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We study semilinear elliptic boundary value problems of one parameter dependence
where the number of positive solutions is discussed. Our main purpose is to characterize
the critical value given by the infimum of such parameters for which positive solutions
exist. Our approach is based on super- and sub-solutions, and relies on the topological
degree theory on the positive cones of ordered Banach spaces. A concrete example is
also presented.

1. Introduction

Let D be a bounded domain of Euclidean space R
N,N ≥ 2, with smooth boundary

∂D. In this paper, we study the following semilinear elliptic boundary value problem:

Lu := (−∆+c(x)
)
u = λf (u) in D,

Bu := a(x)
∂u

∂n
+(1−a(x)

)
u = 0 on ∂D.

(1.1)

Here

(1) ∆ denotes the usual Laplacian
∑N

j=1 ∂2/∂x2
j in R

N ,

(2) c ∈ C∞(D̄) and c > 0 in D,
(3) λ is a positive parameter,
(4) f is a real-valued, nonnegative C1-function on [0,∞),
(5) B is a degenerate boundary operator with coefficient a ∈ C∞(∂D) satisfying

0 ≤ a(x) ≤ 1 on ∂D, (1.2)

(6) n is the exterior unit normal to ∂D.

The degeneracy means that the so-called Shapiro-Lopatinskii condition breaks down
at x ∈ ∂D where a(x) = 0 if a �≡ 0 on ∂D. We note that our boundary condition is the
Dirichlet one if a ≡ 0 on ∂D and Neumann one if a ≡ 1 on ∂D.
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A function u ∈ C2(D̄) is called a solution of (1.1) if it satisfies (1.1). A solution of
(1.1) which is positive everywhere in D is called positive.

In this paper, we consider the existence and multiplicity of positive solutions of (1.1).
Here we assume for nonlinear f that

f (0) = 0, (1.3)

f ′(0) = 1. (1.4)

In addition to (1.3) and (1.4), if the condition

f (t) ≤ t, ∀t ≥ 0, (1.5)

is assumed, then Green’s formula gives us a necessary condition for the existence of a
positive solution as follows:

λ ≥ λ1. (1.6)

Here λ1 is the first eigenvalue of the eigenvalue problem

Lϕ = λϕ in D,

Bϕ = 0 on ∂D.
(1.7)

It is known (see [4]) that λ1 is positive and simple, and that the corresponding eigen-
function can be chosen to be positive in D. We denote by ϕ1 the positive eigenfunction
normalized as ‖ϕ1‖∞ = 1, where ‖ · ‖∞ is the maximum norm of space C(D̄) of
continuous functions over D̄.

In addition to (1.3), (1.4), and (1.5), if the concavity is given for f , more precisely, if
f (t)/t is strictly decreasing with respect to t > 0, then the super-sub-solution method
leads to the assertion that if λ ∈ (λ1,λ1/α) where α = limt→∞ f (t)/t , then problem
(1.1) has a unique positive solution, and otherwise, there is no positive solution of (1.1)
(see [7, Corollary 2]).

This paper is mainly concerned with the case where f is convex with respect to t > 0
small and sublinear, that is, there exists a constant 0 < t0 < 1 with the conditions

f (t) > t, ∀t ∈ (0, t0], (1.8)

f (t) ≤ t, ∀t ∈ [1/t0,∞). (1.9)

If f satisfies (1.3), (1.4), (1.8), and (1.9), then we denote by f̄ ,f∞ the constants given
respectively by

f̄ = sup
t>0

f (t)

t
, (1.10)

f∞ = lim sup
t→∞

f (t)

t
. (1.11)

Now, we can formulate our main results. The first one is the following existence and
multiplicity theorem for positive solutions of (1.1).
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Theorem 1.1. Let conditions (1.3), (1.4), (1.8), and (1.9) be satisfied. Then there exists
a constant � ∈ [λ1/f̄ ,λ1) such that problem (1.1) has at least one positive solution for
every λ ∈ [�,λ1/f∞) and no positive solution for any λ ∈ (0,�) and, moreover, there
exist at least two positive solutions of (1.1) for each λ ∈ (�,λ1).

