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The second part of Hilbert’s sixteenth problem concerned with the existence and number of the
limit cycles for planer polynomial differential equations of degree n. In this article after a brief
review on previous studies of a particular class of Hilbert’s sixteenth problem, we will discuss the
existence and the stability of limit cycles of this class in the form of fractional differential equations.

1. Introduction

The second part of the well-known Hilbert’s 16th problem is still unsolved since Hilbert
proposed it in 1900. This problem is concerned with the maximum number of limit cycles
and their relative distributions of the real planar polynomial systems of degree n in the form
of

dx

dt
= P
(
x, y
)
,

dy

dt
= Q
(
x, y
)
,

(1.1)

where P(x, y) and Q(x, y) are polynomial of degree n with real coefficients. The general
form of this problem, even for n = 2, is yet an open problem that has attracted more
researches but it is remarkably inflexible. With the development of computer’s and graphical
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software, many recent new improvement results have been obtained. Some survey articles
can be found in [1–5] and references therein. One of the classical methods to produce and
study limit cycles in such system (1.1) is by perturbing a system which has a centre (e.g.,
see [6, 7]). In such methods the limit cycles are produced in the perturbed system from
the periodic orbits of the periodic annulus of the unperturbed system. As we can see in
[8] by perturbing the linear centre dx/dt = −y, dy/dt = x, using arbitrary polynomials
P and Q of degree n, [(n − 1)/2] limit cycles bifurcated with the bifurcation parameter
ε of order one. Almost the same argument can be seen in [9] by perturbing the system
dx/dt = −y(1 + x), dy/dt = x(1 + x) with maximum n limit cycles. By perturbing the
Hamiltonian centre given by H = 0.5y2 + xn+1/(n + 1) in the polynomial differential systems
of odd degree n, we can obtain (n + 1)(n + 3)/8 − 1 limit cycles [10]. Several other similar
investigations have been done using the perturbed polynomial differential systems of second,
third, or even more degree. For example, see [11–13] and references therein.

Based on the above studies, some of the authors of this article investigated the number
of limit cycles of perturbed quintic Hamiltonian systems with different degree polynomials
[14, 15]. In these former articles a weakened Hilbert’s 16th problem in the following form is
considered:

dx

dt
= Hy + εP

(
x, y
)
,

dy

dt
= −Hx + εQ

(
x, y
)
.

(1.2)

In system (1.2)H(x, y) is a real polynomial of degree n, and P(x, y) and Q(x, y) are two real
polynomial of degree m. Moreover, system (1.2) contains at least a family of closed orbits
for any level curve H(x, y) = h with h ∈ R2 and 0 < ε � 1. A full investigation of this
planar system for the number of limit cycles and their stabilities can be found in [15]. In
this article we study the existence of limit cycles and their stabilities for such system in the
form of Fractional Differential Equations (FDEs). Recently great considerations have been
made to the systems of FDE. The most essential property of these systems is their nonlocal
property which does not exist in the integer-order differential operators. We mean by this
property that the next state of a system depends not only upon its current state but also
upon all of its historical states. This is a more realistic and is one reason why fractional
calculus has becomemore andmore popular. On the other hand, the integer-order differential
operator is indifferent to its history. Furthermore, there have been several recentmathematical
discoveries that have helped to unlock the power of the fractional derivative [16]. One such
discovery is that of fractal functions. Indeed, most of the functions that we are familiar with
are smooth. This means that locally they can be approximated by a straight line segment.
For example, the function f(x) = x2 is well approximated by 2x − 1 at the point x = 1.
The derivative of the function at a particular point provides the slope of the straight line
approximation or tangent to the curve. Fractal functions are not smooth. They have details
on all scales and they cannot be approximated locally by straight line segments. An example
is the Weierstrass function which can be written as the infinite sum of cosine functions,
f(x) =

