ON THE APPEARANCE OF PRIMES IN LINEAR RECURSIVE SEQUENCES

JOHN H. JAROMA

Received 16 August 2004 and in revised form 5 December 2004

We present an application of difference equations to number theory by considering the set of linear second-order recursive relations, $U_{n+2}(\sqrt{R}, Q) = \sqrt{R}U_{n+1} - QU_n$, $U_0 = 0$, $U_1 = 1$, and $V_{n+2}(\sqrt{R}, Q) = \sqrt{RV}_{n+1} - QV_n$, $V_0 = 2$, $V_1 = \sqrt{R}$, where R and Q are relatively prime integers and $n \in \{0, 1, \ldots\}$. These equations describe the set of extended Lucas sequences, or rather, the Lehmer sequences. We add that the rank of apparition of an odd prime p in a specific Lehmer sequence is the index of the first term that contains p as a divisor. In this paper, we obtain results that pertain to the rank of apparition of primes of the form $2^n p \pm 1$. Upon doing so, we will also establish rank of apparition results under more explicit hypotheses for some notable special cases of the Lehmer sequences. Presently, there does not exist a closed formula that will produce the rank of apparition of an arbitrary prime in any of the aforementioned sequences.

1. Introduction

Linear recursive equations such as the family of second-order extended Lucas sequences described above have attracted considerable theoretic attention for more than a century. Among other things, they have played an important role in primality testing. For example, the prime character of a number is often a consequence of having maximal rank of apparition; that is, rank of apparition equal to $N \pm 1$.

The first objective of this paper is to provide a general rank-of-apparition result for primes of the form $N = 2^n p \pm 1$, where p is a prime. Then, using more explicit criteria, we will determine when such primes have maximal rank of apparition in the specific Lehmer sequences $\{F_n\} = \{U_n(1, -1)\} = \{1, 1, 2, 3, \ldots\}$ and $\{L_n\} = \{V_n(1, -1)\} = \{1, 3, 4, 7, \ldots\}$. Respectively, $\{F_n\}$ and $\{L_n\}$ represent the Fibonacci and the Lucas numbers.

2. The Lucas and Lehmer sequences

In [4], Lucas published the first set of papers that provided an in-depth analysis of the numerical factors of the set of sequences generated by the second-order linear recurrence relation $X_{n+2} = PX_{n+1} - QX_n$, where $n \in \{0, 1, \ldots\}$ [4]. These sequences also attracted the attention of P. de Fermat, J. Pell, and L. Euler years earlier. Nevertheless, it was Lucas
who undertook the first systematic study of them. In 1913, Carmichael introduced some corrections to Lucas’s papers, and also generalized some of the results [1, 2].

We now define the Lucas sequences. Let P and Q be any pair of nonzero relatively prime integers. Then, the Lucas sequences $\{U_n(P, Q)\}$ and the companion Lucas sequences $\{V_n(P, Q)\}$ are recursively given by

$$
\begin{align*}
U_{n+2} &= PU_{n+1} - QU_n, & U_0 &= 0, & U_1 &= 1, & n &\in \{0, 1, 2, \ldots\}, \\
V_{n+2} &= PV_{n+1} - QV_n, & V_0 &= 2, & V_1 &= P, & n &\in \{0, 1, 2, \ldots\}.
\end{align*}
$$

(2.1)

In [3], Lehmer extended the theory of the Lucas functions to a more general class of sequences described by replacing the parameter P in (2.1) with \sqrt{R} under the assumption that R and Q are relatively prime integers. In particular, the Lehmer sequences $\{U_n(\sqrt{R}, Q)\}$ and the companion Lehmer sequences $\{V_n(\sqrt{R}, Q)\}$ are defined as

$$
\begin{align*}
U_{n+2}(\sqrt{R}, Q) &= \sqrt{R}U_{n+1} - QU_n, & U_0 &= 0, & U_1 &= 1, & n &\in \{0, 1, \ldots\}, \\
V_{n+2}(\sqrt{R}, Q) &= \sqrt{R}V_{n+1} - QV_n, & V_0 &= 2, & V_1 &= \sqrt{R}, & n &\in \{0, 1, \ldots\}.
\end{align*}
$$

(2.2)

(2.3)

We remark that Lehmer’s modification of the Lucas sequences shown in (2.2) and (2.3) was motivated by the fact that the discriminant $P^2 - 4Q$ of the characteristic equation of (2.1) cannot be of the form $4k + 2$ or $4k + 3$.

