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We deal in this paper with the mild solution for the semilinear fractional differential equation of
neutral type with infinite delay: Dαx(t) +Ax(t) = f(t, xt), t ∈ [0, T], x(t) = φ(t), t ∈] − ∞, 0], with
T > 0 and 0 < α < 1. We prove the existence (and uniqueness) of solutions, assuming that −A is
a linear closed operator which generates an analytic semigroup (T(t))t≥0 on a Banach space X by
means of the Banach’s fixed point theorem. This generalizes some recent results.

1. Introduction

We investigate in this paper the existence and uniqueness of the mild solution for the
fractional differential equation with infinite delay

Dαx(t) +Ax(t) = f(t, xt), t ∈ I = [0, T],

x(t) = φ(t), t ∈ ]−∞, 0],
(1.1)

where T > 0, 0 < α < 1,−A is a generator of an analytic semigroup (T(t))t≥0 on a Banach space
X such that ‖T(t)‖ ≤ K for all t ≥ 0 and ‖AT(t)x‖ ≤ K/t‖x‖ for every x ∈ X and t > 0. The
function f : I × B → X is continuous functions with additional assumptions.
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The fractional derivative Dα is understood here in the Caputo sense, that is,

Dαh(t) =
1

Γ(1 − α)
∫ t

0
(t − s)−αh′(s)ds. (1.2)

φ ∈ B where B is called phase space to be defined in Section 2. For any function x defined on
] −∞, T] and any t ∈ I, we denote by xt the element of B defined by

xt(θ) = x(t + θ), θ ∈ ]−∞, 0]. (1.3)

The function xt represents the history of the state from −∞ up to the present time t.
The theory of functional differential equations has emerged as an important branch

of nonlinear analysis. It is worthwhile mentioning that several important problems of the
theory of ordinary and delay differential equations lead to investigations of functional
differential equations of various types (see the books by Hale and Verduyn Lunel [1], Wu
[2], Liang et al. [3], Liang and Xiao [4–9], and the references therein). On the other hand
the theory of fractional differential equations is also intensively studied and finds numerous
applications in describing real world problems (see e.g., themonographs of Lakshmikantham
et al. [10], Lakshmikantham [11], Lakshmikantham and Vatsala [12, 13], Podlubny [14], and
the papers of Agarwal et al. [15], Benchohra et al. [16], Anguraj et al. [17], Mophou and
N’Guérékata [18], Mophou et al. [19], Mophou and N’Guérékata [20], and the references
therein).

Recently we studied in our paper [20] the existence of solutions to the fractional
semilinear differential equation with nonlocal condition and delay-free

Dα x(t) = Ax(t) + tnf(t, x(t), Bx(t)), t ∈ [0, T], n ∈ Z
+,

x(0) = x0 + g(x),
(1.4)

where T is a positive real, 0 < α < 1, A is the generator of aC0-semigroup (S(t))t≥0 on a Banach
space X, Bx(t) :=

∫ t
0K(t, s)x(s)ds, K ∈ C(D,R+)with D defined as above and

B∗ = sup
t∈[0,T]

∫ t

0
K(t, s)ds <∞, (1.5)

f : R × X × X → X is a nonlinear function, g : C([0, T],X) → D(A) is continuous, and
0 < q < 1. The derivative Dα is understood here in the Riemann-Liouville sense.

In the present paper we deal with an infinite time delay. Note that in this case, the
phase space B plays a crucial role in the study of both qualitative and quantitative aspects
of theory of functional equations. Its choice is determinant as can be seen in the important
paper by Hale and Kato [21].
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Similar works to the present paper include the paper by Benchohra et al. [16],
where the authors studied an existence result related to the nonlinear functional differential
equation

Dα x(t) = f(t, xt), t ∈ I = [0, T], 0 < α < 1,

x(t) = φ(t), t ∈ ]−∞, 0],
(1.6)

where Dα is the standard Riemann-Liouville fractional derivative, φ in the phase space B,
with φ(0) = 0.

2. Preliminaries

From now on, we set I = [0, T]. We denote by X a Banach space with norm ‖ · ‖, C(I;X) the
space of all X-valued continuous functions on I, and L(X) the Banach space of all linear and
bounded operators on X.

We assume that the phase space (B, ‖ · ‖B) is a seminormed linear space of functions
mapping ] − ∞, 0] into X, and satisfying the following fundamental axioms due to Hale and
Kato (see e.g., in [21]).

(A0) If x : ]−∞, T] → X, is continuous on I and x0 ∈ B, then for every t ∈ I the following
conditions hold:

(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ C1(t)sup0≤s≤t ‖x(s)‖ + C2(t)‖x0‖B,

where H ≥ 0 is a constant, C1 : [0,+∞[→ [0,+∞[ is continuous, C2 : [0,+∞[→
[0,+∞[ is locally bounded, andH, C1, C2 are independent of x(·).

(A1) For the function x(·) in (A0), xt is a B-valued continuous function on I.

(A2) The space B is complete.

Remark 2.1. Condition (ii) in (A0) is equivalent to ‖φ(0)‖ ≤ H‖φ‖B, for all φ ∈ B.

Let us recall some examples of phase spaces.

Example 2.2. (E1) BUC(] − ∞, 0]);X) the Banach space of all bounded and uniformly
continuous functions φ :] −∞, 0] → X endowed with the supnorm.

(E2) C0(] − ∞, 0]) : X) the Banach space of all bounded and continuous functions
φ :] −∞, 0] → X such that lim θ→−∞φ(θ) = 0 endowed with the norm

∣∣φ∣∣ := sup
θ≤0

∣∣φ(θ)∣∣. (2.1)

(E3) Cγ := {φ ∈ C(]−∞, 0] : X) : lim θ→−∞ eγθφ(θ)exists in X} endowedwith the norm

∣∣φ∣∣ = sup
−∞<θ≤0

eγθ
∣∣φ(θ)∣∣. (2.2)

Note that the space Cγ is a uniform fading memory for γ > 0.
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Throughout this work f will be a continuous function I×B× → X. LetΩ be set defined
by:

Ω =
{
x : ]−∞, T] −→ X such that x|]−∞,0] ∈ B, x|I ∈ C(I;X)

}
. (2.3)

Remark 2.3. We recall that the Cauchy Problem

Dαx(t) +Ax(t) = 0, t ∈ [0, T],

x(0) = x0 ∈ D, t ∈ I,
(2.4)

where −A is a closed linear operator defined on a dense subset, D ⊂ X is wellposed, and the
unique solution is given by

x(t) =
∫∞

0
ζα(σ)T(tασ)x0dσ, (2.5)

where ζα is a probability density function defined on (0,∞) such that its Laplace transform is
given by

∫∞

0
e−σxζα(σ)dσ =

∞∑
i=0

(−xi)
Γ(1 + αi)

, x > 0 (2.6)

([22, cf. Theorem 2.1]).

Following [22, 23] we will introduce now the definition of mild solution to (1.1).

Definition 2.4. A function x ∈ Ω is said to be a mild solution of (1.1) if x satisfies

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(t), t ∈ ]−∞, 0],

Q(t)φ(0) +
∫ t

0
R(t − s)f(s, xs)ds, t ∈ I,

(2.7)

where

Q(t) =
∫∞

0
ζα(σ)T(tασ)dσ, R(t) = α

∫∞

0
σtα−1ζα(σ)T(tασ)dσ. (2.8)

Remark 2.5. Note that

‖R(t)‖B(X) ≤ αKtα−1, t ≥ 0, (2.9)

since
∫∞
0 σζα(σ)dσ = 1 (cf. [23]).
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3. Main Results

We present now our result.

Theorem 3.1. Assume the following.

(H1) There exist μ > 0 such that for all t ∈ I, (ψ, ϕ) ∈ B2

∥∥f(t, ϕ) − f(t, ψ)∥∥ ≤ μ∥∥ϕ − ψ∥∥B (3.1)

(H2) There exists δ, with 0 < δ < 1 such that the function Λ : I → ]0,+∞] defined by:

Λ(t) = μKC∗
1t
α (3.2)

satisfies Λ(t) ≤ δ for all t ∈ I. Here

C∗
1 = sup

t∈I
C1(t). (3.3)

Then (1.1) has a unique mild solution on ] −∞, T].

Proof. Consider the operatorN : Ω → Ω defined by

N(x)(t) =

⎧⎪⎪⎨
⎪⎪⎩
φ(t), t ∈ ]−∞, 0],

Q(t)φ(0) +
∫ t

0
R(t − s)f(s, xs)ds, t ∈ I.

(3.4)

Let y(·) : ] −∞, T] → X be the function defined by

y(t) =

⎧⎨
⎩
φ(t), if t ∈ ]−∞, 0],

Q(t)φ(0), if t ∈ I.
(3.5)

Then y0 = φ. For each z ∈ C(I,X) with z(0) = 0, we denote by z the function defined by

z(t) =

⎧⎨
⎩
0, t ∈ ]−∞, 0],

z(t), t ∈ I.
(3.6)

If x(·) verifies (2.7) then writing x(t) = y(t)+z(t) for t ∈ I, we have xt = yt +zt for t ∈ I
and

z(t) =
∫ t
0R(t − s)f

(
s, ys + zs

)
ds. (3.7)

Moreover z0 = 0.
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Let

Z0 = {z ∈ Ω such that z0 = 0}. (3.8)

For any z ∈ Z0, we have

‖z‖Z0
= sup

t∈I
‖z(t)‖ + ‖z0‖B = sup

t∈I
‖z(t)‖. (3.9)

Thus (Z0, ‖ · ‖Z0
) is a Banach space. We define the operator Π : Z0 → Z0 by

Π(z)(t) =
∫ t
0R(t − s)f

(
s, ys + zs

)
ds. (3.10)

It is clear that the operator N has a unique fixed point if and only if Π has a unique fixed
point. So let us prove that Π has a unique fixed point. Observe first that Π is obviously well
defined. Now, consider z, z∗ ∈ Z0. For any t ∈ I, we have

‖Π(z)(t) −Π(z∗)(t)‖ =

∣∣∣∣∣
∫ t

0
R(t − s)f(s, ys + zs)ds −

∫ t

0
R(t − s)f

(
s, ys + z∗s

)
ds

∣∣∣∣∣

≤
∫ t

0
‖R(t − s)‖

∥∥∥f(s, ys + zs) − f
(
s, ys + z∗s

)∥∥∥ds

≤ μ
∫ t

0
‖R(t − s)‖

∥∥∥zs − z∗s
∥∥∥
B
ds.

(3.11)

So using (A0)-(iii), (2.9) and (3.3), we obtain for all t ∈ I

‖Π(z)(t) −Π(z∗)(t)‖ ≤ μαK
∫ t

0
(t − s)α−1C1(s)‖z − z∗‖Z0

≤ μKC∗
1t
α‖z − z∗‖Z0

(3.12)

which according to (H2) gives

‖Π(z)(t) −Π(z∗)(t)‖ ≤ Λ(t)‖z − z∗‖Z0

≤ δ‖z − z∗‖Z0
.

(3.13)

Therefore

‖Πz −Πz∗‖Z0
≤ δ‖z − z∗‖Z0

. (3.14)

And since 0 ≤ δ < 1, we conclude by way of the Banach’s contraction mapping
principle that Π has a unique fixed point z ∈ Z0. This means that N has a unique fixed
point x ∈ Ωwhich is obviously a mild solution of (1.1) on ] −∞, T].
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4. Application

To illustrate our result, we consider the following Lotka-Volterra model with diffusion:

Dα
t u(t, ξ) =

∂2

∂ξ2
u(t, ξ) +

∫0

−∞
η(σ)u(t + σ, ξ)dσ, 0 ≤ ξ ≤ π,

u(t, 0) = u(t, π) = 0 for t ∈ R,

(4.1)

where 0 < α < 1 and η is a positive function on (−∞, 0]with
∫0
−∞η(σ)dσ <∞.

Now let X = L2(0, π) and consider the operator A : D(A) ⊂ X → X defined by

D(A) = H2(0, π) ∩H1
0(0, π) =

{
H2(0, π) : z(0) = z(π) = 0

}
,

Az = z′′.

(4.2)

Clearly D(A) is dense in L2(0, π).
Define

f
(
φ
)
(ξ) :=

∫∞

0
η(σ)φ(σ)(ξ)dσ, ξ ∈ [0, π], φ ∈ B. (4.3)

We choose B as in Example (E3) above. Put

x(t)(ξ) = u(t, ξ), t ∈ (−∞, T], ξ ∈ [0, π]. (4.4)

Then we get

Dαx(t) = Ax(t) + f(t, xt), (4.5)

where f(t, x) is obviously Lipschitzian in x uniformly in t. Thus we can state what follows.

Theorem 4.1. Under the above assumptions (4.1) has a unique mild solution.
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