∑∞
n=0(1/2)

ncos(3nx). For this function at the point x = 1, the tangent changes
orientation under increasingmagnification. Functions such as theWeierstrass function cannot
be differentiated (a whole number of times). But it turns out that these fractal functions can
be differentiated a fractional number of times, and the fractional calculus is important for
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studying these differentiability properties. Fractals are characterized by scaling laws and the
fractional derivative at a point can reveal this law. In recent research, scientists at the Mount
Sinai School of Medicine have shown that the surfaces of breast cells are fractals and they
have found clear differences in the scaling laws for benign cells and malignant cells. The
different scaling laws have enabled accurate diagnosis of breast cancers. Another important
new discovery that has brought fractional calculus into prominence is that many physical
processes are modeled by fractional differential equations. Obviously, the importance of a
mathematical model is that it can be used to make predictions and to give insight into the
physical process that underlies the behavior. One area where mathematical models have
been employed extensively is that of diffusion and transport processes. For example, the
dispersion of pollutants in the ocean and the motion of electronic charges in conductors are
diffusion processes. Here, a probabilistic description leads to a (whole number) differential
equation which can be solved to predict average properties of the system. Similar types of
equations are used by financial analysts to model stock prices. It has recently been discovered
that processes governed by diffusion which is enhanced or hindered in some fashion are
better modeled by FDEs than by integer-order differential equations. These FDEs are finding
numerous applications in areas ranging from financial mathematics to ocean-atmosphere
dynamics to mathematical biology [16].

These and the other applications of FDEs provide a good motivation for study such
Hilbert’s 16th problem of system (1.2) in the form of FDE. So, in the next section we will
consider system (1.2) in the form of FDEs and to be more specific we will take Hx, Hy as
polynomials of degree 1 and P(x, y), Q(x, y) as polynomials of degrees 3 and 5, respectively.
Due to the existence of Riemann-Liouville integral operator in the definition of FDE in the
Caputo sense [17], direct analytical solution for FDE is too rare, and so using the numerical
methods is inevitable. In order to use a reliable numerical method we should first discretized
the given FDE. However, discretization schemes that produce difference equations whose
dynamics resemble that of their continuous counterparts are a major challenge in numerical
analysis. To this end wewill apply theMickens nonstandard discretization scheme [18] to the
Grunwald-Letnikov discretization process for our system of FDE. As we will see in Section 3
this discretization scheme leads to the fast convergence with more accurate results in solving
the original system (1.2) with integer-order derivative one. Therefore, we are expecting the
same accurate results for system (1.2) in the form of FDE with different noninteger-order
derivative. Then in Section 4 we will discuss the stability of limit cycle which exists in our
system and illustrate the numerical results. We will summarize the results with some final
comments in Section 5.

2. Specific Case of the Weakened Hilbert’s 16th Problem

We consider the specific case of system (1.2) as

dx

dt
= y + ε

(
a0 + a1x + a2x

2 + a3x
3
)∣∣y
∣∣,

dy

dt
= −x − x5,

(2.1)
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where a0, a1, a2, and a3 are real constants. As discussed in [15] there is a closed relation
between the number of the limit cycles in (2.1) and the number of zeros of its related Abelian
integral [19]. The related Abelian integral of (2.1) stated as

A(h) =
∮

Γh
P
(
x, y
)
dy =

∫∫

H<h

∂P

∂x
dy dx =

∫∫

Dh

3∑

j=1

ajx
j−1∣∣y

∣
∣dy dx, (2.2)

where Dh is the area surrounded by the first integral curves of (2.1), that is,

Γh : H
(
x, y
)
=

x2

2
+
x6

6
+
y2

2
= h, h > 0 (2.3)

as ε → 0 and P(x, y) = (a0 + a1x + a2x
2 + a3x

3)|y|. Now to evaluate the Abelian integral
in (2.2), first we note that the limits of the double integrals can be found by solving the first
integral (2.3) for y, that is, y1,2 = ±

√
2h − x2 − x3/3 and then for x by solving 3x2 + x6 −

6h = 0 when y = 0, which yields x1 = −
√

3
√
(3h +

√
9h2 + 1)2 − 1/

3
√
3h +

√
9h2 + 1 with x2 =

−x1. Hence, with the symmetry of Dh which exists with respect to y = 0 and noting that∫x2

x1
y2
2
∑3

j=1(2j)a2jx
2j−1 dx = 0, integral (2.2) yields A(h) = 2

∑3
j=1 a2j−1(2j − 1)

∫x2

0 x2j−2(2h −
x2 − x6/3)dx. After evaluating and simplifying this equation as a polynomial of h, we get

A
(
μ
)
= 4μ3/2

3∑

j=1

a2j−1

(
μj+1

2j + 5
+

μj−1

2j + 1

)

. (2.4)

Note that here we replace h = (1/6)μ(μ2 + 3) where μ = x2
2. Finally, with this brief discussion

the existence and stability of limit cycle for perturbed system (2.1) can be finalized in the
following theorem.