3. Properties of the Lehmer sequences

Throughout the rest of this paper, p will denote an odd prime. In addition, we also adopt the notation $\omega(p)$ and $\lambda(p)$ to describe, respectively, the rank of apparition of p in $\{U_n\}$ and in $\{V_n\}$. Furthermore, if $\omega(p) = n$, then p is called a primitive prime factor of U_n. Similarly, if $\lambda(p) = n$, then p is said to be a primitive prime factor of V_n. Finally, (a/p) shall denote the Legendre symbol of p and a. We now introduce some divisibility characteristics of the Lehmer sequences [3].

Lemma 3.1. Let $p \nmid RQ$. Then, $U_{p-\sigma\epsilon}(\sqrt{R}, Q) \equiv 0(\bmod p)$.

Lemma 3.2. $p \mid U_n(\sqrt{R}, Q)$ if and only if $n = kw$.

Lemma 3.3. Suppose that $\omega(p)$ is odd. Then $V_n(\sqrt{R}, Q)$ is not divisible by p for any value of n. On the other hand, if $\omega(p)$ is even, say $2k$, then $V_{(2n+1)k}(\sqrt{R}, Q)$ is divisible by p for every n but no other term of the sequence may contain p as a factor.

Lemma 3.4. Let $p \nmid RQ$. Then, $U_{(p-\sigma\epsilon)/2}(\sqrt{R}, Q) \equiv 0(\bmod p)$ if and only if $\sigma = \tau$.

Lemma 3.5. Let $p \nmid RQ$. If $p \mid Q$, then $p \nmid U_n$, for all n. If $p^2 \mid R$, then $\omega(p) = 2$. If $p \mid \Delta$, then $\omega(p) = p$.

4. Rank of apparition of a prime of the form $2^np \pm 1$ in $\{U_n\}$ and $\{V_n\}$

We now introduce the Legendre symbols $\sigma = (R/p), \tau = (Q/p)$, and $\epsilon = (\Delta/p)$, where $\Delta = R - 4Q$ is the discriminant of the characteristic equation of (2.2) and (2.3). The following
two theorems pertain to the rank of apparition of a prime of the form $2^n p \pm 1$ in the Lehmer sequences. Because of Lemma 3.5, we impose the restriction $q \nmid RQ\Delta$.

Theorem 4.1. Let $q = 2^n p - 1$ be prime and $q \nmid RQ\Delta$. Also, assume that either $\sigma = 1$, $\epsilon = -1$, $\tau = -1$ or $\sigma = -1$, $\epsilon = 1$, $\tau = 1$.

1. If $n = 1$, then $\omega(q) = 2p$ and $\lambda(q) = p$.
2. If $n > 1$ and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
3. If $n > 1$ and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

Proof. In each case, $\sigma \epsilon = -1$. So, by Lemma 3.1, $q \mid U_{2^n p}$. Furthermore, since $\sigma \neq \tau$, it follows by Lemma 3.4 that $q \nmid U_{2^{n-1} p}$. Hence, by Lemma 3.2, the only possible values for $\omega(q)$ are 2^n and $2^n p$.

1. Let $n = 1$. Thus, either $\omega(q) = 2$ or $\omega(q) = 2p$. However, by (2.2), we see that $U_2 = \sqrt{R}U_1 - QU_0 = \sqrt{R} \cdot 1 - Q \cdot 0 = \sqrt{R}$. Furthermore, as $q^2 \nmid R$ by hypothesis, we conclude that $\omega(q) = 2p$. Finally, by Lemma 3.3, $\lambda(q) = p$.

