A BOUNDARY VALUE PROBLEM IN THE HYPERBOLIC SPACE

P. AMSTER, G. KEILHAUER, AND M. C. MARIANI

Received 16 December 1999

We consider a nonlinear problem for the mean curvature equation in the hyperbolic space with a Dirichlet boundary data g. We find solutions in a Sobolev space under appropriate conditions on g.

1. Introduction

Let M be the open unit ball in \mathbb{R}^{3} of center 0 and let

$$
\begin{equation*}
g_{i j}(x)=\frac{4 \delta_{i j}}{\left(1-|x|^{2}\right)^{2}} \tag{1.1}
\end{equation*}
$$

be the hyperbolic metric on M. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary $\partial \Omega \in C^{1,1}$, and let (u, v) be the variables in \mathbb{R}^{2}. We consider in this paper the Dirichlet problem for a function $X: \bar{\Omega} \rightarrow M$ which satisfies the equation of prescribed mean curvature

$$
\begin{align*}
\nabla_{X_{u}} X_{u}+\nabla_{X_{v}} X_{v} & =-2 H(X) X_{u} \wedge X_{v} \quad \text { in } \Omega, \\
X & =g \quad \text { on } \partial \Omega, \tag{1.2}
\end{align*}
$$

where $H: M \rightarrow \mathbb{R}$ is a given continuous function, and $g \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ for $1<p<\infty$, with $\|g\|_{\infty}<1$.

In the above equation X_{u}, X_{v}, and $X_{u} \wedge X_{v}: \Omega \rightarrow T M$ are the vector fields given by

$$
\begin{gather*}
X_{u}(u, v)=\left.\left.\sum_{k=1}^{3} \frac{\partial X_{k}}{\partial u}\right|_{(u, v)} \frac{\partial}{\partial x_{k}}\right|_{X(u, v)}, \quad X_{v}(u, v)=\left.\left.\sum_{k=1}^{3} \frac{\partial X_{k}}{\partial v}\right|_{(u, v)} \frac{\partial}{\partial x_{k}}\right|_{X(u, v)}, \tag{1.3}\\
X_{u} \wedge X_{v}(u, v)=\left.\sum_{k=1}^{3}\left(X_{u} \wedge X_{v}\right)^{k}(u, v) \frac{\partial}{\partial x_{k}}\right|_{X(u, v)},
\end{gather*}
$$

where

$$
\begin{align*}
& \left(X_{u} \wedge X_{v}\right)^{1}(u, v)=\varphi^{1 / 2}(X(u, v))\left(\left.\left.\frac{\partial X_{2}}{\partial u}\right|_{(u, v)} \frac{\partial X_{3}}{\partial v}\right|_{(u, v)}-\left.\left.\frac{\partial X_{3}}{\partial u}\right|_{(u, v)} \frac{\partial X_{2}}{\partial v}\right|_{(u, v)}\right), \\
& \left(X_{u} \wedge X_{v}\right)^{2}(u, v)=\varphi^{1 / 2}(X(u, v))\left(\left.\left.\frac{\partial X_{3}}{\partial u}\right|_{(u, v)} \frac{\partial X_{1}}{\partial v}\right|_{(u, v)}-\left.\left.\frac{\partial X_{1}}{\partial u}\right|_{(u, v)} \frac{\partial X_{3}}{\partial v}\right|_{(u, v)}\right), \\
& \left(X_{u} \wedge X_{v}\right)^{3}(u, v)=\varphi^{1 / 2}(X(u, v))\left(\left.\left.\frac{\partial X_{1}}{\partial u}\right|_{(u, v)} \frac{\partial X_{2}}{\partial v}\right|_{(u, v)}-\left.\left.\frac{\partial X_{2}}{\partial u}\right|_{(u, v)} \frac{\partial X_{1}}{\partial v}\right|_{(u, v)}\right), \tag{1.4}
\end{align*}
$$

for $\varphi(x)=4 /\left(1-|x|^{2}\right)^{2}$.
We remark that if X_{u} and X_{v} are linearly independent, then $X(\Omega) \subset M$ is an imbedded submanifold and $X_{u} \wedge X_{v}(u, v)$ is the only vector orthogonal to $X(\Omega)$ at $X(u, v)$ that satisfies, for any $z=\left.\sum_{k=1}^{3} z^{k}\left(\partial / \partial x_{k}\right)\right|_{X(u, v)}$

$$
\begin{equation*}
\left\langle z, X_{u} \wedge X_{v}(u, v)\right\rangle=\omega(X(u, v))\left(z, X_{u}(u, v), X_{v}(u, v)\right) \tag{1.5}
\end{equation*}
$$

where ω is the volume element of $(M,\langle\rangle$,$) , namely$

$$
\begin{equation*}
\omega=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \wedge d x_{2} \wedge d x_{3}=\varphi^{3 / 2} d x_{1} \wedge d x_{2} \wedge d x_{3} \tag{1.6}
\end{equation*}
$$

If ∇ is the Levi-Civita connection associated to \langle,$\rangle and \Gamma_{i j}^{k}: M \rightarrow \mathbb{R}$ are the Christoffel symbols

$$
\begin{equation*}
\Gamma_{i j}^{k}=\sum_{r=1}^{3} \frac{g^{r k}}{2}\left(\frac{\partial g_{r j}}{\partial x_{i}}+\frac{\partial g_{r i}}{\partial x_{j}}-\frac{\partial g_{i j}}{\partial x_{r}}\right) \tag{1.7}
\end{equation*}
$$

with $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$, then a simple computation shows that

$$
\Gamma_{i j}^{i}(x)=\Gamma_{j i}^{i}(x)=\frac{2 x_{j}}{1-|x|^{2}}, \quad \Gamma_{i i}^{k}(x)= \begin{cases}-\frac{2 x_{k}}{1-|x|^{2}} & \text { if } k \neq i \tag{1.8}\\ 0 & \text { otherwise }\end{cases}
$$

Let $E, F, G: \Omega \rightarrow \mathbb{R}$ be the coefficients of the first fundamental form, and the unit normal $N: \Omega \rightarrow T M$ be given by

$$
\begin{equation*}
N=\frac{1}{\sqrt{E G-F^{2}}} X_{u} \wedge X_{v} \tag{1.9}
\end{equation*}
$$

which is orthogonal to the tangent space $\{X(\Omega)\}_{x}$ for any $x=X(u, v)$. Then, if H : $\Omega \rightarrow \mathbb{R}$ is the mean curvature of $X(\Omega)$ we obtain

$$
\begin{equation*}
\left\langle N, \frac{G}{E G-F^{2}} \nabla_{X_{u}} X_{u}+\frac{E}{E G-F^{2}} \nabla_{X_{v}} X_{v}-2 \frac{F}{E G-F^{2}} \nabla_{X_{u}} X_{v}\right\rangle=-2 H \tag{1.10}
\end{equation*}
$$

In particular, if X is isothermal, that is, $E=G, F=0$, then $\left\langle\nabla_{X_{u}} X_{u}+\nabla_{X_{v}} X_{v}, X_{u}\right\rangle=$ $0=\left\langle\nabla_{X_{u}} X_{u}+\nabla_{X_{v}} X_{v}, X_{v}\right\rangle$ and consequently

$$
\begin{equation*}
\nabla_{X_{u}} X_{u}+\nabla_{X_{v}} X_{v}=-2 H X_{u} \wedge X_{v} . \tag{1.11}
\end{equation*}
$$

Thus, (1.11) is the equation of prescribed mean curvature for an imbedded submanifold of M.

2. A Dirichlet problem for (1.11)

With the notations of the previous section, we consider the Dirichlet problem (1.2). The equation of prescribed mean curvature for a surface in \mathbb{R}^{3} has been studied for constant H in [3, 5], and for H nonconstant in [1, 2].

Without loss of generality, we may assume that g is harmonic in Ω. Our existence result reads as follows.

Theorem 2.1. Let c_{0} and c_{1} be some positive constants to be specified. Then (1.2) is solvable for any $g \in W^{2, p}\left(\Omega, \mathbb{R}^{3}\right)$ harmonic such that

$$
\begin{equation*}
\|g\|_{\infty}+2\left(c_{1}+\sqrt{c_{1}\left(c_{1}+c_{0}\right)}\right)\|\operatorname{grad}(g)\|_{2 p} \leq 1 \tag{2.1}
\end{equation*}
$$

In the proof of Theorem 2.1, we ignore the canonical isomorphism $\partial /\left.\partial x_{k}\right|_{X(u, v)} \rightarrow e_{k}$ (with $\left\{e_{k}\right\}$ the usual basis of \mathbb{R}^{3}), and considering $X_{u}, X_{v} \in \mathbb{R}^{3}$ we may write (1.2) as a system

$$
\begin{gather*}
-\Delta X_{k}=\psi_{k}\left(X, X_{u}, X_{v}\right) \quad \text { in } \Omega, \\
X_{k}=g_{k} \quad \text { on } \partial \Omega \tag{2.2}
\end{gather*}
$$

with $\psi_{k}\left(X, X_{u}, X_{v}\right)=2 H(X)\left(X_{u} \wedge X_{v}\right)^{k}+\sum_{i, j} \Gamma_{i j}^{k}(X) \operatorname{grad}\left(X_{i}\right) \operatorname{grad}\left(X_{j}\right), 1 \leq k \leq 3$. For fixed $\bar{X} \in W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ such that $\|g+\bar{X}\|_{\infty}<1$, we define $X=T \bar{X}$ as the unique solution in $W^{2, p}\left(\Omega, \mathbb{R}^{3}\right) \hookrightarrow W^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ of the linear problem

$$
\begin{gather*}
-\Delta X_{k}=\psi_{k}\left(\bar{X}+g,(\bar{X}+g)_{u},(\bar{X}+g)_{v}\right) \quad \text { in } \Omega, \tag{2.3}\\
X_{k}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Then, for $B=\left\{X \in W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right) \mid\|g+X\|_{\infty}<1\right\}$ the operator $T: B \rightarrow W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ is well defined and a strong solution of (1.2) in $W^{2, p}$ can be regarded as $Y=g+X$, where X is a fixed point of T. By the usual a priori bounds for the Laplacian and the compactness of the imbedding $W^{2, p}\left(\Omega, \mathbb{R}^{3}\right) \hookrightarrow W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ we get the following lemma.

Lemma 2.2. $T: B \rightarrow W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ is continuous. Furthermore, if

$$
\begin{equation*}
C_{R_{1}, R_{2}}=\left\{X \in W_{0}^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right) \mid\|g+X\|_{\infty} \leq R_{1},\|\operatorname{grad}(X)\|_{2 p} \leq R_{2}\right\} \tag{2.4}
\end{equation*}
$$

with $R_{1}<1$, then $T\left(C_{R_{1}, R_{2}}\right)$ is precompact.
Proof. For $X=T(\bar{X}), Y=T(\bar{Y})$, as $X=Y$ on $\partial \Omega$ we obtain that

$$
\begin{align*}
\left\|\operatorname{grad}\left(X_{k}-Y_{k}\right)\right\|_{2 p} & \leq c\left\|\Delta\left(X_{k}-Y_{k}\right)\right\|_{p} \\
& =c\left\|\psi_{k}\left(\bar{X}+g,(\bar{X}+g)_{u},(\bar{X}+g)_{v}\right)-\psi_{k}\left(\bar{Y}+g,(\bar{Y}+g)_{u},(\bar{Y}+g)_{v}\right)\right\|_{p} \tag{2.5}
\end{align*}
$$

and the continuity of T follows. On the other hand, if $\bar{X} \in C_{R_{1}, R_{2}}$, then

$$
\begin{align*}
\left\|\operatorname{grad}\left(X_{k}\right)\right\|_{2 p} & \leq c\left\|\Delta X_{k}\right\|_{p}=c\left\|\psi_{k}\left(\bar{X}+g,(\bar{X}+g)_{u},(\bar{X}+g)_{v}\right)\right\|_{p} \tag{2.6}\\
& \leq \bar{c}\left(R_{2}+\|\operatorname{grad}(g)\|_{2 p}\right)^{2}
\end{align*}
$$

for some constant \bar{c} and the result follows.
Remark 2.3. By definition of ψ_{k}, it is clear that $\bar{c} \leq c_{1} /\left(1-R_{1}\right)$ for some constant c_{1}.
Proof of Theorem 2.1. With the notation of the previous lemma, by Schauder fixed point theorem, it suffices to see that $C_{R_{1}, R_{2}}$ is T-invariant for some R_{1}, R_{2}. From the previous computations, we have

$$
\begin{equation*}
\|\operatorname{grad}(X)\|_{2 p} \leq \frac{c_{1}}{1-R_{1}}\left(R_{2}+\|\operatorname{grad}(g)\|_{2 p}\right)^{2} \tag{2.7}
\end{equation*}
$$

Moreover, by Poincaré's inequality

$$
\begin{equation*}
\|g+X\|_{\infty} \leq\|g\|_{\infty}+c_{0}\|\operatorname{grad}(X)\|_{2 p} . \tag{2.8}
\end{equation*}
$$

Thus, a sufficient condition for obtaining $T\left(C_{R_{1}, R_{2}}\right) \subset C_{R_{1}, R_{2}}$ is that

$$
\begin{equation*}
\frac{c_{1}}{1-R_{1}}\left(R_{2}+\|\operatorname{grad}(g)\|_{2 p}\right)^{2} \leq R_{2}, \quad\|g\|_{\infty}+c_{0} R_{2} \leq R_{1} \tag{2.9}
\end{equation*}
$$

For R small enough we may fix $R_{1}=\|g\|_{\infty}+c_{0} R<1$, and then the theorem is proved if

$$
\begin{equation*}
c_{1}\left(R+\|\operatorname{grad}(g)\|_{2 p}\right)^{2} \leq R\left(1-\|g\|_{\infty}-c_{0} R\right) \tag{2.10}
\end{equation*}
$$

for some $R>0$. As last condition is equivalent to our hypothesis, the result holds.

3. Regularity of the solutions of problem (1.2)

In this section, we state the following regularity result.
Theorem 3.1. Let $X \in W^{1,2 p}\left(\Omega, \mathbb{R}^{3}\right)$ be a solution of (1.2). Then
(a) if $g \in W^{2, q}\left(\Omega, \mathbb{R}^{3}\right)$ for some $q>1$, then $X \in W^{2, q}\left(\Omega, \mathbb{R}^{3}\right)$,
(b) if $\partial \Omega \in C^{k+2, \alpha}, H \in C^{k, \alpha}\left(\mathbb{R}^{3}, \mathbb{R}\right), g \in C^{k+2, \alpha}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$ for some $0<\alpha<1$, $k \geq 0$, then $X \in C^{k+2, \alpha}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$.

Proof. (a) Let $\Delta X=f \in L^{p}$. If $p \geq q$, let Z be the unique solution in $W^{2, q}$ of the problem $\Delta Z=f,\left.Z\right|_{\partial \Omega}=g$. As $\Delta(X-Z)=0$ and $X=Z$ on $\partial \Omega$ the result follows. On the other hand, if $p<q$, we obtain in the same way that $X \in W^{2, p}$. For $2 \leq p<q$ this implies that $X \in W^{1,2 q}$ and the result follows.

Now we consider the case $p<2, q$. Let $p_{0}=p$ and define

$$
p_{n+1}= \begin{cases}\frac{p_{n}^{*}}{2} & \text { if } p_{n}<2, q \tag{3.1}\\ q & \text { otherwise }\end{cases}
$$

where p_{n}^{*} is the critical Sobolev exponent $2 p_{n} /\left(2-p_{n}\right)$. Then $\left\{p_{n}\right\}$ is bounded, and $X \in W^{1,2 p_{n}}$ for every n. If $p_{n}<2, q$ for every n, then p_{n} is increasing and taking $r=\lim _{n \rightarrow \infty} p_{n}$, we obtain that $r /(2-r)=r$, a contradiction. Hence, $p_{n} \geq q$ or $q>p_{n} \geq 2$ for some n, and the proof is complete.
(b) Case $k=0$: by part (a), choosing $q>2 /(1-\alpha)$ we obtain that $X \in W^{2, q} \hookrightarrow$ $C^{1, \alpha}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$. Then $\Delta X=f \in C^{\alpha}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$. By [4, Theorem 6.14] the equation $\Delta Z=f$ in $\Omega, Z=g$ in $\partial \Omega$ is uniquely solvable in $C^{2, \alpha}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$, and the result follows from the uniqueness in [4, Theorem 9.15].

The general case is now immediate, from [4, Theorem 6.19].

Acknowledgement

The authors thank Professor Jean-Pierre Gossez and the referee for their fruitful remarks.

References

[1] P. Amster and M. C. Mariani, The prescribed mean curvature equation with Dirichlet conditions, to appear in Nonlinear Anal.
[2] P. Amster, M. C. Mariani, and D. F. Rial, Existence and uniqueness of H-system's solutions with Dirichlet conditions, Nonlinear Anal. 42 (2000), no. 4, Ser. A: Theory Methods, 673-677. CMP 1776 298. Zbl 991.65482.
[3] H. Brézis and J.-M. Coron, Multiple solutions of H-systems and Rellich's conjecture, Comm. Pure Appl. Math. 37 (1984), no. 2, 149-187. MR 85i:53010. Zbl 537.49022.
[4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Fundamental Principles of Mathematical Sciences, vol. 224, Springer-Verlag, Berlin, 1983. MR 86c:35035. Zbl 562.35001.
[5] S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature, Comm. Pure Appl. Math. 23 (1970), 97-114. MR 41\#932. Zbl 181.38703.
P. Amster: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: pamster@dm.uba.ar
G. Keilhauer: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: wkeilh@dm.uba.ar
M. C. Mariani: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria, 1428, Buenos Aires, Argentina

E-mail address: mcmarian@dm.uba.ar