Remark 1.2. By (1.8) we note
f̄ > 1, (1.12)

and we find from (1.9) and the condition that f is nonnegative, that

0 ≤ f∞ ≤ 1. (1.13)

If f∞ = 0, then it is understood in Theorem 1.1 that λ1/f∞ = ∞.

If we restrict our consideration to the nondegenerate case where either a ≡ 0 or
0 < a ≤ 1, then Lions [3, Theorem 1.4] studied the case f∞ = 0, where a topological
degree argument is employed. We also refer to Ambrosetti, Brézis, and Cerami [2] for
a class of f which has concavity for small values t > 0 and convexity for large values
t > 0, where the variational method is used as well as the super-sub-solution method.

However, our main interest here is to characterize the critical value �. Let e ∈
C∞(D̄) be a unique solution of the problem

Lu = 1 in D,

Bu = 0 on ∂D.
(1.14)

It is known [5, Lemma 2.1] that the solution e satisfies

e > 0 in D̄ \�0,

∂e

∂n
< 0 on �0,

(1.15)

where �0 = {x ∈ ∂D : a(x) = 0}.
Now the second main result of ours is the following.

Theorem 1.3. Let β be the positive constant defined by (3.7). In addition to (1.3),
(1.4), (1.8), and (1.9), we suppose that f is nondecreasing with respect to t > 0. If f

satisfies the condition

f̄ >
‖e‖∞

β
, (1.16)

then problem (1.1) has at least two positive solutions for every

1

f̄ β
< λ <

1

‖e‖∞
, (1.17)

so that the critical value � given by Theorem 1.1 has the following estimate:

λ1

f̄
≤ � ≤ 1

f̄ β
. (1.18)
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Remark 1.4. The maximum principle ensures that 1/‖e‖∞ ≤ λ1 ≤ 1/β (cf. [9, Lemma
4.2]). Moreover, we can show (see [10, Corollary 5.3]) that, under the Neumann con-
dition a ≡ 1, we have

λ1 = 1

β
. (1.19)

Estimate (1.18) would be therefore optimal in this sense.

The rest of this paper is organized as follows: Section 2 is devoted to the proof of
Theorem 1.1. Our main tool for the discussion of the multiplicity of positive solutions
is the three fixed point existence theorem for compact, strongly increasing mappings
in ordered Banach spaces due to Amann [1, Theorem 14.2]. Section 3 contains the
proof of Theorem 1.3. For this we use Wiebers’ result [9, Lemma 4.4], based on the
topological degree theory on the positive cones of ordered Banach spaces. In Section 4
we give an example of f satisfying the assumption of Theorem 1.3 and discuss the
existence and multiplicity of positive solutions.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. First we reduce (1.1) to the equation
of a compact, strongly increasing mapping in the positive cone of an ordered Banach
space. For this we begin by recalling the following two existence and uniqueness the-
orems for the linear degenerate boundary value problem

Lu = h in D,

Bu = 0 on ∂D.
(2.1)

Theorem 2.1 (see [6, Theorem 1.1]). The mapping

(L,B) : C2+θ
(
D̄
)−→ Cθ

(
D̄
)×C1+θ∗ (∂D),

u �−→ (Lu,Bu)
(2.2)

is an algebraic and topological isomorphism for 0 < θ < 1. Here Cm+θ (D̄) denotes
the usual Hölder space with norm ‖ · ‖Cm+θ (D̄) if m is a nonnegative integer, and

C1+θ∗ (∂D) is an interpolation space associated with the boundary operator B in the
following sense:

C1+θ∗ (∂D) = {
ϕ = aϕ1 +(1−a)ϕ0 : ϕi ∈ C2−i+θ (∂D)

}
. (2.3)

We can verify that C1+θ∗ (∂D) is a Banach space with the norm

‖ϕ‖
C1+θ∗ (∂D)

= inf
{‖ϕ1‖C1+θ (∂D) +‖ϕ0‖C2+θ (∂D)

: ϕ = aϕ1 +(1−a)ϕ0, ϕi ∈ C2−i+θ (∂D)
}
.

(2.4)

Theorem 2.2 (see [8, Theorem 1]). The mapping

(L,B) : W 2,p(D) −→ Lp(D)×W
1−(1/p),p∗ (∂D),

u �−→ (Lu,Bu)
(2.5)
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is an algebraic and topological isomorphism for 1 < p < ∞. Here Wm,p(D) denotes
the usual Sobolev space with norm ‖·‖Wm,p(D) if m is a nonnegative integer, Lp(D) =
W 0,p(D), and W

1−(1/p),p∗ (∂D) is an interpolation space given by

W
1−(1/p),p∗ (∂D) = {

ϕ = aϕ1 +(1−a)ϕ0 : ϕi ∈ W 2−i−(1/p),p(∂D)
}
, (2.6)

where W 2−i−(1/p),p(∂D) is a Banach space given by

W 2−i−(1/p),p(∂D) = {
ϕ = u|∂D : u ∈ W 2−i,p(D)

}
, i = 0,1, (2.7)

with the norm

‖ϕ‖W 2−i−(1/p),p(∂D) = inf
{‖u‖W 2−i,p(D) : u ∈ W 2−i,p(D),u|∂D = ϕ

}
. (2.8)

We can check that W
1−(1/p),p∗ (∂D) is a Banach space with the norm

‖ϕ‖
W

1−(1/p)∗ (∂D)
= inf

{‖ϕ1‖W 1−(1/p),p(∂D) +‖ϕ0‖W 2−(1/p),p(∂D)

: ϕ = aϕ1 +(1−a)ϕ0,ϕi ∈ W 2−i−(1/p),p(∂D)
}
.

(2.9)

Let
C2+θ

B

(
D̄
)= {

u ∈ C2+θ
(
D̄
) : Bu = 0 on ∂D

}
. (2.10)

By Theorem 2.1, there exists the resolvent K : Cθ(D̄) → C2+θ
B (D̄) for (2.1), meaning

that Kh is a unique solution of (2.1) for any h ∈ Cθ(D̄). By the well-known argument,
Theorem 2.2 allows K to be extended uniquely to the space Lp(D),1 < p < ∞.
Especially, K maps C(D̄) compactly into C1(D̄) thanks to the Sobolev imbedding
theorem. Furthermore, we can show (see [5, Lemma 2.1]) that K is strictly positive,
that is, Kh has property (1.15) for any h ∈ P \{0} where P = {u ∈ C(D̄) : u ≥ 0 on D̄}.

Let

Ce

(
D̄
)= {

u ∈ C
(
D̄
) : there exists a constant c > 0 such that −ce ≤ u ≤ ce on D̄

}
,

(2.11)
where e is the unique positive solution of (1.14). It is easily seen that Ce(D̄) is a Banach
space with the norm

‖u‖e = inf
{
c > 0 : −ce ≤ u ≤ ce on D̄

}
. (2.12)

Letting
Pe = P ∩Ce

(
D̄
)
, (2.13)

we see that Pe has nonempty interior. We can, moreover, show (see [5, Proposition 2.2])

that K is strongly positive, that is, Kh is an interior point of Pe, denoted by Kh ∈ ◦
Pe,

for any h ∈ P \{0}.
The standard regularity argument due to Theorems 2.1 and 2.2 shows that problem

(1.1) is equivalent to the equation

u = F(λ,u) := λKf (u) in C
(
D̄
)
. (2.14)
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Here we see that F : (0,∞) × P → P is compact, since K is compact and strictly
positive, and since f is nonnegative. Since f ∈ C1([0,∞)), for any t1 > 0 there exists
a constant k > 0 such that f (t)+kt is strictly increasing in t ∈ [0, t1]. This shows that

Fk(λ,u) := λKk

(
f (u)+ku

)
, (λ,u) ∈ (0,∞)×P (2.15)

is strongly increasing in u ∈ Pt1 where

Pt = {
u ∈ P : u ≤ t on D̄

}
, t > 0, (2.16)

which means that Fk(λ,u)−Fk(λ,v) ∈ ◦
Pe for any u,v ∈ Pt1 satisfying u−v ∈ P \{0}.

Here Kk is the resolvent for the problem

(L+k)u = h in D,

Bu = 0 on ∂D.
(2.17)

Summing up, we see that problem (1.1) is equivalent to the equation

u = Fk(λ,u) in C
(
D̄
)
, (2.18)

and also we can verify that problem (1.1) is equivalent to the equation

u = Fk(λ,u) in Ce

(
D̄
)
. (2.19)

We remark here that the condition that Fk is strongly increasing in Ce(D̄) plays a crucial
role in the discussion of the multiplicity of positive solutions of (1.1).

Now we prove Theorem 1.1. By use of the local bifurcation theory from simple
eigenvalues in the degenerate case [4], condition (1.8) shows that there exists a positive
solution of (1.1) for every λ ∈ (λ1 − δ,λ1) with some δ > 0 small. So, let � be the
positive constant defined as

� = inf
{
λ < λ1 : (1.1) has at least one positive solution

}
. (2.20)

Here we assert that

� ≥ λ1

f̄
, (2.21)

where f̄ is given by (1.10). Indeed, Green’s formula shows∫
D

(
Lu ·ϕ1 −u ·Lϕ1

)
dx =

∫
∂D

(
∂ϕ1

∂n
u− ∂u

∂n
ϕ1

)
dσ (2.22)

for any positive solution u of (1.1). Here dσ is the surface element of ∂D. From the
boundary conditions

a
∂u

∂n
+(1−a)u = 0 on ∂D,

a
∂ϕ1

∂n
+(1−a)ϕ1 = 0 on ∂D,

(2.23)
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we note that 


∂u

∂n
u

∂ϕ1

∂n
ϕ1



(

a

1−a

)
=
(

0
0

)
on ∂D. (2.24)

Since (a,1−a) �= (0,0) on ∂D, we necessarily obtain

∂ϕ1

∂n
u− ∂u

∂n
ϕ1 = 0 on ∂D. (2.25)

Consequently, ∫
D

(
Lu ·ϕ1 −u ·Lϕ1

)
dx = 0. (2.26)

Meanwhile, we obtain

0 =
∫

D

(
Lu ·ϕ1 −u ·Lϕ1

)
dx ≤ (

λf̄ −λ1
)∫

D

uϕ1 dx, (2.27)

which implies assertion (2.21).
To show the existence of a positive solution of (1.1) for λ ∈ (�,λ1/f∞), we use

the super-sub-solution method. However we consider only the case f∞ > 0. The case
f∞ = 0 can be verified in the same manner with a minor modification. A nonnegative
function ψ ∈ C2(D̄) is said to be a super-solution of (1.1) if we have

Lψ ≥ λf (ψ) in D,

Bψ ≥ 0 on ∂D.
(2.28)

A nonnegative function φ ∈ C2(D̄) is said to be a sub-solution of (1.1) if we have

Lφ ≤ λf (φ) in D,

Bφ ≤ 0 on ∂D.
(2.29)

A super-solution which is not a solution is called strict. Strict sub-solutions are defined
similarly.

For any λ ∈ (�,λ1/f∞), there exists a constant ε1 > 0 such that

λ
(
f∞ +ε1

)
< λ1, (2.30)

and, from (1.11), we can choose a constant d1 > 0 such that

λf (t) < λ
(
f∞ +ε1

)
t +d1, t ≥ 0. (2.31)

To construct super- and sub-solutions, we prove the following lemma.

Lemma 2.3. Let λ ∈ (�,λ1/f∞), and let ε1, d1 be the constants given by (2.30) and
(2.31), respectively. Then the linear nonhomogeneous problem

Lu = λ
(
f∞ +ε1

)
u+d1 in D,

Bu = 0 on ∂D
(2.32)
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has exactly one positive solution ψ(λ) ∈ C2(D̄). Furthermore, the positive solution
ψ(λ) is a strict super-solution of (1.1), satisfying

u < ψ(λ) in D (2.33)

for any positive solution u of (1.1) with parameter µ ∈ [�,λ).

Proof. Thanks to the positivity lemma [7, Lemma], condition (2.30) shows that prob-
lem (2.32) has exactly one positive solution. It follows from (2.31) that the positive
solution ψ(λ) is a strict super-solution of (1.1). For any positive solution u of (1.1)
with parameter µ ∈ [�,λ), we obtain

L
(
ψ(λ)−u

)
> λ

(
f∞ +ε1

)(
ψ(λ)−u

)
in D,

B
(
ψ(λ)−u

)= 0 on ∂D,
(2.34)

where we have used (2.31) and the fact that f is nonnegative. Using the positivity
lemma again, we have (2.33) and the proof of Lemma 2.3 is complete. �

From the definition of � it follows that, for any λ ∈ (�,λ1/f∞), there exists a
µ ∈ [�,λ) such that problem (1.1) with parameter µ has a positive solution uµ. Since
f is nonnegative, we see that uµ is a sub-solution of (1.1). By (2.33) we obtain that
uµ ≤ ψ(λ) on D̄. The super-sub-solution method [6, Theorem 1] shows that problem
(1.1) has at least one positive solution.

Next, we verify the existence of a positive solution of (1.1) for λ = �. By the
definition of �, we can choose functions uj ∈ C2(D̄) such that uj is a positive solution
of (1.1) with parameter µj where µj ↓ � as j → ∞. It follows that ‖uj‖∞ is uniformly
bounded. Indeed, we may assume

µ1 < γ := λ1 +�

2
, (2.35)

and then, for the positive solution ψ(γ ) to (2.32) with λ = γ , we have uj ≤ ψ(γ ) on
D̄ for any j ≥ 1, by virtue of (2.33).

By the regularity argument, ‖uj‖C2+θ is also uniformly bounded. Thanks to Ascoli-
Arzelà’s theorem, we may assert, without loss of generality, that there is a function
û ∈ C2(D̄) such that

uj −→ û in C2(D̄), (2.36)

which implies that
Lû = �f (û) in D,

û ≥ 0 in D,

Bû = 0 on ∂D.

(2.37)

It is known (see [1, Theorem 18.1]) that � is an eigenvalue of (1.7) with a positive
eigenfunction if � is a bifurcation point from the line of the trivial solutions. Since
� < λ1, we obtain that û �≡ 0. Hence the strong maximum principle shows

û > 0 in D. (2.38)
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Finally we consider the multiplicity of (1.1) for λ ∈ (�,λ1). We recall that for any
λ ∈ (�,λ1) there exists a constant µ ∈ [�,λ) such that problem (1.1) with parameter
µ admits a positive solution uµ. We see that uµ is a strict sub-solution of (1.1). For
positive constants ε, we have

L
(
εϕ1

)−λf
(
εϕ1

)=
(

λ1 −λ
f
(
εϕ1

)
εϕ1

)
εϕ1 in D. (2.39)

By (1.3) and (1.4), there exists a constant ε2 > 0 such that

(
λ1 −λ

f
(
ε2ϕ1

)
ε2ϕ1

)
> 0 in D,

ε2ϕ1 < uµ in D.