2. Let $n > 1$ and $q \mid V_{2^{n-1}}$. Since $q \mid V_{2^{n-1}}$, then because of Lemma 3.3, we infer that q is a primitive prime factor of $V_{2^{n-1}}$. Hence, $\lambda(q) = 2^{n-1}$. Also, by the same lemma, this can happen only if $\omega(q) = 2^n$.

3. Let $n > 1$ and $q \mid V_{2^{n-1}}$. Then, $\lambda(q) \neq 2^{n-1}$. By Lemma 3.3, this means that $\omega(q) \neq 2^n$. Thus, the only choice for $\omega(q)$ is $2^n p$. Therefore, $\lambda(q) = 2^{n-1} p$. \hfill \square

Theorem 4.2. Let $q = 2^n p + 1$ be prime and $q \nmid RQ\Delta$. Also, assume that either $\sigma = 1$, $\epsilon = 1$, $\tau = -1$ or $\sigma = -1$, $\epsilon = -1$, $\tau = 1$.

1. If $n = 1$, then $\omega(q) = 2p$ and $\lambda(q) = p$.
2. If $n > 1$ and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.
3. If $n > 1$ and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$, then $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$.

Proof. In all three cases, we see that $\sigma \epsilon = 1$. Hence, $q \mid U_{2^n p}$. In addition, $\sigma \neq \tau$. So, it follows by Lemma 3.4 that $q \nmid U_{2^{n-1} p}$. Thus, the only possible values for $\omega(q)$ are 2^n and $2^n p$.

1. Let $n = 1$. Then, either $\omega(q) = 2$ or $\omega(q) = 2p$. However, from (2.2), $U_2 = \sqrt{R}U_1 - QU_0 = \sqrt{R} \cdot 1 - Q \cdot 0 = \sqrt{R}$. Since $q \nmid \sqrt{R}$ by hypothesis, we conclude that $\omega(q) = 2p$ and $\lambda(q) = p$.

2. Let $n > 1$ and $q \mid V_{2^{n-1}}(\sqrt{R}, Q)$. Using an argument similar to the one given in the second part of Theorem 4.1, we have $\omega(q) = 2^n$ and $\lambda(q) = 2^{n-1}$.

3. Let $n > 1$ and $q \nmid V_{2^{n-1}}(\sqrt{R}, Q)$. Similarly, by an argument analogous to the one provided in the third part of Theorem 4.1, it follows that $\omega(q) = 2^n p$ and $\lambda(q) = 2^{n-1} p$. \hfill \square

5. **Explicit results for primes of the form** $2^n p \pm 1$ **in** $\{F_n\}$ **and** $\{L_n\}$

In this section, we obtain explicit results for the rank of apparition of a prime of the form $2^n p \pm 1$ in the sequences of Fibonacci and Lucas numbers. In both sequences, $R = -Q = 1$ and $\Delta = R - 4Q = 5$.

First, in the following category of primes, we identify values for p and n under which $\epsilon = (\Delta/(2^n p - 1)) = (5/(2^n - 1)) = -1$. Shortly thereafter, we consider a second category that will allow us to accomplish a similar objective for primes of the form $2^n p + 1$.

\hfill \square
Primes in linear recursive sequences

Prime Category I.

