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1. Introduction

The traditional predator-prey model has received great attention from both theoretical and
mathematical biologists and has been studied extensively (e.g., see [1–4] and references
therein). Based on growing biological and physiological evidences, some biologists have
argued that in many situations, especially when predators have to search for food (and
therefore, have to share or compete for food), the functional response in a prey-predator
model should be ratio-dependent, which can be roughly stated as that the per capita predator
growth rate should be a function of the ratio of prey to predator abundance. Starting from
this argument and the traditional prey-dependent-only mode, Arditi and Ginzburg [5] first
proposed the following ratio-dependent predator-prey model:

·
x = x(a − bx) − cxy

my + x
,

·
y = y

(
− d +

fx

my + x

) (1.1)
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which incorporates mutual interference by predators, where g(x) = cx/(my + x) is a
Michaelis-Menten type functional response function. Equation (1.1) has been studied by
many authors and seen great progress (e.g., see [6–11]).

Xu and Chen [11] studied a delayed two-predator-one-prey model in two patches
which is described by the following differential equations:

x′
1(t) = x1(t)

(
a1 − a11x1(t) − a13x3(t)

m13x3(t) + x1(t)
− a14x4(t)
m14x4(t) + x1(t)

)

+D1(t)(x2(t) − x1(t)),

x′
2(t) = x2(t)(a2 − a22x2(t)) +D2(t)(x1(t) − x2(t)),

x′
3(t) = x3(t)

(
− a3 +

a31x1(t − τ1)
m13x3(t − τ1) + x1(t − τ1)

)
,

x′
4(t) = x4(t)

(
− a4 +

a41x1(t − τ2)
m14x4(t − τ2) + x1(t − τ2)

)
.

(1.2)

In view of periodicity of the actual environment, Huo and Li [12] investigated a more general
delayed ratio-dependent predator-prey model with periodic coefficients of the form

·
x1(t) = x1(t)

(
a1(t) − a11(t)x1(t − τ11) − a12(t)x2(t)

m1 + x1(t)

)
,

·
x2(t) = x2(t)

(
− a2(t) +

a21(t)x1(t − τ21)
m1 + x1(t − τ21)

− a22(t)x2(t − τ22) − a23(t)x3(t)
m2 + x2(t)

)
,

·
x3(t) = x3(t)

(
− a3(t) +

a32(t)x2(t − τ32)
m2 + x2(t − τ32)

− a33(t)x3(t − τ33)
)
.

(1.3)

In order to consider periodic variations of the environment and the density regulation
of the predators though taking into account delay effect and diffusion between patches,
more realistic and interesting models of population interactions should take into account
comprehensively other than one or two aspects. On the other hand, in order to unify the
study of differential and difference equations, people have done a lot of research about
dynamic equations on time scales. The principle aim of this paper is to systematically unify
the existence of periodic solutions for a delayed ratio-dependent predator-prey system with
functional response and diffusion modeled by ordinary differential equations and their
discrete analogues in form of difference equations and to extend these results to more
general time scales. The approach is based on Gaines and Mawhin’s continuation theorem
of coincidence degree theory, which has been widely applied to deal with the existence of
periodic solutions of differential equations and difference equations.

Therefore, it is interesting and important to study the following model on time
scales T:

zΔ1 (t) = b1(t) − a1(t) exp{z1(t)} −
c1(t) exp{z3(t)}

m1(t) exp{z3(t)} + exp{z1(t)}
+D1(t)

(
exp{z2(t) − z1(t)} − 1

)
,

zΔ2 (t) = b2(t) − a2(t) exp{z2(t)} +D2(t)
(
exp{z1(t) − z2(t)} − 1

)
,



Advances in Difference Equations 3

zΔ3 (t) = −r1(t) − a3(t) exp{z3(t − τ11)} +
d1(t) exp{z1(t − τ12)}

m1(t) exp{z3(t − τ12)} + exp{z1(t − τ12)}

− c2(t) exp{z4(t)}
m2(t) exp{z4(t)} + exp{z3(t)} ,

zΔ4 (t) = −r2(t) − a4(t) exp{z4(t − τ21)} +
d2(t) exp{z3(t − τ22)}

m2(t) exp{z4(t − τ22)} + exp{z3(t − τ22)}
(1.4)

with the initial conditions

zi(s) = ϕi(s) ≥ 0, s ∈ [−τ, 0] ∩ T, ϕi(0) > 0, ϕi(s) ∈ Crd([−τ, 0] ∩ T,R+), i = 1, 2, 3, 4,
(1.5)

where τ = max{τij , i, j = 1, 2}. In (1.4), zi(t) represents the prey population in the ith patch
(i = 1, 2), and zi(t) (i = 3, 4) represents the predator population. z1(t) is the prey for z3(t), and
z3(t) is the prey for z4(t) so that they form a food chain.Di(t) denotes the dispersal rate of the
prey in the ith patch (i = 1, 2). For the sake of generality and convenience, we always make
the following fundamental assumptions for system (1.4):

(H) ai(t) ∈ Crd(T,R+) (i = 1, 2, 3, 4), bi(t), ci(t), di(t), ri(t), mi(t), Di(t) ∈ Crd(T,R+) (i =
1, 2) are all rd-continuous positive periodic functions with period ω > 0; τij(i, j = 1, 2) are
nonnegative constants.

In (1.4), set xi(t) = exp{zi(t)}, yj(t) = exp{zj+2(t)}, i = 1, 2, j = 1, 2. If T = R, then
(1.4) reduces to the ratio-dependent predator-prey diffusive system of three species with time
delays governed by the ordinary differential equations

x′
1(t) = x1(t)

(
b1(t) − a1(t)x1(t) −

c1(t)y1(t)
m1(t)y1(t) + x1(t)

)
+D1(t)(x2(t) − x1(t)),

x′
2(t) = x2(t)(b2(t) − a2(t)x2(t)) +D2(t)(x1(t) − x2(t)),

y′
1(t) = y1(t)

(
− r1(t) − a3(t)y1(t − τ11) +

d1(t)x1(t − τ12)
m1(t)y1(t − τ12) + x1(t − τ12)

− c2(t)y2(t)
m2(t)y2(t) + y1(t)

)
,

y′
2(t) = y2(t)

(
− r2(t) − a4(t)y2(t − τ21) +

d2(t)y1(t − τ22)
m2(t)y2(t − τ22) + y1(t − τ22)

)
.

(1.6)

If T = Z, then (1.4) is reformulated as

x1(k + 1) = x1(k) exp
{
b1(k) − a1(k)x1(k) −

c1(k)y1(k)
m1(k)y1(k) + x1(k)

+D1(k)
(
x2(k)
x1(k)

− 1
)}

,

x2(k + 1) = x2(k) exp
{
b2(k) − a2(k)x2(k) +D2(k)

(
x1(k)
x2(k)

− 1
)}

,
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y1(k + 1) = y1(k) exp
{
− r1(k) − a3(k)y1(k − τ11) +

d1(k)x1(k − τ12)
m1(k)y1(k − τ12) + x1(k − τ12)

− c2(k)y2(k)
m2(k)y2(k − τ12) + y1(k − τ12)

}
,

y2(k + 1) = y2(k) exp
{
− r2(k) − a4(k)y2(k − τ21) +

d2(k)y1(k − τ22)
m2(k)y2(k − τ22) + y1(k − τ22)

}

(1.7)

which is the discrete time ratio-dependent predator-prey diffusive system of three species
with time delays and is also a discrete analogue of (1.6).

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. Throughout
the paper, we assume the time scale T is unbounded above and below, such as R,Z and
∪
k∈Z

[2k, 2k + 1]. The following definitions and lemmas can be found in [13].

Definition 2.1. The forward jump operator σ : T → T, the backward jump operator ρ : T →
T, and the graininess μ : T → R

+ = [0,+∞) are defined, respectively, by

σ(t) = inf{s ∈ T | s > t}, ρ(t) = sup{s ∈ T | s < t}, μ(t) = σ(t) − t for t ∈ T. (2.1)

If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) = t, then t is
called left-dense (otherwise: left-scattered).

If T has a left-scattered maximum m, then T
k = T \ {m}; otherwise T

k = T. If T has a
right-scattered minimum m, then Tk = T \ {m}; otherwise Tk = T.

Definition 2.2. Assume f : T → R is a function and let t ∈ T
k. Then one defines fΔ(t) to be the

number (provided it exists) with the property that given any ε > 0, there is a neighborhood
U of t such that

∣∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)
∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.2)

In this case, fΔ(t) is called the delta (or Hilger) derivative of f at t. Moreover, f is said to be
delta or Hilger differentiable on T if fΔ(t) exists for all t ∈ T

k. A function F : T → R is called
an antiderivative of f : T → R provided FΔ(t) = f(t) for all t ∈ T

k. Then one defines

∫ s

r

f(t)Δt = F(s) − F(r) for r, s ∈ T. (2.3)

Definition 2.3. A function f : T → R is said to be rd-continuous if it is continuous at right-
dense points in T and its left-sided limits exists (finite) at left-dense points in T. The set of
rd-continuous functions f : T → R will be denoted by Crd(T,R).



Advances in Difference Equations 5

Definition 2.4. If a ∈ T, infT = −∞, and f is rd-continuous on (−∞, a], then one defines the
improper integral by

∫a

−∞
f(t)Δt = lim

T →−∞

∫a

T

f(t)Δt (2.4)

provided this limit exists, and one says that the improper integral converges in this case.

Definition 2.5 (see [14]). One says that a time scale T is periodic if there exists p > 0 such that
if t ∈ T, then t ± p ∈ T. For T/=R, the smallest positive p is called the period of the time scale.

Definition 2.6 (see [14]). Let T/=R be a periodic time scale with period p. One says that the
function f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t +ω) = f(t) for all t ∈ T and ω is the smallest number such that f(t +ω) = f(t).

If T = R, one says that f is periodic with period ω > 0 if ω is the smallest positive
number such that f(t +ω) = f(t) for all t ∈ T.

Lemma 2.7. Every rd-continuous function has an antiderivative.

Lemma 2.8. Every continuous function is rd-continuous.

Lemma 2.9. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T,R), then

(a)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
af(t)Δt + β

∫b
ag(t)Δt;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
af(t)Δt ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T | a ≤ t < b}, then |∫baf(t)Δt| ≤ ∫bag(t)Δt.

Lemma 2.10. If fΔ(t) ≥ 0, then f is nondecreasing.

Notation 1. To facilitate the discussion below, we now introduce some notation to be used
throughout this paper. Let T be ω-periodic, that is, t ∈ T implies t +ω ∈ T,

κ = min
{
[0,+∞) ∩ T

}
, Iω = [κ, κ +ω] ∩ T,

f =
1
ω

∫
Iω

f(s)Δs =
1
ω

∫κ+ω

κ

f(s)Δs, fM = sup
t∈T

f(t), fL = inf
t∈T

f(t),
(2.5)

where f ∈ Crd(T,R) is an ω-periodic function, that is, f(t +ω) = f(t) for all t ∈ T, t +ω ∈ T.

Notation 2. Let X, Z be two Banach spaces, let L : DomL ⊂ X → Z be a linear mapping,
and let N : X → Z be a continuous mapping. If L is a Fredholm mapping of index zero
and there exist continuous projectors P : X → X and Q : Z → Z such that ImP = KerL,
KerQ = ImL = Im(I − Q), then the restriction L|DomL∩KerP : (I − P)X → ImL is invertible.
Denote the inverse of that map by KP . If Ω is an open bounded subset of X, the mapping N

will be called L-compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.11 (Continuation theorem [15]). LetX,Z be two Banach spaces, and let L be a Fredholm
mapping of index zero. Assume that N : Ω → Z is L-compact on Ω with Ω is open bounded in X .
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Furthermore assume the following:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx /=λNx;

(b) for each x ∈ ∂Ω ∩ KerL, QNx/= 0;

(c) deg{JQN, Ω ∩ KerL, 0}/= 0.

Then the operator equation Lx = Nx has at least one solution in DomL ∩Ω.

Lemma 2.12 (see [16]). Let t1, t2 ∈ Iω . If g : T → R is ω-periodic, then

g(t) ≤ g(t1) +
∫κ+ω

κ

|gΔ(s)|Δs, g(t) ≥ g(t2) −
∫κ+ω

κ

|gΔ(s)|Δs. (2.6)

3. Existence of Periodic Solutions

The fundamental theorem in this paper is stated as follows about the existence of an ω-
periodic solution.

Theorem 3.1. Suppose that (H) holds. Furthermore assume the following:

(i) bi(t) > Di(t), t ∈ T, i = 1, 2,

(ii) b1 −D1 >
( c1
m1

)
,

(iii) d1 > r1 +
( c2
m2

)
,

(iv) d2 > r2,

then the system (1.4) has at least one ω-periodic solution.

Proof. Consider vector equation

zΔ(t) = Y (t), where z =
(
z1, z2, z3, z4

)T
, zΔ =

(
zΔ1 , z

Δ
2 , z

Δ
3 , z

Δ
4

)T
, Y =

(
Y1, Y2, Y3, Y4

)T
,

Y1 = b1(t) −D1(t) − a1(t) exp{z1(t)} −
c1(t) exp{z3(t)}

m1(t) exp{z3(t)} + exp{z1(t)}
+D1(t) exp{z2(t) − z1(t)},

Y2 = b2(t) −D2(t) − a2(t) exp{z2(t)} +D2(t) exp{z1(t) − z2(t)},

Y3 = −r1(t) − a3(t) exp{z3(t − τ11)} +
d1(t) exp{z1(t − τ12)}

m1(t) exp{z3(t − τ12)} + exp{z1(t − τ12)}

− c2(t) exp{z4(t)}
m2(t) exp{z4(t)} + exp{z3(t)} ,

Y4 = −r2(t) − a4 exp{z4(t − τ21)} +
d2(t) exp{z3(t − τ22)}

m2(t) exp{z4(t − τ22)} + exp{z3(t − τ22)} .
(3.1)
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Define

X = Z =
{
z ∈ Crd(T,R4)|zi(t +ω) = zi(t), i = 1, 2, 3, 4, ∀t ∈ T

}
,

||z|| = ‖(z1, z2, z3, z4)T‖ =
4∑
i=1

max
t∈Iω

|zi(t)|, z ∈ X (or Z),
(3.2)

where | · | is the Euclidean norm. Then X and Z are both Banach spaces with the above norm
|| · ||. Let Nz(t) = Y, Lz(t) = zΔ(t), Pz(t) = Qz(t) = z, z ∈ X. Then

KerL = R
4, ImL =

{
z ∈ Z

∣∣∣∣∣
∫κ+ω

κ

zi(t)Δt = 0, i = 1, 2, 3, 4, for t ∈ T

}
, (3.3)

and dimKerL = codim ImL = 4. Since ImL is closed in X, then L is a Fredholm mapping
of index zero. It is easy to show that P,Q are continuous projectors such that ImP =
KerL, KerQ = ImL = Im(I − Q). Furthermore, the generalized inverse (to L) KP : ImL →
KerP ∩DomL exists and is given by KPz =

∫ t
κz(s)Δs − (1/ω)

∫κ+ω
κ

∫ t
κz(s)ΔsΔt, thus

QNz =
1
ω

∫κ+ω

κ

Y (t)Δt,

KP (I −Q)Nz =
∫ t

κ

Y (s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

Y (s)ΔsΔt −
(
t − κ − 1

ω

∫κ+ω

κ

(t − κ)Δt

)
Y.

(3.4)

Obviously, QN : X → Z, KP (I −Q)N : X → X are continuous. Since X is a Banach space,
using the Arzela-Ascoli theorem, it is easy to show that KP (I −Q)N(Ω) is compact for any
open bounded set Ω ⊂ X. Moreover, QN(Ω) is bounded, thus, N is L-compact on Ω for any
open bounded set Ω ⊂ X. Corresponding to the operator equation Lz = λNz, λ ∈ (0, 1), we
have

zΔi (t) = λYi(t), i = 1, 2, 3, 4. (3.5)

Suppose that z ∈ X is a solution of (3.5) for certain λ ∈ (0, 1). Integrating on both sides
of (3.5) from κ to κ +ω with respect to t, we have

∫κ+ω

κ

(b1(t) −D1(t))Δt +
∫κ+ω

κ

D1(t) exp{z2(t) − z1(t)}Δt

=
∫κ+ω

κ

a1(t) exp{z1(t)}Δt +
∫κ+ω

κ

c1(t) exp{z3(t)}
m1(t) exp{z3(t)} + exp{z1(t)}Δt,

(3.6)

∫κ+ω

κ

(b2(t) −D2(t))Δt +
∫κ+ω

κ

D2(t) exp{z1(t) − z2(t)}Δt

=
∫κ+ω

κ

a2(t) exp{z2(t)}Δt,

(3.7)
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∫κ+ω

κ

d1(t) exp{z1(t − τ12)}
m1(t) exp{z3(t − τ12)} + exp{z1(t − τ12)}Δt

= r1ω +
∫κ+ω

κ

a3(t) exp{z3(t − τ11)}Δt

+
∫κ+ω

κ

c2(t) exp{z4(t)}
m2(t) exp{z4(t)} + exp{z3(t)}Δt,

(3.8)

r2ω +
∫κ+ω

κ

a4(t) exp{z4(t − τ21)}Δt

=
∫κ+ω

κ

d2(t) exp{z3(t − τ22)}
m2(t) exp{z4(t − τ22)} + exp{z3(t − τ22)}Δt .

(3.9)

It follows from (3.5) to (3.9) that

∫κ+ω

κ

∣∣zΔ1 (t)∣∣Δt ≤ 2
∫κ+ω

κ

a1(t) exp{z1(t)}Δt + 2
∫κ+ω

κ

c1(t) exp{z3(t)}
m1(t) exp{z3(t)} + exp{z1(t)}Δt

< 2aM
1

∫κ+ω

κ

exp{z1(t)}Δt + 2
(

c1
m1

)
ω,

(3.10)

∫κ+ω

κ

|zΔ2 (t)|Δt ≤ 2aM
2

∫κ+ω

κ

exp{z2(t)}Δt, (3.11)

∫κ+ω

κ

∣∣zΔ3 (t)∣∣Δt ≤ 2
∫κ+ω

κ

d1(t) exp{z1(t − τ12)}
m1(t) exp{z3(t − τ12)} + exp{z1(t − τ12)}Δt

< 2d1ω =: l3,

(3.12)

∫κ+ω

κ

∣∣zΔ4 (t)∣∣Δt ≤ 2
∫κ+ω

κ

d2(t) exp{z3(t − τ22)}
m2(t) exp{z4(t − τ22)} + exp{z3(t − τ22)}Δt

< 2d2ω =: l4.

(3.13)

Multiplying (3.6) by exp{z1(t)} and integrating over [κ, κ +ω] gives

∫κ+ω

κ

a1(t) exp{2z1(t)}Δt <

∫κ+ω

κ

(b1(t) −D1(t)) exp{z1(t)}Δt +
∫κ+ω

κ

D1(t) exp{z2(t)}Δt,

(3.14)

which yields

aL
1

∫κ+ω

κ

exp{2z1(t)}Δt < (b1 −D1)
M

∫κ+ω

κ

exp{z1(t)}Δt +DM
1

∫κ+ω

κ

exp{z2(t)}Δt. (3.15)
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By using the inequality (
∫κ+ω
κ exp{z1(t)}Δt)

2 ≤ ω
∫κ+ω
κ exp{2z1(t)}Δt, we have

aL
1

ω

(∫κ+ω

κ

exp{z1(t)}Δt

)2

< (b1 −D1)
M

∫κ+ω

κ

exp{z1(t)}Δt +DM
1

∫κ+ω

κ

exp{z2(t)}Δt.

(3.16)

Then

2aL
1

ω

∫κ+ω

κ

exp{z1(t)}Δt

< (b1 −D1)
M +

{
[(b1 −D1)

M]
2
+
4aL

1D
M
1

ω

∫κ+ω

κ

exp{z2(t)}Δt

}1/2

.

(3.17)

By using the inequality (a + b)1/2 < a1/2 + b1/2, a > 0, b > 0, we derive from (3.17) that

aL
1

ω

∫κ+ω

κ

exp{z1(t)}Δt < (b1 −D1)
M +

√
aL
1D

M
1

ω

(∫κ+ω

κ

exp{z2(t)}Δt

)1/2

. (3.18)

Similarly, multiplying (3.7) by exp{z2(t)} and integrating over [κ, κ +ω], then synthesize the
above, we obtain

aL
2

ω

∫κ+ω

κ

exp{z2(t)}Δt < (b2 −D2)
M +

√
aL
2D

M
2

ω

(∫κ+ω

κ

exp{z1(t)}Δt

)1/2

. (3.19)

It follows from (3.18) and (3.19) that

aL
1

√
aL
2

∫κ+ω

κ

exp{z1(t)}Δt

< ω
√
aL
2 (b1 −D1)

M

+
√
ωaL

1D
M
1

[√
ω(b2 −D2)

M +

(
ωaL

2D
M
2

∫κ+ω

κ

exp{z1(t)}Δt

)1/4]
,

(3.20)

so, there exists a positive constant ρ1 such that

∫κ+ω

κ

exp{z1(t)}Δt < ρ1, (3.21)

which together with (3.19), there also exists a positive constant ρ2 such that

∫κ+ω

κ

exp{z2(t)}Δt < ρ2. (3.22)
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This, together with (3.11), (3.12), and (3.21), leads to

∫κ+ω

κ

∣∣zΔ1 (t)∣∣Δt < 2aM
1 ρ1 + 2

(
c1
m1

)
ω =: l1,

∫κ+ω

κ

∣∣zΔ2 (t)∣∣Δt < 2aM
2 ρ2 =: l2.

(3.23)

Since (z1(t), z2(t), z3(t), z4(t))
T ∈ X, there exist some points ξi, ηi ∈ Iω, i = 1, 2, 3, 4,

such that

zi(ξi) = min
t∈Iω

{zi(t)}, zi(ηi) = max
t∈Iω

{zi(t)}, i = 1, 2, 3, 4. (3.24)

It follows from (3.21) and (3.22) that

zi(ξi) < ln
ρi
ω

=: Li, i = 1, 2. (3.25)

From (3.8) and (3.9), we obtain that

z3(ξ3) < ln
d1 − r1
a3

=: L3, z4(ξ4) < ln
d2 − r2
a4

=: L4. (3.26)

This, together with (3.12), (3.13), and (3.26), deduces

zi(t) ≤ zi(ξi) +
∫κ+ω

κ

∣∣zΔi (t)∣∣Δt < Li + li, i = 1, 2, 3, 4. (3.27)

From (3.6) and (3.24), we have

z1(η1) ≥ ln
b1 −D1 −

( c1
m1

)
a1

=: δ1. (3.28)

From (3.7) and (3.24), it yields that

z2(η2) > ln
b2 −D2

a2
=: δ2. (3.29)
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Noticing that
∫κ+ω
κ exp{z(t − τ1)}Δt =

∫κ+ω
κ exp{z(t − τ2)}Δt, from (3.8) and (3.9), deduces

∫κ+ω

κ

d1(t) exp{z1(t − τ12)}
m1(t) exp{z3(t − τ12)} + exp{z1(t − τ12)}Δt

< r1ω + aM
3

∫κ+ω

κ

exp{z3(t − τ12)}Δt +
(

c2
m2

)
ω,

∫κ+ω

κ

d2(t) exp{z3(t − τ22)}
m2(t) exp{z4(t − τ22)} + exp{z3(t − τ22)}Δt

< r2ω + aM
4

∫κ+ω

κ

exp{z4(t − τ21)}Δt.

(3.30)

There exist two points ti ∈ [κ, κ +ω] (i = 1, 2) such that

d1(t1 + τ12) exp{z1(t1)}
m1(t1 + τ12) exp{z3(t1)} + exp{z1(t1)} < r1 + a3 exp{z3(t1)} +

(
c2
m2

)
,

d2(t2 + τ22) exp{z3(t2)}
m2(t2 + τ22) exp{z4(t2)} + exp{z3(t2)} < r2ω + a4 exp{z4(t2)}.

(3.31)

Hence,

z3(t1) > ln
1

2a3m
M
1

{√√√√(
r1m

M
1 +mM

1

(
c2
m2

)
+ a3A1

)2

+ 4a3m
M
1 A1

(
d1 − r1 −

(
c2
m2

))

−
(
r1m

M
1 +mM

1

(
c2
m2

)
+ a3A1

)}
=: δ3,

z4(t2) > ln

√(
r2m

M
2 + a4A2

)2 + 4a4m
M
2 A2

(
d2 − r2

) − (r2mM
2 + a4A2

)
2a4m

M
2

=: δ4,

(3.32)

where A1 = exp{z1(ξ1)}, A2 = exp{z3(ξ3)}. Then, this, together with (3.12), (3.13), (3.23),
(3.28), (3.29), and (3.32), deduces

zi(t) ≥ zi(ηi) −
∫κ+ω

κ

∣∣zΔi (t)∣∣Δt ≥ δi − li, i = 1, 2, 3, 4, for any t ∈ [κ, κ +ω]. (3.33)

It follows from (3.27) to (3.33) that

max
t∈Iω

|zi(t)| ≤ max{|Li + li|, |δi − li|} =: Bi, i = 1, 2, 3, 4. (3.34)
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From (3.34), we clearly know that Bi (i = 1, 2, 3, 4) are independent of λ, and from the
representation of QNz, it is easy to know that there exist points ζi ∈ [κ, κ + ω] (i = 1, 2, 3, 4)
such that QNz = Y ∗(z1, z2, z3, z4), where

Y ∗

⎛
⎜⎜⎝

z1
z2
z3
z4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 −D1 − a1 exp{z1} −
c1 exp{z3}

m1(ζ1) exp{z3} + exp{z1} −D1 exp{z2 − z1}

b2 −D2 − a2 exp{z2} +D2 exp{z1 − z2}

−r1 − a3 exp{z3} +
d1 exp{z1}

m1(ζ2) exp{z3} + exp{z1} − c2 exp{z4}
m2(ζ3) exp{z4} + exp{z3}

−r2 − a4 exp{z4} +
d2 exp{z3}

m2(ζ4) exp{z4} + exp{z3}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.35)

Take B =
∑4

i=0Bi, where B0 is taken sufficiently large such that B0 ≥ ∑4
i=1|Li| +

∑4
i=1|δi|, and

such that each solution u∗ = (u∗
1, u

∗
2, u

∗
3, u

∗
4)

T of the system Y ∗(u1, u2, u3, u4)
T = 0 satisfies

||u∗|| = ∑4
i=1|u∗

i | < B0 if the system (3.35) has solutions. Now take Ω = {(z1, z2, z3, z4)T ∈
X| ||(z1, z2, z3, z4)T || < B}. Then it is clear that Ω verifies the requirement (a) of Lemma 2.11.

When (z1, z2, z3, z4)
T ∈ ∂Ω ∩KerL = ∂Ω ∩ R

4, (z1, z2, z3, z4)
T is a constant vector in R

4

with ||(z1, z2, z3, z4)T || = B, from the definition of B, we can naturally deriveQNz/= 0 whether
the system (3.35) has solutions or not. This shows that the condition (b) of Lemma 2.11 is
satisfied.

Finally, we will prove that the condition (c) of Lemma 2.11 is valid. Define the
homotopy Hμ(z1, z2, z3, z4) : DomL × [0, 1] → R

4 by

Hμ

(
z1, z2, z3, z4

)
= μQN

(
z1, z2, z3, z4

)
+ (1 − μ)G

(
z1, z2, z3, z4

)
, for μ ∈ [0, 1], (3.36)

where

G

⎛
⎜⎜⎝

z1
z2
z3
z4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 −D1 − a1 exp{z1}
b2 −D2 − a2 exp{z2}

−r1 − a3 exp{z3} +
d1 exp{z1}

m1(ζ2) exp{z3} + exp{z1}

−r2 − a4 exp{z4} +
d2 exp{z3}

m2(ζ4) exp{z4} + exp{z3}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.37)

where (z1, z2, z3, z4)
T ∈ R

4, μ ∈ [0, 1] is a parameter. From (3.37), it is easy to show that
0/∈Hμ(∂Ω ∩ kerL). Moreover, one can easily show that the algebraic equation
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b1 −D1 − a1u1 = 0,

b2 −D2 − a2u2 = 0,

−r1 − a3u3 +
d1u1

m1(ζ2)u3 + u1
= 0,

−r2 − a4u4 +
d2u3

m2(ζ4)u4 + u3
= 0

(3.38)

has a unique positive solution (u1, u2, u3, u4)
T in R

4
+. Note that J = I (identical mapping),

since ImQ = KerL, according to the invariance property of homotopy, direct calculation
produces

deg
{
JQN(z1, z2, z3, z4)

T , Ω ∩ Ker L, (0, 0, 0, 0)T
}

= deg
{
G(z1, z2, z3, z4)

T , Ω ∩ Ker L, (0, 0, 0, 0)T
}

= sign

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1u
∗
1 0 0 0

0 −a2u
∗
2 0 0

d1m1(ζ2)u∗
3

(m1(ζ2)u∗
3 + u∗

1)
2

0 −a3 −
d1m1(ζ2)u∗

1

(m1(ζ2)u∗
3 + u∗

1)
2

0

0 0
d2m2(ζ4)u∗

4

(m2(ζ4)u∗
4 + u∗

3)
2

−a4 −
d2m2(ζ4)u∗

3

(m2(ζ4)u∗
4 + u∗

3)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1,

(3.39)

where deg{·, ·, ·} is the Brouwer degree. By now we have proved that Ω verifies all
requirements of Lemma 2.11. Therefore, (1.4) has at least one ω-periodic solution in DomL ∩
Ω. The proof is complete.

Corollary 3.2. If the conditions in Theorem 3.1 hold, then both the corresponding continuous model
(1.6) and the discrete model (1.7) have at least one ω-periodic solution.

Remark 3.3. If T = R and τ11 ≡ τ21 ≡ 0 in (1.6), then the system (1.6) reduces to the continuous
ratio-dependence predator-prey diffusive system proposed in [17].

Remark 3.4. If we only consider the prey population in one-patch environment and ignore
the dispersal process in the system (1.4), then the classical ratio-dependence two species
predator-prey model in particular of (1.4) with Michaelis-Menten functional response and
time delay on time scales

zΔ1 (t) = r1(t) − a(t) exp{z1(t)} −
c(t) exp{z2(t)}

m(t) exp{z2(t)} + exp{z1(t)} ,

zΔ2 (t) = −r2(t) +
d(t) exp{z1(t − τ)}

m(t) exp{z2(t − τ)} + exp{z1(t − τ)} ,
(3.40)
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where a(t), c(t), d(t), ri(t), m(t) ∈ Crd(T,R+) (i = 1, 2) are positive ω-periodic functions, τ is
nonnegative constant. It is easy to obtain the corresponding conclusions on time scales for
the system (3.40).

Corollary 3.5. Suppose that (i) r1 >
(

c
m

)
, (ii) d(t) > r2(t), t ∈ T hold, then (3.40) has at least one

ω-periodic solution.

Remark 3.6. The result in Corollary 3.5 is same as those for the corresponding continuous and
discrete systems.
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