(2.40)

This implies that ε2ϕ1 is a strict super-solution of (1.1).
Summing up, we have constructed a strict sub-solution uµ, a strict super-solution

ε2ϕ1, and a strict super-solution ψ(λ) of (1.1). Furthermore, assertion (2.33) gives

0 < ε2ϕ1 < uµ < ψ(λ) in D, (2.41)

where u ≡ 0 is a sub-solution of (1.1). If we use Amann’s three fixed point existence
theorem [1, Theorem 14.2] to solve (1.1) in the framework of (2.19), then the strong in-
crease of Fk ensures the existence of at least two distinct nonnegative, nonzero solutions
of (1.1) and then, they are positive in D by the strong maximum principle.

The proof of Theorem 1.1 is now complete. �

3. Proof of Theorem 1.3

This section is devoted to the estimate for the critical value �. We prove here that
problem (1.1) has at least two distinct positive solutions in the open interval given
by (1.17).

Our proof relies on the following lemma, which ensures the existence of at least
three fixed points for equations of compact, nonnegative mappings in ordered Banach
spaces (see [9, Lemma 4.4]).

Lemma 3.1. Let X be an ordered Banach space with norm ‖·‖ and the positive cone Q

having nonempty interior, let η : Q → [0,∞) be a continuous, concave functional and
let G be a compact mapping of Qτ := {w ∈ Q : ‖w‖ ≤ τ } into Q for some constant
τ > 0 such that

‖G(w)‖ < τ, ∀w ∈ ∂Qτ . (3.1)

Assume that there exist constants 0 < δ < τ and σ > 0 such that

W =
{
w ∈ ◦

Qτ : η(w) > σ
}

(3.2)
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is not empty, and that

‖G(w)‖ < δ, ∀w ∈ ∂Qδ, (3.3)

η(w) < σ, ∀w ∈ Qδ, (3.4)

η
(
G(w)

)
> σ, ∀w ∈ Qτ satisfying η(w) = σ. (3.5)

Then the mapping G has at least three distinct fixed points in Qτ .

Let 6 be a sub-domain of D with smooth boundary such that 6̄ ⊂ D. We put

C6 = inf
x∈6

Kχ6, (3.6)

where χA denotes the characteristic function of a subset A of D, and put

β = sup
6

C6. (3.7)

Here we note that β is a positive constant because of the strict positivity of K .
Now we apply Lemma 3.1 to the case

X = C
(
D̄
)
,

Q = P = {
u ∈ C

(
D̄
) : u(x) ≥ 0 in D̄

}
,

G(·) = F(λ, ·) = λKf (·),
1

f̄ β
< λ <

1

‖e‖∞
.

(3.8)

In this situation we verify (3.1), (3.3), (3.4), and (3.5). By the definitions of β and f̄

(see (1.10) and (3.7)), there exist a smooth sub-domain 6 of D satisfying 6̄ ⊂ D, and
a constant t1 > 0 such that

λ >
t1

f
(
t1
)
C6

(3.9)

for any λ satisfying (1.17). Setting

η(u) = inf
x∈6

u(x), (3.10)

we find that η is a nonnegative, continuous and concave functional on P . Since f is
nonnegative and nondecreasing, we have

inf
x∈6

λKf (u) ≥ λ inf
x∈6

K
(
f (u)χ6

)≥ λf
(
t1
)

inf
x∈6

Kχ6 > t1 (3.11)

for any u ∈ P satisfying that infx∈6 u(x) = t1. Hence condition (3.5) has been verified
for σ = t1.

Since f∞ ≤ 1, we obtain

λ <
1

f∞‖e‖∞
. (3.12)
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By (1.11), we can choose t2 ∈ (t1,∞) large such that

λ <
t2

f (t2)
· 1

‖e‖∞
. (3.13)

This implies that if u ∈ ∂Pt2 , then we have

‖λKf (u)‖∞ < t2, (3.14)

since f is nondecreasing. Here we have used the fact that e = K1. Hence condition
(3.1) has been verified for τ = t2 and also, it is easily seen that the set

W :=
{
w ∈ ◦

P t2 : inf
x∈6

w > t1

}
(3.15)

is nonempty, since t2 > t1.
From the condition

λ <
1

‖e‖∞
, (3.16)

conditions (1.3) and (1.4) ensure the existence of t3 ∈ (0, t1) small such that

λ <
t3

f (t3)
· 1

‖e‖∞
. (3.17)

In the same way as above, we have

‖λKf (u)‖∞ < t3 (3.18)

for any u ∈ ∂Pt3 . Hence condition (3.3) has been verified for δ = t3.
Finally, we observe that if u ∈ Pt3 , then

inf
x∈6

u(x) ≤ ‖u‖∞ ≤ t3 < t1. (3.19)

Hence condition (3.4) has been verified.
As a consequence of Lemma 3.1, we therefore conclude that (2.14) has at least three

distinct fixed points in Pt2 . The same argument in Section 2 completes the proof of
Theorem 1.3. �

4. Examples

In this section, we give an example of nonlinearity f satisfying the assumption of
Theorem 1.3. Let m be a positive constant and define fm of the form

fm(t) =



tan t, 0 ≤ t ≤ arctanm,

m+(arctanm)
(
1+m2

)(
1− arctanm

t

)
, t > arctanm.

(4.1)

Then we easily see that fm is continuously differentiable with respect to t ≥ 0 and
satisfies (1.3), (1.4), (1.8), and (1.9) with(

fm

)
∞ = 0. (4.2)
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It can be checked that fm is strictly increasing with respect to t ≥ 0 and then, we have

f̄m = sup
t>0

fm(t)

t
≥ fm(π/2)

π/2
>

fm(arctanm)

π/2
= 2m

π
. (4.3)

This implies that if

m >
π‖e‖∞

2β
, (4.4)

then condition (1.16) holds for fm.
Now we consider the solvability of the semilinear Neumann problem

(−∆+c)u = λfm(u) in D,

∂u

∂n
= 0 on ∂D.

(4.5)

Here c is a positive constant and fm is given by (4.1).
To describe precisely the number of the positive solutions, the following lemma is

proved, which gives an estimate for β in the Neumann or Robin case.

Lemma 4.1. Assume
0 < a(x) ≤ 1 on ∂D. (4.6)

Then we obtain
1

‖e‖∞
≤ 1

β
≤ 1

minD̄ e
. (4.7)

Proof. In [10, Lemma 5.1] we can see that

1

‖e‖∞
≤ 1

β
. (4.8)

It remains to show that
1

β
≤ 1

minD̄ e
. (4.9)

To do so, we choose a sequence {6j } of relatively compact subdomains of D, with
smooth boundary, such that 6j ↑ D as j → ∞. Let

w6j
= Kχ6j

. (4.10)

Thanks to the Sobolev imbedding theorem, Theorem 2.2 gives

‖w6j
−e‖∞ −→ 0 as j −→ ∞. (4.11)

In case (4.6), w6j
and e are both strictly positive on D̄ and we obtain

inf
6j

w6j
= sup

6j

1

w6j

= sup
D

χ6j

w6j

,

min
D̄

e = inf
D

e = sup
D

1

e
.

(4.12)
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However, condition (4.11) gives∥∥∥∥ χ6j

w6j

− 1

e

∥∥∥∥∞
−→ 0 as j −→ ∞, (4.13)

so that

sup
D

χ6j

w6j

−→ sup
D

1

e
as j −→ ∞. (4.14)

In view of assertion (4.12), this implies

inf
6j

w6j
−→ min

D̄
e as j −→ ∞. (4.15)

Therefore the desired inequality (4.9) follows from (4.15), since we have

inf
6j

w6j
≤ sup

6̄⊂D

inf
6

w6 = β. (4.16)

The proof of Lemma 4.1 is complete. �

Now we have the following existence and multiplicity theorem for (4.5).

Theorem 4.2. If m > π/2, then there exists at least one positive solution of (4.5)
for each

λ ≥ c

f̄m

(4.17)

and no positive solution for any

0 < λ <
c

f̄m

. (4.18)

Moreover, problem (4.5) has at least two positive solutions for every

c

f̄m

< λ < c. (4.19)

Proof. We first recall (1.19). Since e = 1/c in this case, assertion (4.7) shows 1/β = c.
In view of (4.4), Theorem 4.2 follows as a consequence of Theorems 1.1 and 1.3.

The proof of Theorem 4.2 is now complete. �

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 54#3519. Zbl 345.47044.

[2] A. Ambrosetti, H. Brézis, and G. Cerami, Combined effects of concave and convex nonlinear-
ities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519–543. MR 95g:35059.
Zbl 805.35028.

[3] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM
Rev. 24 (1982), no. 4, 441–467. MR 84a:35093. Zbl 511.35033.

http://www.ams.org/mathscinet-getitem?mr=54:3519
http://www.emis.de/cgi-bin/MATH-item?345.47044
http://www.ams.org/mathscinet-getitem?mr=95g:35059
http://www.emis.de/cgi-bin/MATH-item?805.35028
http://www.ams.org/mathscinet-getitem?mr=84a:35093
http://www.emis.de/cgi-bin/MATH-item?511.35033


208 Semilinear elliptic boundary value problems

[4] K. Taira, Bifurcation for nonlinear elliptic boundary value problems. I, Collect. Math. 47
(1996), no. 3, 207–229. MR 98i:35067a. Zbl 865.35014.

[5] K. Taira and K. Umezu, Bifurcation for nonlinear elliptic boundary value problems. II, Tokyo
J. Math. 19 (1996), no. 2, 387–396. MR 98i:35067b. Zbl 867.35009.

[6] , Bifurcation for nonlinear elliptic boundary value problems. III, Adv. Differential
Equations 1 (1996), no. 4, 709–727. MR 98i:35067c. Zbl 860.35039.

[7] , Positive solutions of sublinear elliptic boundary value problems, Nonlinear Anal.
29 (1997), no. 7, 761–771. MR 98h:35082. Zbl 878.35048.

[8] Kenichiro Umezu, Lp-approach to mixed boundary value problems for second-order elliptic
operators, Tokyo J. Math. 17 (1994), no. 1, 101–123. MR 95e:35057. Zbl 812.35033.

[9] H. Wiebers, S-shaped bifurcation curves of nonlinear elliptic boundary value problems,
Math. Ann. 270 (1985), no. 4, 555–570. MR 86f:35027. Zbl 544.35015.

[10] , Critical behaviour of nonlinear elliptic boundary value problems suggested by
exothermic reactions, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 19–36.
MR 87k:35095. Zbl 609.35073.

Kenichiro Umezu: Faculty of Liberal Arts and Sciences, Maebashi Institute of Tech-
nology, Maebashi 371-0816, Japan

E-mail address: ken@maebashi-it.ac.jp

http://www.ams.org/mathscinet-getitem?mr=98i:35067a
http://www.emis.de/cgi-bin/MATH-item?865.35014
http://www.ams.org/mathscinet-getitem?mr=98i:35067b
http://www.emis.de/cgi-bin/MATH-item?867.35009
http://www.ams.org/mathscinet-getitem?mr=98i:35067c
http://www.emis.de/cgi-bin/MATH-item?860.35039
http://www.ams.org/mathscinet-getitem?mr=98h:35082
http://www.emis.de/cgi-bin/MATH-item?878.35048
http://www.ams.org/mathscinet-getitem?mr=95e:35057
http://www.emis.de/cgi-bin/MATH-item?812.35033
http://www.ams.org/mathscinet-getitem?mr=86f:35027
http://www.emis.de/cgi-bin/MATH-item?544.35015
http://www.ams.org/mathscinet-getitem?mr=87k:35095
http://www.emis.de/cgi-bin/MATH-item?609.35073
mailto:ken@maebashi-it.ac.jp