\(p \equiv 1 (\text{mod} 5), \) and either \(n \equiv 2 (\text{mod} 4) \) or \(n \equiv 3 (\text{mod} 4). \)

\(p \equiv 2 (\text{mod} 5), \) and either \(n \equiv 1 (\text{mod} 4) \) or \(n \equiv 2 (\text{mod} 4). \)

\(p \equiv 3 (\text{mod} 5), \) and either \(n \equiv 0 (\text{mod} 4) \) or \(n \equiv 3 (\text{mod} 4). \)

\(p \equiv 4 (\text{mod} 5), \) and either \(n \equiv 0 (\text{mod} 4) \) or \(n \equiv 1 (\text{mod} 4). \)

Lemma 5.1. Let \(q = 2^n p - 1 \) be prime. Then, for any \(p, n \) belonging to Prime Category I, it follows that \(\epsilon = (5/q) = -1. \)

Proof. Since 5 and \(q \) are distinct odd primes, both Legendre symbols \((5/q) \) and \((q/5) \) are defined.

By Gauss’s reciprocity law,

\[
\left(\frac{5}{q} \right) \left(\frac{q}{5} \right) = (-1)^{(5-1)/2 \cdot (q-1)/2} = (-1)^{2(2^{n-1}p-1)} = 1. \tag{5.2}
\]

Hence,

\[
\left(\frac{5}{q} \right) = \left(\frac{q}{5} \right). \tag{5.3}
\]

We now prove the first two cases of Lemma 5.1. The remaining two cases follow similarly, and are omitted.

(1) Suppose that \(p \equiv 1 (\text{mod} 5), \) and either \(n \equiv 2 (\text{mod} 4) \) or \(n \equiv 3 (\text{mod} 4). \)

If \(n = 4r + 2, \) then

\[
\left(\frac{5}{q} \right) = \left(\frac{2^{4r+2}(5k+1) - 1}{5} \right) = \left(\frac{3}{5} \right) = -1. \tag{5.4}
\]

If \(n = 4r + 3, \) then

\[
\left(\frac{2^{4r+3}(5k+1) - 1}{5} \right) = \left(\frac{2}{5} \right) = -1. \tag{5.5}
\]

(2) Suppose that \(p \equiv 2 (\text{mod} 5), \) and either \(n \equiv 1 (\text{mod} 4) \) or \(n \equiv 2 (\text{mod} 4). \)

If \(n = 4r + 1, \) then

\[
\left(\frac{2^{4r+1}(5k+2) - 1}{5} \right) = \left(\frac{3}{5} \right) = -1. \tag{5.6}
\]

If \(n = 4r + 2, \) then

\[
\left(\frac{2^{4r+2}(5k+2) - 1}{5} \right) = \left(\frac{2}{5} \right) = -1. \tag{5.7}
\]

We now identify values of \(p \) and \(n \) for which \(\epsilon = (\Delta/(2^n p + 1)) = (5/(2^n p + 1)) = 1. \)
Prime Category II.

\[p \equiv 1 \pmod{5} \quad \text{and} \quad n \equiv 3 \pmod{4}. \]
\[p \equiv 2 \pmod{5} \quad \text{and} \quad n \equiv 2 \pmod{4}. \]
\[p \equiv 3 \pmod{5} \quad \text{and} \quad n \equiv 0 \pmod{4}. \]
\[p \equiv 4 \pmod{5}, \quad \text{and either} \quad n \equiv 1 \pmod{4} \quad \text{or} \quad n \equiv 0 \pmod{4}. \]

(5.8)

We demonstrate the first two cases and omit the last two.

Lemma 5.2. Let \(q = 2^n p + 1 \) be prime. Then, for any \(p, n \) belonging to Prime Category II, it follows that \(\epsilon = (5/q) = 1 \).

Proof. Using Gauss’s reciprocity law, it is easily shown that \((5/q) = (q/5)\). Hence, we have the following:

1. If \(p \equiv 1 \pmod{5} \) and \(n \equiv 3 \pmod{4} \), then
 \[
 \left(\frac{5}{q} \right) = \left(\frac{2^{4r+3}(5k+1)+1}{5} \right) = \left(\frac{4}{5} \right) = 1.
 \]
 (5.9)

2. If \(p \equiv 2 \pmod{5} \) and \(n \equiv 2 \pmod{4} \), then
 \[
 \left(\frac{2^{4r+2}(5k+2)+1}{5} \right) = \left(\frac{4}{5} \right) = 1.
 \]
 (5.10)

\[\square \]

Before we establish more explicit criteria for the rank of apparition of \(p \) in either \(\{F_n\} \) or \(\{L_n\} \), the next two propositions are needed.

Lemma 5.3. Let \(q = 2^n p - 1 \) be prime. If \(n = 1 \), then \(\tau = (-1/q) = 1 \). Otherwise, \(\tau = -1 \).

Proof. Observe that

\[
\left(\frac{Q}{q} \right) = \left(\frac{-1}{q} \right) \equiv (-1)^{(q-1)/2} \equiv (-1)^{2^{n-1}p-1} \pmod{q}.
\]

(5.11)

First, let \(n = 1 \). Then, since \(p - 1 \) is even, it follows that \(\tau = (-1/q) \equiv 1 \). On the other hand, if \(n > 1 \), then \(2^{n-1}p - 1 \) is odd. Therefore, \(\tau = (-1/q) = -1 \).

Lemma 5.4. Let \(q = 2^n p + 1 \) be prime. If \(n = 1 \), then \(\tau = (Q/q) = (-1/q) = -1 \). Otherwise, \(\tau = 1 \).

Proof. First, we see that

\[
\left(\frac{Q}{q} \right) = \left(\frac{-1}{q} \right) \equiv (-1)^{(q-1)/2} \equiv (-1)^{2^{n-1}p} \pmod{q}.
\]

(5.12)

If \(n = 1 \), then \(2^{n-1}p = p \). Thus, \(\tau = (-1/q) = -1 \). Otherwise, \(2^{n-1}p \) is even, and \(\tau = (-1/q) = 1 \).
We now state and prove our two main results.

Theorem 5.5. Let \(q = 2^n p - 1 \) be prime. Then, for any \(p \) belonging to Prime Category I such that \(q \mid 5 \), the following is true regarding the rank of apparition of \(q \) in \(\{ F_n \} \) and \(\{ L_n \} \):

1. If \(n = 1 \), then \(\omega(q) = p \) and \(\lambda(q) \) does not exist;
2. If \(n > 1 \) and \(q \mid L_{2^{n-1}} \), then \(\omega(q) = 2^n \) and \(\lambda(q) = 2^{n-1} \);
3. If \(n > 1 \) and \(q \mid L_{2^{n-1}} \), then \(\omega(q) = 2^n p \) and \(\lambda(q) = 2^{n-1} p \).

Proof. As \(p \) belongs to Prime Category I, we have by Lemma 5.1 that \(\epsilon = (5/q) = -1 \). Furthermore, \(\sigma = (1/q) = 1 \).

1. If \(n = 1 \), then \(q = 2p - 1 \). Since \(\sigma \epsilon = -1 \), it follows by Lemma 3.1 that \(q \mid F_{2p} \). Also, by Lemma 5.3, we have \(\tau = 1 \). Hence, \(\sigma \neq \tau \). Thus, by Lemma 3.4, \(q \mid F_p \). Furthermore, as every factor of \(F_p \) is primitive, it follows that \(\omega(q) = p \). Finally, because \(\omega(q) \) is odd, then by Lemma 3.3, \(q \) divides no term of \(\{ L_n \} \); that is, the rank of apparition of \(q \) in \(\{ L_n \} \) does not exist.

2. Let \(n > 1 \) and \(q \mid L_{2^{n-1}} \). Since \(\sigma \epsilon = -1 \), then by Lemma 3.1, it follows that \(q \mid F_{2^n p} \). In addition, by Lemma 5.3, we see that \(\tau = -1 \). Hence, \(\sigma \neq \tau \). This implies, using Lemma 3.4, that \(q \mid F_{2^{n-1} p} \). Thus, from Lemma 3.2, the only possible values for \(\omega(q) \) are \(2^n \) and \(2^n p \). However, by hypothesis, \(q \mid L_{2^{n-1}} \). Therefore, by Lemma 3.3, this can occur only if \(\omega(q) = 2^n \) and \(\lambda(q) = 2^{n-1} \).

3. Let \(n > 1 \) and \(q \mid L_{2^{n-1}} \). Then, by Lemma 3.1, \(q \mid F_{2^n p} \). However, by Lemma 3.4, \(q \mid F_{2^{n-1} p} \). This implies that either \(\omega(q) = 2^n \) or \(\omega(q) = 2^n p \). Now, by hypothesis, \(q \mid L_{2^{n-1}} \). Thus, since \(q \mid L_{2^{n-1}} \), we conclude by Lemma 3.3 that \(\omega(q) \neq 2^n \). Therefore, \(\omega(q) = 2^n p \) and \(\lambda(q) = 2^{n-1} p \).

Theorem 5.6. Let \(p \) be an odd prime such that \(q = 2^n p + 1 \) is prime. Then, for any \(p \) belonging to Prime Category II such that \(q \mid 5 \), the following is true regarding the rank of apparition of \(q \) in \(\{ F_n \} \) and \(\{ L_n \} \):

1. If \(n = 1 \), then \(\omega(q) = 2p \) and \(\lambda(q) = p \);
2. If \(n > 1 \) and \(q \mid L_{2^{n-2}} \), then \(\omega(q) = 2^{n-1} \) and \(\lambda(q) = 2^{n-2} \).

Proof. Since \(p \) belongs to Prime Category II, we see by Lemma 5.2 that \(\epsilon = (5/q) = 1 \). Also, \(\sigma = (R/q) = (1/q) = 1 \).

1. If \(n = 1 \), then \(q = 2p + 1 \). Now, because \(\sigma \epsilon = 1 \), Lemma 3.1 tells us that \(q \mid F_{2p} \). In addition, by Lemma 5.4, we have \(\tau = -1 \). So, \(\sigma \neq \tau \). Thus, by Lemma 3.4, \(q \mid F_p \). Therefore, in light of Lemma 3.2, either \(\omega(q) = 2 \) or \(\omega(q) = 2p \). However, by (2.2), \(F_2 = \sqrt{R} = 1 \). Hence, \(q \mid F_2 \). Therefore, \(\omega(q) = 2p \) and \(\lambda(q) = p \).

2. Let \(n > 1 \) and \(q \mid L_{2^{n-2}} \). Since \(\sigma \epsilon = 1 \), by Lemma 3.1, it follows that \(q \mid F_{2^n p} \). Also, by Lemma 5.4, \(\tau = 1 \). Hence, \(\sigma = \tau \). This implies by Lemma 3.4 that \(q \mid F_{2^n - 1} p \). Thus, from Lemma 3.2, it follows that \(\omega(q) \) is a divisor of \(2^{n-1} p \). Moreover, by hypothesis, \(q \mid L_{2^{n-2}} \). So, applying Lemma 3.3, we conclude that \(q \) can divide no term of \(\{ L_n \} \) with index less than \(2^{n-2} \). Therefore, \(\lambda(q) = 2^{n-2} \), which can happen only if \(\omega(q) = 2^{n-1} \).

Remark 5.7. The case \(n > 1 \) and \(q \mid L_{2^{n-2}} \) was not considered. Had it been, we would have been led to the conclusion that \(\omega(q) \neq 2^{n-1} \). But by Lemma 3.2, we would not be able to identify \(\omega(q) \), since all of the factors of the index \(2^{n-1} p \) not equal to 2 would still remain as candidates for the rank of apparition of \(q \) in \(\{ F_n \} \).
Acknowledgment
The author would like to thank both referees, whose expertise and constructive comments improved the quality and the appearance of this paper.

References

John H. Jaroma: Department of Math & Computer Science, Austin College, Sherman, TX 75090, USA
E-mail address: jjaroma@austincollege.edu
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk