ON MODULI OF k-CONVEXITY

TECK-CHEONG LIM

Received 11 October 1999

We establish the continuity of some moduli of k-convexity. Let X be a Banach space. We denote by X^{*} the dual space of X and by B_{X} the unit ball of X. Several moduli of convexity for the norm of X have been defined; the last two definitions in the following are valid for spaces having dimension $\geq k$:

$$
\begin{gather*}
\delta_{X}(\epsilon)=\inf \left\{1-\frac{\|x+y\|}{2}: x, y \in B_{X},\|x-y\| \geq \epsilon\right\} \quad \text { (see [2]), } \\
\delta_{X}^{(k)}(\epsilon)=\inf \left\{1-\frac{\left\|x_{1}+\cdots+x_{k+1}\right\|}{k+1}: x_{1}, \ldots, x_{k+1} \in B_{X}, A\left(x_{1}, \ldots, x_{k+1}\right) \geq \epsilon\right\} \quad \text { (see [10]), } \\
\Delta_{X}^{(k)}(\epsilon)=\inf _{\substack{\|x\|=1 \\
\operatorname{dim}(Y)=x \\
\operatorname{dinf}}}^{\inf } \sup _{\substack{\|y\|=1 \\
y \in Y}}\{\|x+\epsilon y\|-1\} \quad \text { (see [9]), } \tag{1}
\end{gather*}
$$

where

$$
A\left(x_{1}, \ldots, x_{k+1}\right)=\frac{1}{k!} \sup \left\{\left.\begin{array}{ccc}
1 & \cdots & 1 \tag{2}\\
f_{1}\left(x_{1}\right) & \cdots & f_{1}\left(x_{k+1}\right) \\
\vdots & \cdots & \vdots \\
f_{k}\left(x_{1}\right) & \cdots & f_{k}\left(x_{k+1}\right)
\end{array} \right\rvert\,: f_{1}, \ldots, f_{k} \in B_{X^{*}}\right\}
$$

Evidently, by subtracting the first column from the other columns, the determinant can be replaced by

$$
\left|\begin{array}{ccc}
f_{1}\left(x_{2}-x_{1}\right) & \cdots & f_{1}\left(x_{k+1}-x_{1}\right) \tag{3}\\
\vdots & \cdots & \vdots \\
f_{k}\left(x_{2}-x_{1}\right) & \cdots & f_{k}\left(x_{k+1}-x_{1}\right)
\end{array}\right|
$$

Also $A\left(x_{1}, \ldots, x_{k+1}\right)$ can be thought of as the "volume" of the convex hull of x_{1}, \ldots, x_{k+1} since that is the case in Euclidean spaces.

Copyright © 1999 Hindawi Publishing Corporation
Abstract and Applied Analysis 4:4 (1999) 243-247
1991 Mathematics Subject Classification: 46B20, 47H10
URL: http://aaa.hindawi.com/volume-4/S1085337599000202.html
X is called uniformly convex if $\delta_{X}(\epsilon)>0$ for $\epsilon>0$ and k-uniformly convex if $\delta_{X}^{(k)}(\epsilon)>0$ for $\epsilon>0$. Note that $\delta_{X}(\epsilon)=\delta_{X}^{(1)}(\epsilon)$; so 1-uniform convexity coincides with uniform convexity. Lin [8] proved that $\Delta_{X}^{(k)}(\epsilon)>0$ for $\epsilon>0$ is equivalent to k-uniform convexity. Gurariĭ [5] proved that $\delta_{X}(\epsilon)$ is continuous on [0,2) and there exist spaces of which $\delta_{X}(\epsilon)=0$ for $0 \leq \epsilon<2$ and $\delta_{X}(2)=1$. The continuity problem of $\delta_{X}^{(k)}$ was mentioned in Kirk [6]. Let $\mu_{X}^{(k)}=\sup \left\{A\left(x_{1}, \ldots, x_{k+1}\right): x_{1}, \ldots, x_{k+1} \in B_{X}\right\}$. Note that $\mu_{X}^{(1)}=2$. In this paper, we prove that $\delta_{X}^{(k)}(\epsilon)$ is continuous on $\left[0, \mu_{X}^{(k)}\right)$. It is quite evident that $\Delta_{X}^{(k)}(\epsilon)$ satisfy the Lipschitz condition with constant 1.

Definition 1. Let $k \geq 1$ and $0 \leq a<b \leq \infty$. A function $f(\epsilon)$ on (a, b) is called k-convex if

$$
\begin{equation*}
f\left(\left(\lambda \epsilon_{2}^{1 / k}+(1-\lambda) \epsilon_{1}^{1 / k}\right)^{k}\right) \leq \lambda f\left(\epsilon_{2}\right)+(1-\lambda) f\left(\epsilon_{1}\right) \tag{4}
\end{equation*}
$$

for every $\epsilon_{1}, \epsilon_{2} \in(a, b), 0 \leq \lambda \leq 1$.
Obviously 1-convexity is simply the ordinary convexity.
Lemma 2. Let $0 \leq a<b \leq \infty$ and let f be a nondecreasing k-convex function on (a, b) with $M=\sup _{a<x<y<b}(f(y)-f(x))<\infty$. Let $\epsilon_{1}<\epsilon_{2}, \epsilon_{1}, \epsilon_{2} \in(a, b)$. Then

$$
\begin{equation*}
\frac{f(c)-f\left(\epsilon_{1}\right)}{c-\epsilon_{1}} \leq \frac{M}{k\left(\epsilon_{2}^{1 / k}-\epsilon_{1}^{1 / k}\right) \epsilon_{1}^{1-1 / k}} \tag{5}
\end{equation*}
$$

for every $\epsilon_{1}<c<\epsilon_{2}$.
Proof. Let $z(x), \epsilon_{1} \leq x \leq \epsilon_{2}$ be the function whose graph is defined by

$$
\begin{align*}
& x=\left(\lambda \epsilon_{2}^{1 / k}+(1-\lambda) \epsilon_{1}^{1 / k}\right)^{k} \quad 0 \leq \lambda \leq 1 . \tag{6}\\
& y=\lambda f\left(\epsilon_{2}\right)+(1-\lambda) f\left(\epsilon_{1}\right)
\end{align*}
$$

By direct computations, we have

$$
\begin{equation*}
z^{\prime}(x)=\frac{f\left(\epsilon_{2}\right)-f\left(\epsilon_{1}\right)}{k\left(\epsilon_{2}^{1 / k}-\epsilon_{1}^{1 / k}\right)\left(\lambda \epsilon_{2}^{1 / k}+(1-\lambda) \epsilon_{1}^{1 / k}\right)^{k-1}} \leq \frac{M}{k\left(\epsilon_{2}^{1 / k}-\epsilon_{1}^{1 / k}\right) \epsilon_{1}^{1-1 / k}} \tag{7}
\end{equation*}
$$

If $\epsilon_{1}<c<\epsilon_{2}$, then by the k-convexity of f and the mean-value theorem,

$$
\begin{equation*}
\frac{f(c)-f\left(\epsilon_{1}\right)}{c-\epsilon_{1}} \leq \frac{z(c)-z\left(\epsilon_{1}\right)}{c-\epsilon_{1}}=z^{\prime}(\psi) \leq \frac{M}{k\left(\epsilon_{2}^{1 / k}-\epsilon_{1}^{1 / k}\right) \epsilon_{1}^{1-1 / k}} \tag{8}
\end{equation*}
$$

The inequality in the following lemma is a consequence of a more general result proved in Bernal-Sullivan [1].

Lemma 3. Let X be a Banach space and $x_{1}, \ldots, x_{k+1} \in X$. Then

$$
\begin{equation*}
A\left(x_{1}, \ldots, x_{k+1}\right) \leq \frac{1}{k!} k^{k / 2}\left\|x_{2}-x_{1}\right\| \cdots\left\|x_{k+1}-x_{1}\right\| \tag{9}
\end{equation*}
$$

Proof. Hadamard inequality says that if $r_{1}, r_{2}, \ldots, r_{k}$ are the rows (or columns) of a $k \times k$ matrix, then

$$
\begin{equation*}
\operatorname{det}\left(r_{1}, r_{2}, \ldots, r_{k}\right) \leq\left\|r_{1}\right\|_{2}\left\|r_{2}\right\|_{2} \cdots\left\|r_{k}\right\|_{2} \tag{10}
\end{equation*}
$$

Here $\|\cdot\|_{2}$ denotes the Euclidean norm in \mathbb{R}^{k}. Since the Euclidean norm of the j th column of the determinant in (3) is $\leq k^{1 / 2}\left\|x_{j-1}-x_{1}\right\|$, the inequality follows.

The inequality in the next theorem for the case $k=1$ improves the one obtained in [5]. The general idea is similar to that in Goebel [3]. However, the reader should be aware that the assertion of Lemma 1 in that paper (that $\delta(\epsilon)$ is convex) is incorrect; a counterexample can be found in [7] or [4].

Theorem 4. Let X be a Banach space. Then

$$
\begin{equation*}
\frac{\delta_{X}^{(k)}(c)-\delta_{X}^{(k)}\left(\epsilon_{1}\right)}{c-\epsilon_{1}} \leq \frac{1}{k\left(\epsilon_{2}^{1 / k}-\epsilon_{1}^{1 / k}\right) \epsilon_{1}^{1-1 / k}} \tag{11}
\end{equation*}
$$

for every $0<\epsilon_{1}<c<\epsilon_{2}<\mu_{X}^{(k)}$.
Proof. For simplicity, in the following we will consider $k=2$ and will indicate how to generalize to general k. Note that if $A\left(x_{1}, x_{2}, x_{3}\right)>0$, then $x_{2}-x_{1}$ and $x_{3}-x_{1}$ are linearly independent.

For unit vectors u, u_{21}, u_{31}, and u_{32} in X, with $\left\{u_{21}, u_{31}\right\}$ linearly independent, consider the set

$$
\begin{align*}
N\left(u, u_{21}, u_{31}, u_{32} ; \epsilon\right)= & \left(x_{1}, x_{2}, x_{3}\right) \in X^{3}: x_{1}+x_{2}+x_{3}=\lambda u, x_{2}-x_{1}=\lambda_{21} u_{21}, \\
& x_{3}-x_{1}=\lambda_{31} u_{31}, x_{3}-x_{2}=\lambda_{32} u_{32} \\
& \text { for some } \left.\lambda, \lambda_{21}, \lambda_{31}, \lambda_{32} \geq 0 \text { and } A\left(x_{1}, x_{2}, x_{3}\right) \geq \epsilon\right\} \tag{12}
\end{align*}
$$

and define

$$
\begin{equation*}
\delta\left(u, u_{21}, u_{31}, u_{32} ; \epsilon\right)=\inf \left\{1-\frac{\left\|x_{1}+x_{2}+x_{3}\right\|}{3}:\left(x_{1}, x_{2}, x_{3}\right) \in N\left(u, u_{21}, u_{31}, u_{32} ; \epsilon\right)\right\} . \tag{13}
\end{equation*}
$$

Obviously, $\delta\left(u, u_{21}, u_{31}, u_{32} ; \epsilon\right)$ is nondecreasing and has values in $[0,1]$.
If $\left(x_{1}, x_{2}, x_{3}\right) \in N\left(u, u_{21}, u_{31}, u_{32} ; \epsilon_{1}\right),\left(y_{1}, y_{2}, y_{3}\right) \in N\left(u, u_{21}, u_{31}, u_{32} ; \epsilon_{2}\right)$, and

$$
\begin{array}{llll}
x_{1}+x_{2}+x_{3}=\lambda u, & x_{2}-x_{1}=\lambda_{21} u_{21}, & x_{3}-x_{1}=\lambda_{31} u_{31}, & x_{3}-x_{2}=\lambda_{32} u_{32}, \\
y_{1}+y_{2}+y_{3}=\alpha u, & y_{2}-y_{1}=\alpha_{21} u_{21}, & y_{3}-y_{1}=\alpha_{31} u_{31}, & y_{3}-y_{2}=\alpha_{32} u_{32} \tag{14}
\end{array}
$$

for some $\lambda, \lambda_{i j}, \alpha, \alpha_{i j} \geq 0$, then by linear independence of $\left\{u_{21}, u_{31}\right\}$, there exists $c \geq 0$ such that

$$
\begin{equation*}
\alpha_{21}=c \lambda_{21}, \quad \alpha_{31}=c \lambda_{31}, \quad \alpha_{32}=c \lambda_{32} \tag{15}
\end{equation*}
$$

Indeed, $\lambda_{32} u_{32}=x_{3}-x_{2}=\left(x_{3}-x_{1}\right)-\left(x_{2}-x_{1}\right)=\lambda_{31} u_{31}-\lambda_{21} u_{21}$ and $\alpha_{32} u_{32}=$ $\alpha_{31} u_{31}-\alpha_{21} u_{21}$ imply

$$
\begin{equation*}
\left(\alpha_{32} \lambda_{31}-\lambda_{32} \alpha_{31}\right) u_{31}-\left(\alpha_{32} \lambda_{21}-\lambda_{32} \alpha_{21}\right) u_{21}=0 \tag{16}
\end{equation*}
$$

from which it follows that $\alpha_{31} / \lambda_{31}=\alpha_{32} / \lambda_{32}=\alpha_{21} / \lambda_{21}$.
Let

$$
C\left(u_{21}, u_{31}\right)=\sup \left\{\left|\begin{array}{ll}
f_{1}\left(u_{21}\right) & f_{1}\left(u_{31}\right) \tag{17}\\
f_{2}\left(u_{21}\right) & f_{2}\left(u_{31}\right)
\end{array}\right|: f_{1}, f_{2} \in B_{X^{*}}\right\} .
$$

Then $A\left(x_{1}, x_{2}, x_{3}\right)=\lambda_{21} \lambda_{31} C\left(u_{21}, u_{31}\right) \geq \epsilon_{1}$ and $A\left(y_{1}, y_{2}, y_{3}\right)=c^{2} \lambda_{21} \lambda_{31} C\left(u_{21}, u_{31}\right)$ $\geq \epsilon_{2}$.

For $0 \leq \zeta \leq 1$, let $z_{i}=\zeta x_{i}+(1-\zeta) y_{i}, i=1,2,3$. Then

$$
\begin{align*}
z_{2}-z_{1}= & \left(\zeta \lambda_{21}+(1-\zeta) c \lambda_{21}\right) u_{21}=(\zeta+(1-\zeta) c) \lambda_{21} u_{21} \\
& z_{3}-z_{1}=(\zeta+(1-\zeta) c) \lambda_{31} u_{31}, \\
& z_{3}-z_{2}=(\zeta+(1-\zeta) c) \lambda_{32} u_{32}, \tag{18}\\
& z_{1}+z_{2}+z_{3}=(\zeta \lambda+(1-\zeta) \alpha) u \\
A\left(z_{1}, z_{2}, z_{3}\right)=(\zeta+ & (1-\zeta) c)^{2} \lambda_{21} \lambda_{31} C\left(u_{21}, u_{31}\right) \geq\left(\zeta \epsilon_{1}^{1 / 2}+(1-\zeta) \epsilon_{2}^{1 / 2}\right)^{2} \\
1-\frac{\left\|z_{1}+z_{2}+z_{3}\right\|}{3}= & 1-\frac{\left\|\zeta\left(x_{1}+x_{2}+x_{3}\right)+(1-\zeta)\left(y_{1}+y_{2}+y_{3}\right)\right\|}{3} \\
= & 1-\frac{\|\zeta \lambda u+(1-\zeta) \alpha u\|}{3} \\
= & 1-\frac{\zeta \lambda+(1-\zeta) \alpha}{3} \tag{19}\\
= & \zeta\left(1-\frac{\lambda}{3}\right)+(1-\zeta)\left(1-\frac{\alpha}{3}\right) \\
= & \zeta\left(1-\frac{\left\|x_{1}+x_{2}+x_{3}\right\|}{3}\right)+(1-\zeta)\left(1-\frac{\left\|y_{1}+y_{2}+y_{3}\right\|}{3}\right)
\end{align*}
$$

Hence

$$
\begin{align*}
\delta\left(u, u_{21}, u_{31}, u_{32} ;\right. & \left.\left(\zeta \epsilon_{1}^{1 / 2}+(1-\zeta) \epsilon_{2}^{1 / 2}\right)^{2}\right) \tag{20}\\
& \leq \zeta \delta\left(u, u_{21}, u_{31}, u_{32} ; \epsilon_{1}\right)+(1-\zeta) \delta\left(u, u_{21}, u_{31}, u_{32} ; \epsilon_{2}\right)
\end{align*}
$$

Since

$$
\begin{gather*}
\delta_{X}^{(2)}(\epsilon)=\inf \left\{\delta\left(u, u_{21}, u_{31}, u_{32} ; \epsilon\right):\|u\|=\left\|u_{21}\right\|=\left\|u_{31}\right\|=\left\|u_{32}\right\|=1,\right. \tag{21}\\
\left.\left\{u_{21}, u_{31}\right\} \text { linearly independent }\right\}
\end{gather*}
$$

and the inequality in Lemma 2 is preserved under passing to infimum, inequality (11) for $k=2$ follows.

For general k, we have $\binom{k+1}{2}+1$ unit vectors u, u_{21}, \ldots and the proof is similar to the one above.

Corollary 5. Let X be a Banach space. Then $\delta_{X}^{(k)}(\epsilon)$ is continuous on $\left[0, \mu_{X}^{(k)}\right)$.
Proof. Take $\left\|x_{1}\right\|=1$ and x_{2}, \ldots, x_{k+1} in a small ball centered at x_{1}. Then, by Lemma 3, $A\left(x_{1}, \ldots, x_{k+1}\right)$ is small. Since $1-\left\|x_{1}+\cdots+x_{k+1}\right\| /(k+1)$ is close to 0 , we see that $\delta_{X}^{(k)}(\epsilon)$ is continuous at 0 .

Continuity of $\delta_{X}^{(k)}(\epsilon)$ on $\left(0, \mu_{X}^{(k)}\right)$ follows immediately from the inequality (11).

Acknowledgement

The author wishes to thank the referee for his comments that led to a better formulation of the results in this paper.

References

[1] J. Bernal and F. Sullivan, Multidimensional volumes, super-reflexivity and normal structure in Banach spaces, Illinois J. Math. 27 (1983), no. 3, 501-513. MR 84g:46021. Zbl 526.46023.
[2] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396-414. CMP 1501 880. Zbl 015.35604.
[3] K. Goebel, Convexivity of balls and fixed-point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269-274. MR 42\#8355. Zbl 202.12802.
[4] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 92c:47070. Zbl 708.47031.
[5] V. I. Gurariĭ, Differential properties of the convexity moduli of Banach spaces, Mat. Issled. 2 (1967), no. 1, 141-148 (Russian). MR 35\#2127. Zbl 232.46024.
[6] W. A. Kirk, Nonexpansive mappings in product spaces, set-valued mappings and k-uniform rotundity, Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983) (F. E. Browder, ed.), Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, 1986, pp. 51-64. MR 87i:47068. Zbl 594.47048.
[7] T. C. Lim, The asymptotic center and fixed point theorems for nonexpansive mappings, Ph.D. thesis, Dalhousie University, 1974.
[8] P.-K. Lin, k-uniform rotundity is equivalent to k-uniform convexity, J. Math. Anal. Appl. 132 (1988), no. 2, 349-355. MR 89i:46018. Zbl 649.46014.
[9] V. D. Milman, Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk 26 (1971), no. 6(162), 73-149 (Russian). MR 54\#8240. Zbl 229.46017.
[10] F. Sullivan, A generalization of uniformly rotund Banach spaces, Canad. J. Math. 31 (1979), no. 3, 628-636. MR 80h:46023. Zbl 422.46011.

Teck-Cheong Lim: Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA

