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1. Introduction

Singular nonlinear boundary value problems for differential equations and difference
equations have been extensively studied in the literature; see [1, 4, 11, 12, 16, 18-22]
and the references therein. However, the research for singular boundary value problems
on time scales is still in its beginning stages. In [8], the authors investigate the existence
of a positive solution for the three-point dynamic boundary value problem

Y224 f(x,y) =0, x€(0,1], y(0) =0, y(p) = y(a*(1)), (1.1)

where T is a time scale, the interval (0,1] N T is abbreviated by (0,1], p € (0,1) is fixed,
and f(x, y) is singular at y = 0 and possibly at x = 0, y = co.

Throughout we denote by T a time scale, that is, a nonempty closed subset of the real
numbers. In this paper we study the singular second-order m-point dynamic boundary
value problem

AV = f(tx,x%) +e(t), te(a,b],

m—2 2
x*a) =0, x(o(b)) = Z aix (¢ (1.2)
i=1

where a; € R, & € (a,0(b)), i € {1,2,...,m—2}, and f : (a,0(b)) x R* — R satisfies the
Carathéodory conditions, that is, for each (x, y) € R?, the functlon f(+,x,y) is measurable
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2 Singular multipoint dynamic boundary value problems

on (a,0(b)) and for (see Definition 2.1) V-a.e. t € (a,0(b)), the function f(t,-,-) is con-
tinuous on R?. Here we allow f and e to be singular at t = o(b).

In particular, when the nonlinearity f does not contain x2, the problem (1.2) has
been investigated for the nonsingular case by some authors, see He [10]; when T = R, the
problem (1.2) has been studied for the nonsingular case by Gupta et al. [9] and Ma [14]
to name a few. Recently, Ma and O’Regan [16] established the existence of a solution to
the singular problem (1.2) in the special case T = R by making use of the ideas of [4, 9].
The motivation for this paper is [16].

The paper is organized as follows. In Section 2, we state some preliminary definitions
and results about Lebesgue delta and nabla integrals. We then give all spaces relevant
to our work and present the main assumptions ensuring us to obtain the main results.
Section 3 is devoted to the study of the properties of Green’s function. We also state and
prove some lemmas which are required for discussing the problem (1.2). Then we estab-
lish the existence of one solution to the problem (1.2) in Section 4.

The time scale related notations adopted in this paper can be found, if not explained
specifically, in almost all literature related to time scales. The readers who are unfamiliar
with this area can consult for example [2, 3, 5-8, 10, 13, 15] for details.

2. The Lebesgue delta and nabla integrals

The integrals mentioned in this paper refer to the Lebesgue integrals on the time scale T.
For the main notions and facts from Lebesgue measures and Lebesgue integrals theory,
we refer the reader to [5] and [7, pages 157-163]. Here we give some definitions and
lemmas for the convenience of the reader.

Let up and uy be the Lebesgue A-measure and the Lebesgue V-measure on T, respec-
tively. If A C T satisfies ua(A) = pv(A), then we call A measurable on T and denote by
u(A) this same value, named the Lebesgue measure of A.

Definition 2.1. Let P denote a proposition with respecttot € T, A C T.

(1) If there exists E; C A with pa(E;) = 0 such that P holds on A\E;, then P is said
to hold A-a.e. on A.

(2) If there exists E; C A with yy(E;) = 0 such that P holds on A\E,, then P is said
to hold V-a.e. on A.

(3) If there exists E; C A with pa(E;) = 0 and E, C A with py(E;) = 0 such that P
holds on A\(E; U E,), then P is said to hold AV-a.e. on A (or VA-a.e.on A).

(4) If there exists E C A with y(E) = 0 such that P holds on A\E, then P is said to
hold a.e. on A.

Clearly, if P holds a.e. on A C T, then P holds A-a.e. on A, V-a.e. on A, and AV-a.e.
on A simultaneously.

Remark 2.2. In the case T = R, all concepts defined above coincide with that of a.e. on
R. In this case we have pp = yy = p = m, where m is the usual Lebesgue measure on R.
In the case T = Z, for any subset E C Z, we know that y (E) = pv(E) coincides with the
number of points of the set E. So u(E) = pa(E) = puv(E) = 0 ifand only if E = &.
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Combining [7, Theorems 5.82 and 5.84], we have the following example as a further
illustration of Definition 2.1.

Example 2.3. Let f be a bounded function defined on the finite closed interval [r,s].
Assume that f is regulated. Consider the conditions:
(1) f is Riemann A-integrable from r to s;
(2) f is Riemann V-integrable from r to s.
We have
(a) if (1) holds, then f is rd-continuous A-a.e. on [7,s);
(b) if (2) holds, then f is Id-continuous V-a.e. on (r,s];
(c) if both (1) and (2) hold, then f is continuous AV-a.e. on (r,s). If, moreover, r =
minT and s = max T, then f is continuous AV-a.e. on [r,s]. Here the continuity
of f atr and s is understood as continuous from the right and left, respectively.

Definition 2.4. For aset E C T and a function f : E — R, the Lebesgue integrals of f over
E denoted by

Jf(t)At, Jf(t)Vt 2.1)
E E

are called the Lebesgue A-integral of f over E and the Lebesgue V-integral of f over
E on T, respectively. Furthermore, we call f Lebesgue A-integrable on E and Lebesgue
V-integrable on E if [; f(t)At and [, f (£)Vt are finite, respectively.

Letr,s € T, r < s. We will use the notations

J:f(t)At:Jw F(OAL ff(t)w: FO)VL (2.2)

()

respectively. Both intervals [r,7) and (s,s] are understood as the empty set.
From [7, page 159], we have that all theorems of the general Lebesgue integration
theory hold also for the Lebesgue delta and nabla integrals on T.

LeEMMA 2.5. If f is Lebesgue A-integrable on [r,s), then the indefinite integral [! f ()A€ is
absolutely continuous on [r,s].

LemMa 2.6. If f is Lebesgue V-integrable on (r,s), then the indefinite integral [} f (€)V € is
absolutely continuous on [r,s].
LemMa 2.7. If f is Lebesgue A-integrable on [r,s), then F defined by
t
F(t) = J fH)AL, t e [r,s) satisfies FA = f A-ace. on [r,s). (2.3)

LemMa 2.8. If f is Lebesgue V -integrable on (r,s], then F defined by

F(t) = th(€)V€, t € (r,s] satisfies F¥ = f V-a.e. on (r,s]. (2.4)
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LemMmA 2.9. If f is everywhere finite and absolutely continuous on [r,s], then f% exists
A-a.e. and is Lebesgue A-integrable on [r,s) and satisfies

t
f(t)=JfA(€)A€+f(r), telrs). (2.5)

Lemma 2.10. If f is everywhere finite and absolutely continuous on [r,s], then fV exists
V-a.e. and is Lebesgue V -integrable on (r,s] and satisfies

t
f(t) = L FYOVLEe+ f(r), telrs] (2.6)

LEmMMA 2.11. Let f be defined on [r,s].
(i) If f is continuous on [r,s), then [} f(p(t))Vt= [, f(t)AL
(ii) if f is continuous on (r,s), then [} f(a(t))At = [} f(t)Vt.

Proof. We only show (i) as the proof of (ii) is similar to the proof of (i). Since f is con-
tinuous on [r,s), there exists F : [r,s] — R such that FA = f holds on [r,s). Then

FY(t) = F*(p(t) = f(p(1)), Vte (rs] (2.7)

by [6, Theorem 8.49]. So

f F(B)AL = JSFA(t)At — F(s) - F(r),
! ! (2.8)

ff(p(t))w - fFA(p(t))Vt - J:Fv(t)Vt — F(s)— F(r).

This implies that (i) holds. O

Now we define the Banach spaces C[a,0(b)], C*[a,0(b)], and LY (a,0(b)] to be the
sets of all continuous functions on [a,c(b)] with the sup norm || ||, all A-differentiable
functions with continuous A-derivative on [a,0(b)] with the norm ||x| = max{|/x],

lx*ll«}, and all Lebesgue V-integrable functions on (a,0(b)] with the norm x|l =
Ja(b)

a

|x(t)| Vt, respectively. Let
LY (a,0(b)) = {x: x |@aa) € LY (a,d] for every interval (a,d] < (a,0(b))}. (2.9)

We denote by AC[a,o(b)] the space of all absolutely continuous functions on [a,0(b)]
and set

ACic[a,0(b)) = {x:x |{g4 € AC[a,d] for every interval [a,d] < [a,0(b))}. (2.10)
Let E be the Banach space

E={xeL}.(a0(b)):[a(b)-plxeL¥(a,a(b)]}, (2.11)
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equipped with the norm

a(b)
Ixllg = j [0(b) - p()] | x(1) | V1, (2.12)

a

and let X be the Banach space

X ={ue Ca,0(b)) :ueCla,o(b)], lim [o(b) — t]u(t) exists}, (2.13)

t—a(b)
equipped with the norm
lullx = max {||ulle,||[0c(b) — T]u?||..}, wheret(t):=t, VtET. (2.14)

A function x : [a,0(b)] — R is said to be a solution of the problem (1.2) provided x is A-
differentiable A-a.e. on [a,0(b)), x® is V-differentiable AV-a.e. on (a,b], x2V : (a,b] — R
satisfies the dynamic equation in (1.2), and x fulfills the boundary conditions in (1.2).
We make the following assumptions throughout this paper.
(A0) 0(b) # maxT, & € (a,0(b)) forie {1,2,....m—2},a<é << <8, 0 <
o(b),a;e Rforie {1,2,...,m—2},m>3,and

m—2 Zm—z |a|
> ai#1. Wedefine A:= 1+%. (2.15)
i=1 ‘ 1- ZIM:I a;
(A1) There exist p,q,r € E such that for (u,v) € R? we have
| f(t,u,v)| < p(t)lul +[o(b) —t]q(t)|v| +r(t), V-a.e. on (a,0(b)]. (2.16)

(A2) e € E, thatis, e € L} (a,0(b)) and f;(b) [o(b) — p(t)]]e(t)| VE < oo,
By (A1) and (A2), we allow f(-,u,v) and e(-) to be singular at t = ¢(b). When a(b) = b,
their singularities are clear. When o(b) > b, their singularities are reflected on that both
f(-,u,v) and e(-) may not be defined at t = g(b). If we put f(o(b),u,v) = o, then

o(b) b
Flt,u,v)Vi = J Flt,uv)Vi+ f(o(b),u,v)[0(b) - b] = oo, (2.17)

Now (2.16) means that co = co provided p(o(b)) = q(a(b)) = r(a(b)) = co.

3. Green’s function and preliminary lemmas

Let G be Green’s function of the second-order boundary value problem

—x*V =0, on(ab], x%(a) =0, x(a(b)) =0, (3.1)
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which can be explicitly given by

o(b)—s ifa<t<s=<o(b),
G(t,s) = (3.2)
ob)—t ifa<s<t=<o(b).
From this explicit representation, the following lemma is clear.
LEmMA 3.1. We have
0 < G(t,s) < G(s,s), Vs,t€[a,a(b)]. (3.3)
For each y € E, we define
o(b)
u(t) = G(t,s)y(s)Vs, forte [a,a(b)]. (3.4)
Since
a(b) a(b)
G(t,5)y(s)Vs| < I G(s,s) | y(s)| Vs
o(b)
~ [ Lo =511y s )
a(b)
< J [0(6) - p()] | 9(s)| Vs
= ||yllg < oo,
we know that u: [a,0(b)] — R is well defined.
LEmMA 3.2. Let y € E. Then
J G(+,5)y(s)Vs € ACioc[a,0(D)). (3.6)

Proof. We have

a(b)
J Gt,5)y vS_J o (b)—t]y(s)Vs-f—L [o(6)—sly()Vs.  (3.7)

Since y € E, we have y € Lloc(a,o(b)) and [0(b) — 7]y € LY (a,0(D)]. Thus (3.6) follows
from Lemma 2.6. O

LEmMaA 3.3. Let y € E. Then
yeL¥(a,0(b)], where(t) J y(s)Vs, VteT. (3.8)
Proof. Set

ifa<s<t< ,
®(t,s)={g(5) ifa<s<t<o(b) (3.9)

ifa<t<s=<o(b).
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Since

o(b) (o(b) alb) o(b)
J J |D(t,s)| VtVs = J J [ y(s)| VtVs
a a a p(s)

o(b) (3.10)
= | 1o® -p9)] 176 Vs = Iyl < o,
we get by the Fubini theorem [2] that
t a(b)
f |y(s)|V$=J |D(t,5)| Vs € LV (a,0(b)]. (3.11)
Furthermore,
o(b) t a(b) a(b)
J J y(s)Vs Vtzj J O(t,s)Vs| Vit
a(b) ra(b)
< J j |D(t,5) | Vs V1 (3.12)
a(b) ro(b)
=J J | D(t,s)| VEVs < oo,
Thus (3.8) holds. O
LemMA 3.4. Let y € E. Then
a(b)
lir&) G(t,5)y(s)Vs=0. (3.13)
t—o a

Proof. We have

a(b) t a(b)
lim f Glt,s)y(s)Vs = lim { J [o(b) - t]y(s)Vs—i—J [o(b) - s]y(s)Vs}.

t

(3.14)
Since y € E, we have [o(b) — 7]y € LV (a,0(b)]. So
a(b)
lim [o(b) —s]y(s)Vs=0. (3.15)
t—a(b) Jt
Now we verify that
t
lir&) [o(b) —t]y(s)Vs=0 (3.16)
t—o a
holds, which completes the proof. We have
a(b) r r a(b) a(b)
J J y(s)VsVr = rJ y(s)Vs - J p(r)y(r)Vr
Lo ‘ ! ‘ (3.17)

t a(b)
~[o®) —1] [ yOVs+ [ o) -p©)]ye) Vs

t
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Since y € E, we have [o(b) — p]y € LV (a,0(b)], so
a(b)
lim) [a(b) — p(s)]y(s)Vs=0. (3.18)

t—a(b

On the other hand, we know from Lemma 3.3 that y € LY (a,0(b)], so

a(b)
s)VsVr = li y(r)Vr=0. 3.19
tll:?(qb J J y ST tj%z) t y(r) ’ ( )
Therefore the limit in (3.16) exists and is equal to zero, that is, (3.16) holds. O
For each y € E, we define
(Ty)(t J G(t,8)y(s)Vs+ —————5— - z a,J G(&;,s) Vs. (3.20)
1 “1 i=1

Now since (using Lemma 3.1 and the notation introduced in (A0))

|Ty)t)|<J G(s,s |y(s)|Vs+|Z|a,|J G(s,s)| y(s)| Vs

| z 1

a(b)
=AJ [o(b) —s]|y(s)| Vs < Allyllg < oo,

(3.21)
we know from (A0) that Ty : [a,0(b)] — R is well defined.
LemMa 3.5. Let y € E. Then Ty € X and
(Ty)Av +y=0, AV-a.e on(a,b]. (3.22)

Proof. By using Lemma 3.2, Ty € ACioc[a,0(b)) for y € E. Together with Lemma 2.9, we
have that T'y is A-differentiable A-a.e. on [a,0(b)). Then

(Ty)» J y(s)Vs, (3.23)

s0 (Ty)® € ACioc[a,0(b)) since y € LY (a,a(b)). Next,
(Ty)2V(t) = —y(t), AV-ae.on (a,b]. (3.24)

(Note that yuy ({b}) = b — p(b) > 0 when p(b) < b. If 6(b) = b holds at the same time, that
is, b is an Isrd point, then this equality just holds for AV-a.e. t € (a,b). Further, by means
of the definition of AV-a.e. and the fact of ua({b}) = 0 for o (b) = b, we get (3.24).) Next,
since

t
(Ty)(t) = j (Ty)A(s)As + (Ty)(a) (3.25)
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and (Ty)" € LY (a,0(b)] from Lemma 3.3, we have Ty € AC[a,0(b)] by means of Lemma
2.6. Now we need to verify that lim;_,()[0(b) — t](Ty)(¢) exists. Indeed, according to

t

lim [o(b) —t](Ty)2(t) = — lim | [a(b) —t]y(s)Vs, (3.26)

t—a(b) t—a(b)Ja

we obtain the existence of the above limit from the proof of Lemma 3.4. Therefore, Ty €
X when y € E. The proof is complete. g

LEMMA 3.6. Let y € E. Then
m—2
(Ty)Xa)=0,  (Ty)(o(b) =D a(Ty)(&). (3.27)

i=1

Proof. The fact that (T'y)® € Cla,0(b)) and y € lec(a,a(b)) imply that

(Ty)A(a) = ltizg(Ty)A(t) = —lim y(s)Vs = (3.28)

t—a )g

From Ty € C[a,0(b)] and Lemma 3.4, we have

(T (o) = lim (T3)(0)
a(b) 1
= Jim |Gy Vs Zl a,J G(&,5) y(5)V's

J G(&,s)y(s)Vs.
1_ 1 1 61, i= 1

(3.29)
By (3.20), we have
m—2
(Ty)(&) = ,[ G(&iss)y(s)V LT, G(&i»s)y ]
; e ( ‘ I ’ s 1 a, i=1 I
1
1>, z azj G(&,5) y(s)Vs = (Ty)(a(b)).
ai i=1
(3.30)
This completes the proof. O

For x € X, we define a nonlinear operator N by

(Nx)(t) = — f (t,x(t),x"(t)) —e(t), forte (a,a(b)). (3.31)
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From (A1) and (A2), we conclude that N : X — E is well defined. In fact, for d < a(b),
d d d
J |(Nx)(8) | VE < J oron Vt+J le(t)| V't

d d d d
sj p(t)|x(t)|Vt+J [o(b)—t]q(t)le(t)IVHJ r(t)Vt+J le(t)| V¢

< ||x||X(Ldp<t)Vt+ qu(t)w) ; Ldr(t)Vt+ Ld le(t) |Vt < oo.

(3.32)
So Nx € LY (a,0(b)). Moreover,
o(b)
[ o - ponvove]
a(b)
sj [0(b) — p(B)] | £ (6,x(1), (1)) + (1) | Vi
o(b)
<[ o) - pw)pio) (0|t
a(b) (3.33)
+[ 1) - p1lob) - ()| o) vt
a(b) a(b)
+L [a(b)—p(t)]r(t)VtJrL [6(b) - p(D)] | e()| V't
< lplelixlle +lIqllel[[o(b) — T]x%|| + Il + llellg
<llxlix(Iplle+ lIqlle) +1I7llg + llellg < co.
Thus [0(b) — p](Nx) € LY (a,0(D)].
LemMma 3.7. TN : X — X is completely continuous.
Proof. By the definitions of T' and N, we get that
o(b) a(b)
((TN)x)(t) = — G(t,s)f(s,x(s),xA(s))Vs—J G(t,s)e(s)Vs
S a,j G(£:9) f (5:x(),52(s)) Vs (3.34)
> “t i=1
- i e(s)V
ST, 121 aJ e(s)Vs.

For each x;,x, € X,
||(TN)X1 - (TN)X2||X

= max {|[(TN)x; — (TN)xa||., [|[a(b) — 7] [(TN)x1)* — ((TN)x3) ||
(3.35)
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Since f satisfies Carathéodory’s conditions, together with (use (A0) and Lemma 3.1)

[ (TN)x1 = (TN)x, |

a(b)
< G(t,5) | f (s,%2(5),25(5)) — f (5,1 (5),x8(s)) | Vs

a

Ty ZIaH G(E3) | £ (572293305 = F(5:1(5),20(5)) | Ts

< ALG G(s,5) | £ (s,22(5),x5(5)) — f (5,1(5),x8(5)) | Vs,
| [o(b) = ][ ((TN)x1) (1) = (TN)x2) ()] |

t
< [o0) —a] [ 175396 = f(s2:(,58) | Vs,
’ (3.36)

it is easy to show that TN : X — X is continuous.
Now let B C X be a bounded set. We need to show that (TN)(B) C X is a relatively
compact subset. Let {x,},-; C B and denote

wa(t) = (TN)x%) (), za(t) = [0(b) = t] ((TN)x,) (1), (3.37)
We only need to show that there exists a subsequence with

w, — w*, in Cla,0o(b)], (3.38)
z, — 2%, inCla,o(b)], (3.39)

where z*(t) = [a(b) — t](w*)2(¢) for t € [a,0(b)). We prove (3.38) and (3.39) by the
following three steps.

Step 1. We prove that (TN)(B) is bounded. Let M = sup{||x|lx : x € B}. Then M is a
finite number. For each t € (a,0(b)), we have

| (Nx) (1) | < | f (£xa(0),x5(6)) | + [ e(t) |
< p(O)|xull + [0 (B) — t]q(t) | x () | +7() + | e(D) | (3.40)
< p(OM+q(t)M+r(t)+ |e(t)] := x(¥).

Clearly, (A1) and (A2) imply that y € E. Thus

a(b)
HNMmSJ [0(b) — p(O)]())Vt:= K < oo, (3.41)

It follows that T'((Nx,)(t)) is bounded. So (TN)(B) is bounded.
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Step 2. We prove that {w,},_, is equicontinuous on [a,0(b)]. For every t;,t, € [a,0(b)]
with #; < t,, according to Lemma 2.11(i), (3.23), and (3.40), we get

t

t
((TN)xn)%)At\ < [ 1N o ar

t

|Wn(t1) - Wn(tZ) | =

s)Vs

[ 1)
sJ JX VsAt—J J A5 VsVL.

By the proof of Lemma3.3, y o p € LY(a,0(b)]. Thus (3.42) shows that {w,};_, is
equicontinuous on [a,0(b)]. Therefore by the Arzela-Ascoli theorem, after taking a sub-
sequence if necessary, (3.38) holds.

Step 3. We prove that {z,},_, is equicontinuous on [a,0(b)]. For every t;,t, € [a,0(b)]
with #; < t,, we have by Lemma 3.5 and (3.40) that

At<J J | Nx,(s)| VsAt (3.42)

t
|zn(t1) — zn(t2) | SJ |zy (t)| V't

3]

t
= [ 1= (TN) 0+ 1o0) - pO] (TN)) " (0] 91

t

< Jtzjt |an(s)|Vth+Jtz [o(b) = p(£)] | Nxa(t) | V't (3.43)
t1 Ja t
ty rt t

SL LX(S)VSV”L [o(b) —p(O)|x (1) V't

_ Lt U:Xu)vﬁ [o(b) —p(t)])((t)] vt.
Since y € E and because of Lemma 3.3, we know that
x+[ab)—plye LY (a,0(b)]. (3.44)
Thus (3.43) shows that {z,},_, is equicontinuous on [a,0(b)]. Therefore by the Arzela-
Ascoli theorem, after taking a subsequence if necessary, (3.39) holds.

This completes the proof. O

4, Main result

THEOREM 4.1. Let f : (a,0(b)) X R? — R satisfy Carathéodory’s conditions. Assume that
(A0), (A1), and (A2) hold. Then the problem (1.2) has at least one solution in X provided

Allplle+liglle < 1. (4.1)
Proof. From Lemmas 3.5 and 3.6, we know that x € X is a solution of (1.2) if and only if

x=TNx. (4.2)
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By Lemma 3.7, we will apply the Leray-Schauder continuation theorem [17, Corollary
IV.7] to obtain the existence of a solution for (4.2) in X. To do this, it suffices to verify
that the set of all possible solutions of the family of equations

V= 1f(t,x,x") +Xe(t) on (a,b]

m-2 4.3

x%a) =0, x(o(b) = > ax(&) (43)
i1

is, a priori, bounded in X by a constant independent of A € [0, 1].
Let x € X be a solution of (4.3) for some A € [0,1]. Then for t € [a,0(b)], we have

ol = [ Gl PN Vs + S o[ 6 N0 s
’ SrTa 2%,
sAf@ G5 N | (Nx)()| Vs o
—AJ o(b) — s] | x2V (s) | Vs
< Allx*V g
This implies
lxlloo < Al || (4.5)
Similarly,
To(0) - 12| = | [0~ 1] - [ Avw9)9s]
a(b) (4.6)
< J [0(b) = p(5)] [x27 () [ Vs = 1x*V I,
and therefore
Ilo(®) = 7]x], < 1x*7Il£. (4.7)

Now we get from (4.3), (4.5), (4.7), (A1), and (A2) that

a(b)
1A | = j [0(b) — p(0)] |22V ()| V't

a

- J Ao(®) = p(®)]| £(£,x(8),x2(8) +e(t)| V't

o(b)
< J [a(b) —p(®)][p(t) | x(t) | +[0(b) —t]q(t) | x2(t)| +r(t)+ |e(t) ||Vt

<lIplielxlle +lqliell[o(B) = T]x||, + lI7llz + llelle

< Allpllelx®Y e+ liqlellx*Y e+ lIrlle + llelle.
(4.8)
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Thus we get from the assumption (4.1) that

Irll, +llel
BRI £ L = 4.9
E= T (Allpls + llqlle) (49)

Here c is a constant, which is independent of A € [0, 1]. Therefore, by (4.5) and (4.7), we
get

llxllx = max {lIx]le, |[[0(b) — T]x%|| .} < max{c,Ac} = Ac. (4.10)

Therefore the proof is complete. O
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