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We obtain nontrivial solutions for semilinear elliptic boundary value problems having
resonance both at zero and at infinity, when the nonlinear term has asymptotic limits.

1. Introduction

Let � be a smooth, bounded domain in R
n, and let A be a selfadjoint operator on

L2(�). We assume that

C∞
0 (�)⊂D :=D

(|A|1/2)⊂Hm,2(�) (1.1)

holds for some m > 0, and σe(A) = φ with A bounded from below. Let f (x, t) be a
Carathéodory function on �×R satisfying

f (x, t)= a0t+p0(x, t), p0(x, t)= o(t) as t −→ 0,

f (x, t)= at+p(x, t), p(x, t)= o(t) as |t | −→ ∞.
(1.2)

The object of this paper is to prove the following theorem.

Theorem 1.1. Assume that there is a λ ∈ σ(A) such that either

a0 ≤ λ≤ a (1.3)

or

a ≤ λ≤ a0. (1.4)

If a0 ∈ σ(A), assume also that there is a σ ∈ (2,2∗), 2∗ = 2n/(n−2), such that

tp0(x, t)

|t |σ −→ α± as t −→ ±0 (1.5)
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and ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ > 0, y ∈ E
(
a0
)\{0}, (1.6)

if λ≤ a0 and < 0 if a0 ≤ λ, where E(b)= {u ∈D : (A−b)u= 0}. If a ∈ σ(A), assume
also that there is a τ ∈ (1,2) such that

tp(x, t)

|t |τ −→ β± as t −→ ±∞ (1.7)

and ∫
y>0

β+|y|τ +
∫
y<0

β−|y|τ > 0, y ∈ E(a)\{0} (1.8)

if λ≤ a and < 0 if a ≤ λ. Finally assume that

|f (x, t)| ≤ C
(|t |+1

)
, x ∈�, t ∈ R. (1.9)

Then

Au= f (x,u) (1.10)

has a nontrivial solution.

The proof of Theorem 1.1 will be accomplished by means of a series of lemmas
given in the next section.

Many authors have studied special cases of problem (1.10) under hypotheses (1.2)
beginning with the work of Amann-Zehnder [1], who considered the Dirichlet problem

−!u= f (u) in �, u= 0 on ∂�. (1.11)

They assumed that f (t) ∈ C1(R) and that either

f ′(0) < λ < f ′(∞) (1.12)

or

f ′(∞) < λ < f ′(0). (1.13)

They did not allow f ′(∞) to be in σ(A). Since then many authors have weakened
some of these requirements (see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22], and the references therein). In most cases, f (x, t) is required to be
continuously differentiable with respect to t , and a and a0 are not both allowed to be
in σ(A). In Theorem 1.1, we only require the continuity of f (x, t) with respect to t ,
allow either or both a0 and a to be in σ(A) and permit a = a0 = λ.

2. Lemmas

Theorem 1.1 will be established via a series of lemmas. In describing them, we let �
be a smooth, bounded domain in R

n, and we let A be a selfadjoint operator on L2(�).
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We assume that

C∞
0 (�)⊂D :=D

(|A|1/2)⊂Hm,2(�) (2.1)

holds for some m> 0, and σe(A)⊂ (0,∞). We use the notation

a(u,v)= (Au,v), a(u)= a(u,u), u,v ∈D. (2.2)

D becomes a Hilbert space if we use the scalar product

(u,v)D = (|A|u,v)+(P0u,v
)
, u,v ∈D, (2.3)

and its corresponding norm, where P0 is the projection onto N(A). Let f (x, t) be a
Carathéodory function on �×R satisfying

|f (x, t)| ≤ V (x)q
(|t |q−1 +1

)
, x ∈�, t ∈ R, (2.4)

and
f (x, t)

V (x)q
= o

(|t |q−1) as |t | −→ ∞, uniformly, (2.5)

where q > 2 satisfies

q ≤ 2n

n−2m
, 2m< n, q <∞, n≤ 2m, (2.6)

and V (x) > 0 is a function in Lq(�) such that

‖V u‖q ≤ C‖u‖D, u ∈D. (2.7)

(The norm on the left in (2.7) is that of Lq(�).)
Let

V =
⊕
λ<0

N(A−λ). (2.8)

By assumption,p=dimN(A)+dimV <∞. LetW=[V⊕N(A)]⊥, and letP−,P0,P+
be the projections onto V,N(A),W , respectively. Let λ(λ) denote the largest (smallest)
point in the negative (positive) spectrum of A. Then

(Av,v)≤ λ‖v‖2, v ∈ V,

(Aw,w)≥ λ‖w‖2, w ∈W.

(2.9)

We let

2G(u)= a(u)−2
∫
�

F(x,u), (2.10)

where

F(x, t)=
∫ t

0
f (x,s)ds. (2.11)
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As is well known, G is in C1 in D, and(
G′(u),h

)= a(u,h)−(f (u),h), u,h ∈D, (2.12)

where we write f (u) in place of f (x,u(x)). Moreover, u is a solution of

Au= f (x,u) (2.13)

if and only if it satisfies

G′(u)= 0. (2.14)

In our first result we make use of the following assumption:
(A) there is a constant σ ∈ (2,2∗) such that

f (x, t)t

|t |σ −→ α±(x) as t −→ ±0, uniformly in x, (2.15)

where ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ > 0, y ∈N(A)\{0}. (2.16)

We have the following lemma.

Lemma 2.1. If 0 is an isolated solution of (2.13), and (A) holds, then

Ck(G,0)∼= δpkZ ∀k, (2.17)

where p = dimV +dimN(A).

Proof. We define

2J (u)= ‖P+u‖2 −‖P−u‖2 −‖P0u‖2, (2.18)

and let

Ht(u)= a(u)−2(1− t)

∫
�

F(x,u),

Gt (u)=Ht(u)+ tJ (u), t ∈ [0,1].
(2.19)

We note that there is a ρ > 0 such that(
H ′
t (u),J

′(u)
)
> 0, 0 < ‖u‖D ≤ ρ. (2.20)

For if (2.20) did not hold, there would be a sequence {uk} ⊂D such that(
H ′
t

(
uk
)
,J ′(uk))≤ 0, (2.21)

and ρk = ‖uk‖D → 0. Let ũk = uk/ρk , and write ũk = ṽk+ỹk+w̃k , ṽk ∈ V , ỹk ∈N(A),
and w̃k ∈W . In particular, we have(

G′(uk),h)= a
(
uk,h

)−(f (uk),h). (2.22)
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Thus, (
H ′
t

(
uk
)
,J ′(uk))
ρ2
k

= ∥∥w̃k

∥∥2
D

+∥∥ṽk∥∥2
D

− (1− t)
(
f
(
uk
)
, ûk

)
ρ2
k

. (2.23)

(Here we take û= w−v−y.) From this we conclude that (2.21) implies∥∥ṽk∥∥D+∥∥w̃k

∥∥
D

−→ 0. (2.24)

Since ‖ũk‖D = 1, we must have a renamed subsequence such that ỹk → ỹ strongly in
D with ‖ỹ‖D = 1. Consequently,(

H ′
t

(
uk
)
,J ′(uk))
ρσk

≥ − (1− t)
(
f
(
uk
)
, ûk

)
ρσk

. (2.25)

But

−
∫
�

f
(
x,uk

)
ỹk

ρσ−1
k

= −
∫
�

[
ukf

(
x,uk

)
|uk|σ

][∣∣ũk∣∣σ−2
ũkỹk

]

−→
∫
ỹ>0

α+
∣∣ỹ∣∣σ +

∫
ỹ<0

α−
∣∣ỹ∣∣σ > 0

(2.26)

for a subsequence by hypothesis (A), since ỹ �= 0. Moreover,

∫
�

f
(
x,uk

)
ṽk

ρσ−1
k

−→ 0,
∫
�

f
(
x,uk

)
w̃k

ρσ−1
k

−→ 0. (2.27)

This contradicts (2.21) and shows that (2.20) holds for t < 1. It is obvious for t = 1.
Now (

G′
t (u),J

′(u)
)= (

H ′
t (u),J

′(u)
)+ t

(
J ′(u),J ′(u)

)≥ t
∥∥J ′(u)

∥∥2
. (2.28)

If u is a critical point of Gt , then J ′(u) = 0, from which it follows that u = 0. Thus 0
is an isolated critical point of Gt . Since 2G1(u)= [a(u)+J (u)],

G′′
1(0)= A+P+ −P− −P0. (2.29)

By hypothesis,

AP+ > 0, A
(
P− +P0

)
< 0. (2.30)

Consequently, the Morse index of G1(0) is p. By the homotopy invariance of critical
groups, we have

Ck(G,0)∼= Ck

(
G1,0

)∼= δpkZ. (2.31)

This gives the desired conclusion. �

In our second result we make use of the following assumption:
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(B) there is a constant σ ∈ (2,2∗) such that

f (x, t)t

|t |σ −→ α±(x) as t −→ ±0, uniformly in x, (2.32)

where ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ < 0, y ∈N(A)\{0}. (2.33)

We have the following lemma.

Lemma 2.2. If 0 is an isolated solution of (2.13), and (B) holds, then

Ck(G,0)∼= δp1kZ ∀k, (2.34)

where p1 = dimV .

Proof. Now we define

2J (u)= ∥∥P+u
∥∥2 −∥∥P−u

∥∥2 +∥∥P0u
∥∥2
, (2.35)

and let

Ht(u)= a(u)−2(1− t)

∫
�

F(x,u), Gt (u)=Ht(u)+ tJ (u), t ∈ [0,1]. (2.36)

We note that there is a ρ > 0 such that(
H ′
t (u),J

′(u)
)
> 0, 0 < ‖u‖D ≤ ρ. (2.37)

For if (2.37) did not hold, there would be a sequence {uk} ⊂D such that(
H ′
t

(
uk
)
,J ′(uk))≤ 0, (2.38)

and ρk = ‖uk‖D → 0. Let ũk = uk/ρk , and write ũk = ṽk+ỹk+w̃k , ṽk ∈ V , ỹk ∈N(A),
and w̃k ∈W . In particular, we have(

G′(uk),h)= a
(
uk,h

)−(f (uk),h). (2.39)

Thus, (
H ′
t

(
uk
)
,J ′(uk))
ρ2
k

= ∥∥w̃k

∥∥2
D

+∥∥ṽk∥∥2
D

− (1− t)
(
f
(
uk
)
, ûk

)
ρ2
k

. (2.40)

(Here we take û= w−v+y.) From this we conclude that (2.38) implies∥∥ṽk∥∥D+∥∥w̃k

∥∥
D

−→ 0. (2.41)

Since ‖ũk‖D = 1, we must have a renamed subsequence such that ỹk → ỹ strongly in
D with ‖ỹ‖D = 1. Consequently,(

H ′
t

(
uk
)
,J ′(uk))
ρσk

≥ − (1− t)
(
f
(
uk
)
, ûk

)
ρσk

. (2.42)



K. Perera and M. Schechter 237

But ∫
�

f
(
x,uk

)
ỹk

ρσ−1
k

=
∫
�

[
ukf

(
x,uk

)
|uk|σ

][∣∣ũk∣∣σ−2
ũkỹk

]

−→
∫
ỹ>0

α+|ỹ|σ +
∫
ỹ<0

α−|ỹ|σ < 0

(2.43)

for a subsequence by hypothesis (B), since ỹ �= 0. Moreover,

∫
�

f
(
x,uk

)
ṽk

ρσ−1
k

−→ 0,
∫
�

f
(
x,uk

)
w̃k

ρσ−1
k

−→ 0. (2.44)

This contradicts (2.21) and shows that (2.37) holds. Now

(
G′
t (u),J

′(u)
)= (

H ′
t (u),J

′(u)
)+ t

(
J ′(u),J ′(u)

)≥ t
∥∥J ′(u)

∥∥2
. (2.45)

If u is a critical point of Gt , then J ′(u) = 0, from which it follows that u = 0. Thus 0
is an isolated critical point of Gt . Since 2G1(u)= [a(u)+J (u)],

G′′
1(0)= A+P+ −P− +P0. (2.46)

By hypothesis,

A
(
P+ +P0

)
> 0, AP− < 0. (2.47)

Consequently, the Morse index of G1(0) is p1. By the homotopy invariance of critical
groups, we have

Ck(G,0)∼= Ck

(
G1,0

)∼= δp1kZ. (2.48)

This gives the desired conclusion. �

Lemma 2.3. If N(A)= {0}, 0 is an isolated solution of (2.13), and

f (x, t)

t
−→ 0 as t −→ 0, (2.49)

then (2.34) holds.

Proof. We follow the proof of Lemma 2.2. In this case P0 = 0, and (2.37) holds because
(2.38) implies (2.41), which is now the same as ‖uk‖D → 0. This contradicts the fact
that ‖uk‖D = 1. Thus, (2.45) holds. We can now follow the continuation of the proof
of Lemma 2.2 keeping in mind that P0 = 0. �

Our next result assumes
(C) there is a constant σ ∈ (1,2) such that

f (x, t)t

|t |σ −→ α±(x) as t −→ ±∞, uniformly in x, (2.50)
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where ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ > 0, y ∈N(A)\{0}. (2.51)

We have the following lemma.

Lemma 2.4. If (C) holds, then

G(u)−→ −∞ as ‖u‖D −→ ∞, u ∈ V ⊕N(A). (2.52)

Proof. Assume that there is a sequence {uk} ⊆ V ⊕N(A) such that ρk = ‖uk‖D → ∞
and G(uk) is bounded from below. Let ũk = uk/ρk , and write ũk = ṽk + ỹk , ṽk ∈ V ,
ỹk ∈N(A). Since

G
(
uk
)

ρ2
k

= −∥∥ṽk∥∥2
D

−2
∫
�

F
(
x,uk

)
ρ2
k

dx, (2.53)

and f (x, t)/t → 0 as t → ∞, we see that ‖ṽk‖D → 0. Thus, there is a renamed
subsequence such that ũk → ỹ in D. Consequently,

G
(
uk
)

ρσk
= −‖vk‖2

D

ρσk
−2

∫
�

F
(
x,uk

)
ρσk

dx −→ −
∫
ỹ>0

α+
∣∣ỹ∣∣σ −

∫
ỹ<0

α−|ỹ|σ < 0,

(2.54)
since ỹ �= 0. This contradicts the assumption that G(uk) is bounded from below. �

Similarly, we have the following lemma.

Lemma 2.5. Assume
(D) there is a constant σ ∈ (1,2) such that

f (x, t)t

|t |σ −→ α±(x) as t −→ ±∞, uniformly in x, (2.55)

where ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ < 0, y ∈N(A)\{0}. (2.56)

Then

G(u)−→ ∞ as ‖u‖D −→ ∞, u ∈W ⊕N(A). (2.57)

Lemma 2.6. If

f (x, t)

t
−→ 0 as |t | −→ ∞, (2.58)

then

G(u)−→ −∞ as ‖u‖D −→ ∞, u ∈ V, (2.59)

G(u)−→ ∞ as ‖u‖D −→ ∞, u ∈W. (2.60)
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Proof. Assume {vk} ⊂ V , ρk = ‖vk‖D → ∞, and G(vk)→m>−∞. Let ṽk = vk/ρk .
Then ‖ṽk‖ = 1, and there is a renamed subsequence such that ṽk → ṽ inD and a.e. in�.
Thus

2G
(
vk
)

ρ2
k

= −∥∥ṽk∥∥2
D

− 2
∫
�
F
(
x,vk

)
dx

ρ2
k

−→ −∥∥ṽ∥∥
D
< 0. (2.61)

This proves (2.59). Similarly, if {wk} ⊂ W , and ρk = ‖wk‖D → ∞, let w̃k = wk/ρk .
Then ‖w̃k‖ = 1, and there is a renamed subsequence such that w̃k → w̃ weakly in D,
strongly in L2(�), and a.e. in �. Then,

2G
(
wk

)
ρ2
k

= ∥∥w̃k

∥∥2
D

− 2
∫
�
F
(
x,wk

)
dx

ρ2
k

≥ 1− 2
∫
�
F
(
x,wk

)
dx

ρ2
k

−→ 1. (2.62)

This proves (2.60). �

Lemma 2.7. Assume (2.58). If N(A) �= {0}, assume also that there is a constant
σ ∈ (1,2) such that

f (x, t)t

|t |σ −→ α±(x) as t −→ ±∞, uniformly in x, (2.63)

where ∫
y>0

α+|y|σ +
∫
y<0

α−|y|σ �= 0, y ∈N(A)\{0}. (2.64)

Then G satisfies the PS condition.

Proof. If

G
(
uk
)−→ c, G′(uk)−→ 0, (2.65)

assume that ρk = ‖uk‖D → ∞. Let ũk = uk/ρk , and write ũk = ṽk + ỹk + w̃k , ṽk ∈ V ,
ỹk ∈N(A), and w̃k ∈W . In particular, we have(

G′(uk),h)= a
(
uk,h

)−(f (uk),h)= o
(‖h‖D). (2.66)

Setting h= w̃k,−ṽk , respectively, and dividing by ρk , we conclude that∥∥ṽk∥∥D+∥∥w̃k

∥∥
D

−→ 0. (2.67)

Since ‖ũk‖D = 1, we must have a renamed subsequence such that ỹk → ỹ strongly in
D with ‖ỹ‖D = 1. Consequently,(

G′(uk)
ρσ−1
k

, ỹk

)
= −

(
f
(
uk
)

ρσ−1
, ỹk

)
−→ 0. (2.68)

But∫
�

f
(
x,uk

)
ỹk

ρσ−1
k

=
∫
�

[
ukf

(
x,uk

)
|uk|σ

][∣∣ũk∣∣σ
ũk

]
ỹk −→

∫
ỹ>0

α+
∣∣ỹ∣∣σ +

∫
ỹ<0

α−
∣∣ỹ∣∣σ
(2.69)



240 Semilinear elliptic equations having asymptotic limits …

for any subsequence. By hypothesis, this cannot vanish, since ỹ �= 0. This contradiction
shows that ρk ≤ C, and the usual methods obtain a convergent subsequence of {uk}
(cf. [20]). �

The following lemma is well known (cf. [2]).

Lemma 2.8. If E = V ⊕W , k = dimV <∞, G ∈ C1(E,R) satisfies the PS condition,
u0 is the only critical point of G, (2.59) holds, and

inf
W
G>−∞, (2.70)

then

Ck

(
G,u0

) �= 0. (2.71)

3. The final proof

We can now give the proof of Theorem 1.1.

Proof. Assume that 0 is the only solution of (1.10) and that (1.3) holds. Let

V0 =
⊕
µ<a0

N(A−µ), W0 = V ⊥
0 . (3.1)

If a0 /∈ σ(A), then

Ck(G,0)∼= δp0kZ ∀k, (3.2)

where p0 = dimV0 by Lemma 2.3. If a0 ∈ σ(A), then (3.2) holds by Lemma 2.2. On
the other hand, if a /∈ σ(A), then (2.59) and (2.60) hold by Lemma 2.6, where

V =
⊕
µ≤a

N(A−µ), W = V ⊥. (3.3)

This implies (2.70). For if

G
(
wk

)−→ −∞, (3.4)

then we must have ‖wk‖D ≤ C by (2.60). Then there is a renamed subsequence such
that wk → w weakly in D, strongly in L2(�) and a.e. in �. It then follows that

G
(
wk

)≥ −
∫
�

F
(
x,wk

)
dx −→ −

∫
�

F(x,w)dx >−∞ (3.5)

(cf. [20]). Therefore,

Cp(G,0) �= 0, p = dimV. (3.6)

If a ∈ σ(A), then (2.59) holds by Lemma 2.4, while (2.60) holds as before. Thus, (3.6)
holds in this case as well. Now we note that p0 < p, since E(λ)⊂ V , while E(λ) �⊂ V0.
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This contradiction proves the theorem when (1.3) holds. Assume next that (1.4) holds.
Let

V =
⊕
µ<a

N(A−µ), W = V ⊥,

V0 =
⊕
µ≤a0

N(A−µ), W0 = V ⊥
0 .

(3.7)

If a0 /∈ σ(A), then (3.2) holds by Lemma 2.3. If a0 ∈ σ(A), then (3.2) holds by
Lemma 2.4. However, if a /∈ σ(A), then (2.59) and (2.60) hold by Lemma 2.6. Hence,
(2.70) holds as before. This implies (3.6). If a ∈ σ(A), then (2.59) and (2.60) hold
again by Lemma 2.6, implying (3.6) in this case as well. Since E(λ)⊂ V0, E(λ) �⊂ V ,
we have p < p0, providing the necessary contradiction. This completes the proof. �
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