is

$$h(u, v, f) = \frac{1}{2} \frac{Ef_{vv} - 2Ff_{uv} + Gf_{uu}}{\left(1 + f_u^2 + f_v^2\right)^{3/2}},$$
(2.1)

where E, F, and G are the coefficients of the first fundamental form [4, 9].

For prescribed h, weak solutions of (1.1) can be obtained as critical points of a functional.

PROPOSITION 2.1. Let $J_h : H^1(\Omega) \to \mathbb{R}$ be the functional defined by

$$J_h(f) = \int_{\Omega} \left(\left(1 + |\nabla f|^2 \right)^{1/2} + H(u, v, f) \right) du \, dv, \tag{2.2}$$

where $H(u, v, z) = \int_0^z 2h(u, v, t) dt$. Then (1.1) is the Euler Lagrange equation of (2.2).

Remark 2.2. If $f \in T = g + H_0^1(\Omega)$ is a critical point of J_h , then f is a weak solution of (1.1).

Proof. For $\varphi \in C_0^1(\Omega)$, integrating by parts we obtain

$$dJ_h(f)(\varphi) = 2\int_{\Omega} \left(\frac{1}{2} \frac{Ef_{vv} - 2Ff_{uv} + Gf_{uu}}{\left(1 + f_u^2 + f_v^2\right)^{3/2}} - h(u, v, f) \right) \varphi \, du \, dv.$$
(2.3)

3. Behavior of the functional J_h

In this section, we study the behavior of the functional J_h restricted to T. For simplicity we write $J_h(f) = A(f) + B(f)$, with

$$A(f) = \int_{\Omega} \left(1 + |\nabla f|^2 \right)^{1/2} du \, dv, \qquad B(f) = \int_{\Omega} H(u, v, f) \, du \, dv. \tag{3.1}$$

We will assume that h is bounded.

LEMMA 3.1. The functional $A: T \to \mathbb{R}$ is continuous and convex.

Proof. Continuity can be proved by a simple computation. Let $a, b \ge 0$ such that a+b=1. By Cauchy inequality, it follows that

$$\sqrt{1 + \left|\nabla\left(af + bf_0\right)\right|^2} \le a\sqrt{1 + |\nabla f|^2} + b\sqrt{1 + |\nabla f_0|^2}$$
(3.2)

and convexity holds.

Remark 3.2. As A is continuous and convex, then it is weakly lower semicontinuous in T.

LEMMA 3.3. The functional B is weakly lower semicontinuous in T.

Proof. Since h is bounded, we have

$$|H(u, v, z)| \le c|z| + d.$$
 (3.3)

From the compact immersion $H_0^1(\Omega) \hookrightarrow L^1(\Omega)$ and the continuity of Nemytskii operator associated to H in $L^1(\Omega)$, we conclude that B is weakly lower semicontinuous in T (see [3, 12]).

4. Weak solutions as critical points of J_h

Let us assume that $g \in W^{1,\infty}$, and consider for each k > 0, the following subset of T:

$$\overline{M}_k = \left\{ f \in T : \|\nabla (f - g)\|_{\infty} \le k \right\}.$$
(4.1)

 \overline{M}_k is nonempty, closed, convex, bounded, then it is weakly compact.

Remark 4.1. As $g \in W^{1,\infty}$, taking p > 2 we obtain, for any $f \in \overline{M}_k$:

$$\|f - g\|_p \le c \|\nabla (f - g)\|_p.$$
(4.2)

Then, by Sobolev imbedding, $||f - g||_{\infty} \le c_1 ||f - g||_{1,p} \le \bar{c}k$ for some constant \bar{c} . We deduce that $f \in W^{1,\infty}$ and $f(\Omega) \subset K$ for some fixed compact $K \subset \mathbb{R}$. Thus, the assumption $||h||_{\infty} < \infty$ is not needed.

Let ρ be the slope of J_h in \overline{M}_k defined by

$$\rho(f_0, \overline{M}_k) = \sup \left\{ dJ_h(f_0)(f_0 - f); \ f \in \overline{M}_k \right\}$$
(4.3)

(see [7, 11]), then the following result holds.

LEMMA 4.2. If $f_0 \in \overline{M}_k$ verifies

$$J_h(f_0) = \inf \left\{ J_h(f) : f \in \overline{M}_k \right\},\tag{4.4}$$

then $\rho(f_0, \overline{M}_k) = 0.$

Proof.

$$dJ_{h}(f_{0})(f - f_{0}) = \lim_{\varepsilon \to 0} \frac{J_{h}(f_{0} + \varepsilon(f - f_{0})) - J_{h}(f_{0})}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{J_{h}((1 - \varepsilon)f_{0} + \varepsilon f) - J_{h}(f_{0})}{\varepsilon}.$$
(4.5)

When $0 < \varepsilon < 1$ we have that $(1 - \varepsilon) f_0 + \varepsilon f \in \overline{M}_k$, and then $dJ_h(f_0)(f_0 - f) \le 0$ for all $f \in \overline{M}_k$. As $dJ_h(f_0)(f_0 - f_0) = 0$, we conclude that $\rho(f_0, \overline{M}_k) = 0$.

Remark 4.3. Let J_h be weakly semicontinuous and let \overline{M}_k be a weakly compact subset of T, then J_h achieves a minimum f_0 in \overline{M}_k . By Lemma 4.2, $\rho(f_0, \overline{M}_k) = 0$.

As in [7], if f_0 has zero slope, we call it a ρ -critical point. The following result gives sufficient conditions to assure that if f_0 is a ρ -critical point, then it is a critical point of J_h .

THEOREM 4.4. Let $f_0 \in \overline{M}_k$ such that $\rho(f_0, \overline{M}_k) = 0$, and assume that one of the following conditions holds:

(i)
$$dJ_h(f_0)(f_0 - g) \ge 0$$

(ii) $\|\nabla(f_0 - g)\|_{\infty} < k$.

Then $dJ_h(f_0) = 0$.

Proof. As $\rho(f_0, \overline{M}_k) = 0$, we have that $dJ_h(f_0)(f_0 - f) \le 0$, and then $dJ_h(f_0)(f_0 - g) \le dJ_h(f_0)(f - g)$ for any $f \in \overline{M}_k$.

We will prove that $dJ_h(f_0)(\varphi) = 0$ for any $\varphi \in C_0^1$. Let $\widetilde{\varphi} = k\varphi/2 \|\nabla\varphi\|_{\infty}$, then $\pm \widetilde{\varphi} + g \in \overline{M}_k$, and then $dJ_h(f_0)(f_0 - g) \leq \pm dJ_h(f_0)(\widetilde{\varphi})$.

Suppose that $dJ_h(f_0)(\tilde{\varphi}) \neq 0$, then $dJ_h(f_0)(f_0 - g) < 0$.

If (i) holds, we immediately get a contradiction. On the other hand, if (ii) holds, there exists r > 1 such that $g + r(f_0 - g) \in \overline{M}_k$. Then $dJ_h(f_0)(f_0 - g) \leq rdJ_h(f_0)(f_0 - g)$, a contradiction.

Examples

Let us assume that $\int_{\Omega} ((\nabla (f-g)\nabla g)/\sqrt{1+|\nabla f|^2}) du \, dv \ge 0$ for any $f \in \overline{M}_k$. Then condition (i) of Theorem 4.4 is fulfilled for example if

(a) $|h(u, v, z)| \le c(z - g(u, v))_+$ for every $(u, v) \in \Omega$, $z \in \mathbb{R}^3$, for some constant *c* small enough.

(b) $\int_{\Omega} h(u, v, f)(f - g) du dv \ge 0$ for every $f \in \overline{M}_k$. As a particular case, we may take h(u, v, z) = c(z - g(u, v)) for any $c \ge 0$.

(c) h(u, v, z) = -c(z - g(u, v)) for some c > 0 small enough.

Indeed, in all the examples the inequality $dJ_h(f)(f-g) \ge 0$ holds for any $f \in \overline{M}_k$, since

$$\begin{split} dJ_{h}(f)(f-g) &= \int_{\Omega} \left(\frac{\nabla f \nabla (f-g)}{\sqrt{1+|\nabla f|^{2}}} + 2h(u,v,f)(f-g) \right) du \, dv \\ &= \int_{\Omega} \left(\frac{|\nabla (f-g)|^{2}}{\sqrt{1+|\nabla f|^{2}}} + 2h(f-g) \right) du \, dv + \int_{\Omega} \frac{\nabla (f-g) \nabla g}{\sqrt{1+|\nabla f|^{2}}} \, du \, dv \\ &\geq \int_{\Omega} \left(\frac{|\nabla (f-g)|^{2}}{\sqrt{1+|\nabla f|^{2}}} + 2h(f-g) \right) du \, dv. \end{split}$$

$$(4.6)$$

Then the result follows immediately in example (b). In examples (a) and (c), being $\|\nabla(f-g)\|_{\infty} \leq k$ we can choose \tilde{k} such that $\sqrt{1+\|\nabla f\|_{\infty}^2} \leq \tilde{k}$. Then

$$\begin{split} \int_{\Omega} & \left(\frac{|\nabla(f-g)|^2}{\sqrt{1+|\nabla f|^2}} + 2h(u,v,f)(f-g) \right) du \, dv \ge \int_{\Omega} \left(\frac{|\nabla(f-g)|^2}{\tilde{k}} - 2c(f-g)^2 \right) du \, dv \\ & \ge \frac{1}{\tilde{k}} \|\nabla(f-g)\|_2^2 - 2cc_1^2 \|\nabla(f-g)\|_2^2 \\ & = \left(\frac{1}{\tilde{k}} - 2cc_1^2 \right) \|\nabla(f-g)\|_2^2, \end{split}$$

$$(4.7)$$

where c_1 is the Poincaré's constant associated to Ω .

Thus, the result holds for $c \leq 1/2\tilde{k}c_1^2$.

Remark 4.5. As in the preceding examples, it can be proved that if $dJ_h(f)(f-g) \ge 0$ for any $f \in \overline{M}_k$, then g is a weak solution of (1.1). Indeed, if $dJ_h(g) \ne 0$, from Theorem 4.4 it follows that $\rho(g, \overline{M}_k) > 0$. As J_h achieves a minimum in every \overline{M}_k , we may take $k \ge k_n \to 0$, and f_n such that $\rho(f_n, \overline{M}_{k_n}) = 0$. As $\overline{M}_{k_n} \subset \overline{M}_k$, condition (i) in Theorem 4.4 holds, and then $dJ_h(f_n) = 0$. It is immediate that $f_n \to g$ in $W^{1,\infty}$, and then it follows easily that $dJ_h(g) = 0$.

Furthermore, for constant g we can see that if $dJ_h(f)(f-g) \ge 0$ for any $f \in \overline{M}_k$, then g is a global minimum of J_h in \overline{M}_k : let us define $\varphi(t) = J_h(tf + (1-t)g)$, then $\varphi'(t) = dJ_h(tf + (1-t)g)(f-g)$. As $0 \le dJ_h(tf + (1-t)g)(tf + (1-t)g-g) =$ $tdJ_h(tf + (1-t)g)(f-g)$ it follows that $J_h(f) - J_h(g) = \varphi(1) - \varphi(0) = \varphi'(c) \ge 0$.

5. Multiple solutions

In this section, we study the multiplicity of weak solutions of (1.1). Consider

$$\overline{N}_{k} = \left\{ f \in \overline{M}_{k} \cap H^{2} : \left\| \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \right\|_{2} \le k \right\},$$
(5.1)

 \overline{N}_k is a nonempty, closed, bounded, and convex subset of T, therefore \overline{N}_k is weakly compact.

Then we obtain the following theorem, which is a variant of the mountain pass lemma.

THEOREM 5.1. Let $f_0 \in \overline{N}_k$ be a local minimum of J_h and assume that $J_h(f_1) < J_h(f_0)$ for some $f_1 \in \overline{N}_k$. Let

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} J_h(\gamma(t)), \tag{5.2}$$

where $\Gamma = \{\gamma \in C([0, 1], \overline{N}_k) : \gamma(0) = f_0, \gamma(1) = f_1\}$. Then there exists $f \in \overline{N}_k$ such that $J_h(f) = c$ and $\rho(f, \overline{N}_k) = 0$.

We remark that f is not a local minimum of J_h . This kind of f is called an unstable critical point.

The proof of Theorem 5.1 follows from Theorem 3 in [7] and Lemmas 5.2, 5.3, and 5.4 below.

LEMMA 5.2. The functional J_h is $C^1(\overline{N}_k)$.

Proof. Let $f, f_0 \in \overline{N}_k$. Then

$$\left\| dJ_{h}(f)(\varphi) - dJ_{h}(f_{0})(\varphi) \right\|$$

$$\leq \|\varphi\|_{H_{0}^{1}} \left(\left\| \frac{\nabla f}{\sqrt{1 + |\nabla f|^{2}}} - \frac{\nabla f_{0}}{\sqrt{1 + |\nabla f_{0}|^{2}}} \right\|_{2} + \left\| N_{h}(f_{0}) - N_{h}(f) \right\|_{2} \right),$$
(5.3)

where N_h is the Nemytskii operator associated to h. Let

$$\left\| \frac{\nabla f}{\sqrt{1 + |\nabla f|^2}} - \frac{\nabla f_0}{\sqrt{1 + |\nabla f_0|^2}} \right\|_2 \le \left\| \sqrt{1 + |\nabla f_0|^2} \nabla f - \sqrt{1 + |\nabla f|^2} \nabla f_0 \right\|_2$$
(5.4)
$$\le \kappa \| f_0 - f \|_{H_0^1}$$

and $N_h: L^2 \to L^2$ continuous, the result holds.

LEMMA 5.3. The slope ρ is H^1 -continuous.

Proof. Let $f_n \in \overline{N}_k$ such that $f_n \to f_0$ in H_0^1 . For $\epsilon > 0$ we take $g_n \in \overline{N}_k$ such that $\rho(f_n, \overline{N}_k) - \epsilon/2 < dJ_h(f_n)(f_n - g_n)$. Then

$$\rho(f_n, \overline{N}_k) - \rho(f_0, \overline{N}_k) \leq dJ_h(f_n)(f_n - g_n) + \frac{\epsilon}{2} - dJ_h(f_0)(f_0 - g_n) \\
\leq \|dJ_h(f_n)\|_{(H_0^1)^*} \|(f_n - f_0)\|_{H_0^1} \\
+ \|dJ_h(f_n) - dJ_h(f_0)\|_{(H_0^1)^*} \|(f_0 - g_n)\|_{H_0^1} + \frac{\epsilon}{2} < \epsilon$$
(5.5)

for $n \ge n_0$. Operating in the same way with $\rho(f_0, \overline{N}_k) - \rho(f_n, \overline{N}_k)$, we conclude that $\rho(f_n, \overline{N}_k) \to \rho(f_0, \overline{N}_k)$.

LEMMA 5.4 (Palais Smale condition). Let $(f_n)_{n \in N} \subset \overline{N}_k$ such that $\lim_{n \to \infty} \rho(f_n, \overline{N}_k) = 0$. Then $(f_n)_{n \in N}$ has a convergent subsequence in $H_0^1(\Omega)$.

Proof. As $f_n \in \overline{N}_k$, we may suppose that $f_n \to f$ weakly. Let $\Psi_n = f_n - f$. We will see that $\Psi_n \to 0$. Indeed,

$$dJ_{h}(f_{n})(\Psi_{n}) = \int_{\Omega} \left(\frac{\nabla f_{n}}{\sqrt{1 + |\nabla f_{n}|^{2}}} \nabla \Psi_{n} + 2h(u, v, f_{n})\Psi_{n} \right) du \, dv$$

$$= \int_{\Omega} \frac{1}{\sqrt{1 + |\nabla f_{n}|^{2}}} |\nabla \Psi_{n}|^{2} \, du \, dv + \int_{\Omega} \frac{\nabla \Psi_{n}}{\sqrt{1 + |\nabla f_{n}|^{2}}} \nabla f \, du \, dv \quad (5.6)$$

$$+ \int_{\Omega} 2h(u, v, f_{n})\Psi_{n} \, du \, dv.$$

Then for some constant c

$$c \left\| \nabla \Psi_n \right\|_2^2 \le \rho \left(f_n, \overline{N}_k \right) - \int_{\Omega} \frac{\nabla \Psi_n}{\sqrt{1 + |\nabla f_n|^2}} \nabla f \, du \, dv - \int_{\Omega} 2h \left(u, v, f_n \right) \Psi_n \, du \, dv.$$
(5.7)

By Rellich-Kondrachov theorem $\Psi_n \to 0$ in $L^2(\Omega)$, and then

$$\left|\int_{\Omega} 2h(u,v,f_n)\Psi_n du dv\right| \le 2\|h\|_{\infty} |\Omega|^{1/2} \|\Psi_n\|_2 \longrightarrow 0,$$
(5.8)

$$\left| \int_{\Omega} \frac{\nabla \Psi_n}{\sqrt{1 + |\nabla f_n|^2}} \nabla f \, du \, dv \right|$$

= $\left| -\int_{\Omega} \frac{\Delta f}{\sqrt{1 + |\nabla f_n|^2}} \Psi_n \, du \, dv - \int_{\Omega} \Psi_n \nabla (1 + |\nabla f_n|^2)^{-1/2} \nabla f \, du \, dv \right|$ (5.9)
 $\leq \|\Delta f\|_2 \|\Psi_n\|_2 + \|\nabla f_n\|_{\infty} \|\nabla f\|_{\infty} \|D^2 f_n\|_2 \|\Psi_n\|_2 \longrightarrow 0.$

Example 5.5. Now we will show with an example that problem (1.1) may have at least three ρ -critical points in N_k .

Let $g = g_0$ be a constant, and $h(u, v, z) = -c(z - g_0)$ for some constant c > 0. Then, g_0 is a minimum of J_h in \overline{M}_{k_1} for k_1 small enough, and a local minimum in M_k for any $k \ge k_1$.

Moreover, taking $\Omega = B_R$, $f(u, v) = g_0 + R^2 - (u^2 + v^2)$, it follows that

$$J_h(f) - J_h(g_0) = 2\pi \left(o(R^3) - \frac{c}{6}R^6 \right),$$
(5.10)

and taking $k = 2\sqrt{\pi R}$ it holds that $f \in \overline{N}_k$. Hence, if *R* is big enough, it follows that g_0 is not a global minimum in \overline{N}_k . Furthermore, we see that the proof of Lemma 4.2 may be repeated in \overline{N}_k , and then the minimum of J_h in \overline{N}_k is a ρ -critical point. From Theorem 5.1 there is a third ρ -critical point which is not a local minimum of J_h .

6. Regularity

As we proved, problem (1.1) admits (for an appropriate k > 0) a weak solution in a subset $\overline{M}(k) = \{f \in T / \|\nabla(f - g)\|_{\infty} \le k\}.$

Consider p > 2, and $f_0 \in W^{2,p}(\Omega) \hookrightarrow C^1(\overline{\Omega})$ a weak solution of (1.1). Then $L_{f_0}f_0 = 2h(u, v, f_0)(1 + \nabla f_0^2)^{3/2}$ in Ω where for any $f \in C^1(\overline{\Omega})$ $L_f : W^{2,p} \to L^p$ is the strictly elliptic operator given by

$$L_f \phi = (1 + f_v^2) \phi_{uu} + (1 + f_u^2) \phi_{vv} - 2f_u f_v \phi_{uv}.$$
(6.1)

In order to prove the regularity of f_0 , we study equation (6.2)

$$L_{f_0}\phi = 2h(u, v, f_0)(1 + \nabla f_0^2)^{3/2} \quad \text{in } \Omega, \ \phi = g \text{ in } \partial\Omega.$$
(6.2)

PROPOSITION 6.1. Let us assume that $\partial \Omega \in C^{2,\alpha}$, $g \in C^{2,\alpha}$, and $h \in C^{\alpha}$ for some $0 < \alpha \le 1 - 2/p$. Then, if $\phi \in W^{2,p}$ is a strong solution of (6.2), $\phi \in C^{2,\alpha}(\overline{\Omega})$.

Proof. By Sobolev imbedding $\phi \in C^{1,\alpha}(\overline{\Omega})$. Then $L_{f_0}\phi \in C^{\alpha}(\overline{\Omega})$ and the coefficients of the operator L_{f_0} belong to C^{α} . By Theorem 6.14 in [5], the equation $Lw = L_{f_0}\phi$ in Ω , w = g in $\partial\Omega$ is uniquely solvable in $C^{2,\alpha}(\overline{\Omega})$, and the result follows from the uniqueness in Theorem 9.15 in [5].

Remark 6.2. As a simple consequence, we obtain that $f_0 \in C^{2,\alpha}(\overline{\Omega})$, by the uniqueness in $W^{2,p}$ given by [5, Theorem 9.15].

COROLLARY 6.3. Let us assume that $\partial \Omega \in C^{k+2,\alpha}$, $g \in C^{k+2,\alpha}$, and $h \in C^{k,\alpha}$ for some $0 < \alpha \le 1 - 2/p$. Then $f_0 \in C^{k+2,\alpha}(\overline{\Omega})$.

Proof. It is immediate from Proposition 2.1 and Theorem 6.19 in [5].

Acknowledgement

The authors thank specially Prof. J. P. Gossez for the careful reading of the manuscript and his suggestions and remarks.

References

- R. A. Adams, *Sobolev Spaces*, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London, 1975. MR 56#9247. Zbl 314.46030.
- H. Brézis and J.-M. Coron, *Multiple solutions of H-systems and Rellich's conjecture*, Comm. Pure Appl. Math. **37** (1984), no. 2, 149–187. MR 85i:53010. Zbl 537.49022.
- [3] D. G. Costa, Tópicos em Analise não Linear e Aplicacões as Ecuacões Diferenciais, I.M.PA., 1986.
- M. P. do Carmo, *Differential Geometry of Curves and Surfaces*, Prentice-Hall Inc., Englewood Cliffs, NJ, 1976. MR 52#15253.
- [5] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed., Springer-Verlag, Berlin, 1983. MR 86c:35035. Zbl 562.35001.

- S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97–114. MR 41#932. Zbl 181.38703.
- [7] E. Lami Dozo and M. C. Mariani, A Dirichlet problem for an H-system with variable H, Manuscripta Math. 81 (1993), no. 1–2, 1–14. MR 94k:35107. Zbl 804.53012.
- [8] _____, Solutions to the Plateau problem for the prescribed mean curvature equation via the mountain pass lemma, Stud. Appl. Math. 96 (1996), no. 3, 351–358. MR 97b:58033. Zbl 857.49028.
- R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold Co., New York, 1969. MR 41#934. Zbl 209.52901.
- [10] M. Struwe, Nonuniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rational Mech. Anal. 93 (1986), no. 2, 135–157. MR 87c:53014. Zbl 603.49027.
- [11] _____, Plateau's Problem and the Calculus of Variations, Mathematical Notes, vol. 35, Princeton University Press, Princeton, NJ, 1988. MR 90h:58016. Zbl 694.49028.
- [12] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day Inc., San Francisco, Calif., 1964. MR 31#638. Zbl 122.35501.

P. Amster: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, UBA. PAB I, Ciudad Universitaria, 1428. Buenos Aires, Argentina *E-mail address*: pamster@dm.uba.ar

M. CASSINELLI: DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATU-RALES, UBA. PAB I, CIUDAD UNIVERSITARIA, 1428. BUENOS AIRES, ARGENTINA

M. C. MARIANI: DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATU-RALES, UBA. PAB I, CIUDAD UNIVERSITARIA, 1428. BUENOS AIRES, ARGENTINA *E-mail address*: mcmarian@dm.uba.ar

D. F. RIAL: DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UBA. PAB I, CIUDAD UNIVERSITARIA, 1428. BUENOS AIRES, ARGENTINA