Theorem 2.1. The perturbed system (2.1) has no limit cycle for a1a3 > 0 and one limit cycle for
a1a3 < 0. In the former case the unique limit cycle is stable for a3 < 0 and unstable for a3 > 0.

For the proof of this theorem, as discussed above, we need to find the zero of the
Abelian integral (2.4) which leads to a polynomial of degree 3 with respect to μ. Then it is
straight forward to see that this polynomial has no positive root for a1a3 > 0 and at least one
positive real root for a1a3 < 0. That is, in the first case system (2.1) has no limit cycle and in
the former case there is one limit cycle. For the detail proof of this theorem refer to [15].

3. System (2.1) in the Form of Fractional Differential Equations and
Its Discretization

In general, Dαy(t) = f(t, y(t)), T ≥ t ≥ 0, y(t0) = y0, and α > 0 is a single initial value
FDE, where Dα denotes the fractional derivative in the Caputo sense [17] and defined by
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Dαy(t) = Jn−αDny(t). Here −1 < α ≤ n, n ∈ N and Jn is the nth -order Riemann-Liouville
integral operator defined as

Jny(t) =
1

Γ(n)

∫ t

0
(t − τ)n−1y(τ)dτ, (3.1)

with t > 0.A limited number of methods have been utilized to solve this initial value problem.
In order to apply Mickens’ nonstandard discretization scheme [18] in our numerical scheme
we choose the Grunwald-Letnikov method to approximate the one-dimensional fractional
derivative as follows [20]:

Dαy(t) = lim
h→ 0

h−α
[t/h]∑

j=0
(−1)j

(
α
j

)
y
(
t − jh

)
, (3.2)

where [t] denotes the integer part of t and h is the step size. In this case the above initial value
problem is discretized as

[tn/h]∑

j=0

cαj y
(
tn−j
)
= f
(
tn, y(tn)

)
, n = 1, 2, 3, . . . , (3.3)

where tn = nh and cαj are the Grunwald-Letnikov coefficients defined as cαj = h−α(−1)j( αj
)
, j =

0, 1, 2, . . ., or recursively cα0 = h−α and cαj = (1 − (1 + α)/j)cαj−1, j = 1, 2, 3, . . ..
Now using this definition for FDE with Grunwald-Letnikov discretization method,

system (2.1) in the form of FDE is discretized as follows:

[tn/h]∑

j=0

Cα1
j x
(
tn−j
)
= y(tn−1) + ε

(
a0 + a1x + a2x

2 + a3x
3
)∣∣y(tn−1)

∣∣,

[tn/h]∑

j=0

Cα2
j y
(
tn−j
)
= −x(tn−1) − x5(tn−1).

(3.4)

We assert that nonstandard discretization method is a numerical attempt which can be used
in discretization process of FDE to get the better results and preserves their crucial property,
that is, nonlocal property. In order to do this, we apply the Mickens nonstandard discretization
scheme [18] to the Grunwald-Letnikov discretization process for FDE system (3.4). Indeed,
the derivative term, y′(t), in the Mickens schemes is replaced by (y(t+h)−y(t))/ϕ(h), where
ϕ(h) is a continuous function of step size h. In addition the nonlinear terms such as y(t)x(t)
are either replaced by y(t)x(t+h), y(t+h)x(t) or left untouched depending upon the context
of the differential equation. There is no appropriate general method for choosing the function
ϕ(h), but some special techniques may be found in [18, 21].
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Figure 1: Stable limit cycle of system (3.5) for α = 1, a1 = 1, a3 = −10, and ε = 0.01 with starting point (1, 1).

Now we first write system (3.4) as follows:

xn+1 = αxn + hαyn + hαε
(
a0 + a1xn + a2x

2
n + a3x

3
n

)∣∣yn

∣∣ − hα
[tn/h1]∑

j=1

Cα
j xn−j ,

yn+1 = αyn − hα
(
xn + x5

n

)
− hα

[tn/h2]∑

j=1

Cα
j yn−j .

(3.5)

Here, we replaced x(tn) and y(tn) by xn and yn, respectively. Later on, following Mickens’
method in the next section, for finding the better results we replace the nonlinear terms in
system (3.5) by appropriate combination of the variables in different levels of times.

4. Stability of the Limit Cycles in System (3.5) and Numerical Results

First we note that the linearized system (3.5), around a stationary point (x∗
n, y

∗
n) or simply

(xn, yn), will be
[ xn+1
yn+1

]
= L
[ xn
yn

]
where matrix L is evaluated as

L =

⎡

⎣
α + εhαyn

(
a1 + 2a2xn + 3a3x

2
n

) −hα
(
1 + 5x4

n

)

hα
[
1 + ε

(
a0 + a1xn + a2x

2
n + a3x

3
n

)]
α

⎤

⎦. (4.1)
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Figure 2: Unstable limit cycle of system (3.5) for a1 = 1, a3 = 2, and ε = 0.01 with starting point (1, 1).

Without losing our generality, we suppose here yn to be positive. Now, from theory of
dynamical systems, the limit cycle exists in system (3.5)whenever the characteristic equation
of matrix,|L − λI| = 0, has two solutions with module one.

In addition, for the stability of this limit cycle we can use the stability analysis which
is thoroughly investigated by Matignon in [22]. To utilize this theorem for our problem, first
we consider the linearization of system (2.1) in the form of FDE with the derivative order
α in both equations around a given stationary point (x, y). This linearized system can be
written as DαX(t) = MX(t) where matrix M is similar to matrix L in (4.1) with α = 0 and
(xn, yn) = (x, y). Now the Matignon stability theorem for our problem can be stated as the
following theorem.

Theorem 4.1. The linearized system of fractional differential equations DαX(t) = MX(t) is
asymptotically stable if and only if | arg(spec(M)| > απ/2.

Note that the stability exists if and only if either asymptotically stability exists or those
eigenvalues which satisfy | arg(spec(M)| = απ/2 have geometric multiplicity one.

Now we will implement our numerical method described above for the existence of
limit cycles in system (2.1) in the form of FDE for different values of fractional order α.
In order to be consistence with the results in [15], in system (3.5) we let the constants a0,
a2 be one and choose a1, a3 according to the following discussion with ε = 0.01. By these
assumptions characteristic equation of matrix L in (4.1) at the point (1, 1) will be

|L − λI| =
∣∣∣∣∣

α + hα[0.01(a1 + 2 + 3a3)] − λ −6hα

hα[1 + 0.01(a1 + 2 + a3)] α − λ

∣∣∣∣∣
= 0, (4.2)
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Figure 3: Stable limit cycle of system (3.5) for α = 0.97, a1 = 1, a3 = −10, and ε = 0.001 with starting point
(1, 1).
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Figure 4: Stable limit cycle of system (3.5) for α = 0.95, a1 = 1, a3 = −10, and ε = 0.001 with starting point
(1, 1).
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Figure 5: Stable but sensitive limit cycle of system (3.5) for α = 0.945, a1 = 1, a3 = −10, and ε = 0.001 with
starting point (1, 1).

−1

−0.5

0

0.5

1

−1 0 1

x

y

Figure 6: Numerical results of system (3.5) which is converging to zero for α = 0.94, a1 = 1, a3 = −10, and
ε = 0.001 with starting point (1, 1).
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which yields

λ2 − λ{2α + hα[0.02 + 0.01(a1 + 3a3)]} + αhα[0.02 + 0.01(a1 + 3a3)]

+ 6h2α[1.02 + 0.01(a1 + a3)] + α2 = 0.
(4.3)

Equation (4.3) has two solutions with modular one if

|2α + hα[0.02 + 0.01(a1 + 3a3)]| ≤ 2,

αhα[0.02 + 0.01(a1 + 3a3)] + 6h2α[1.02 + 0.01(a1 + a3)] + α2 = 1.
(4.4)

First, we note that for α = 1 the inequality and equality occur in (4.4) if a1a3 < 0. That is, for
some choice of a1 and a3 with opposite signs there is a limit cycle for system (3.5). This result
agrees with the consequence of Theorem 2.1. Suppose that we choose a1 = 1 and a3 = −10;
then the numerical solutions results of system (3.5) are illustrated in Figure 1. As we stated
before, in order to get the better results in solving this system, following Mickens’ method,
we replace nonlinear terms x2

n, x
3
n, and x5

n with xnxn−1, x2
nxn−1, and x3

nx
2
n−1, respectively. Note

that, given a1, a3, and α from conditions (4.4)we can evaluate the best choice for h (or ϕ(h)).
Here, we get h = 0.00487.

For the stability of this limit cycle, since α = 1, by thewell-known theories of dynamical
systems we should find the eigenvalues of the linearized system (2.1) at the given point (1,1).
In this case, with the choice of the above parameters, these eigenvalues are λ1,2 = −0.135 ±
i 2.366057. Obviously, since the signs of real parts of λ1 and λ2 are negative, the limit cycle
in Figure 1 is stable. With similar discussion, if we choose a3 to be a positive constant, say
2, then the related eigenvalues will be λ1,2 = 0.045 ± i 2.50957666 with the positive real parts.
In this case, as we can see in Figure 2, the limit cycle is unstable. These results agree with
consequence of Theorem 2.1.

Now for the fractional order α < 1, say α = 0.97, with the same values as above for ai,
i = 0, 1, 2, 3 and ε = 0.001, conditions (4.4) are satisfied. So by these values of the parameters,
there is a limit cycle for the system (3.5). As illustrated in Figures 2, 3, 4, and 5 these limit
cycles exist for different values of α ∈ (0.94, 1]. For the stability of these limit cycles we may
apply Theorem 4.1. For example, for α = 0.95 corresponding eigenvalues of matrix M at
the point (1, 1) can be found as |M − λI| = 0 or λ2 + 0.027λ + 5.958 = 0 which yields λ1,2 =
−0.0135± i 2.44086414 with argument θ = 1.5652655R. Obviously, this value of θ is beiger than
α(π/2) for α ∈ (0.94, 1), which proves the stability of the limit cycles whenever exist.

5. Final Comments

In this article we discussed the existence and stability of the limit cycle for special case of
perturbedHilbert’s 16th problem.We found these limit cycles for different values of fractional
order α ∈ (0.94, 1] using discretized system (3.5), provided by Grunwald-Letnikov numerical
method for solving FDEs and applying Mickens’ nonstandard method for more accurate
results. The difficulties that we are facing here are in solving system (3.5) for values of
α < 0.94. Though this is the case for different nonlinear systems of FDEs, existing numerical
methods are not capable for solving such these systems for small fractional derivative order
α. In other words, for the small efficient dimension, which is the sum of fractional derivatives
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of the equations in the systems such as system (2.1), the numerical results are not accurate
enough. Here, for the values of α < 0.94 with the same values for other parameters as above,
the results are found by solving system (3.5) all converging to zero (see Figure 6).

Another difficulty exists in choosing a1 and a3 for conditions in (4.4) to be satisfied.
That is, whenever α < 1 by choosing small positive values for a1 and a3 conditions (4.4) are
satisfied, but the numerical limit cycle cannot be found in system (3.5) even in unstable form.
Nevertheless, as we saw the limit cycles exist for the values a1 and a3 with different signs. In
particular these limit cycles are stable, easy to find for values a3 < −4, and agreed with the
stability condition in Theorem 4.1.
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[4] J. Giné, “On some open problems in planar differential systems and Hilbert’s 16th problem,” Chaos,
Solitons & Fractals, vol. 31, no. 5, pp. 1118–1134, 2007.

[5] C. Du and Y. Liu, “The problem of general center-focus and bifurcation of limit cycles for a planar
system of nine degrees,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 1043–
1057, 2009.

[6] T. R. Blows and L. M. Perko, “Bifurcation of limit cycles from centers and separatrix cycles of planar
analytic systems,” SIAM Review, vol. 36, no. 3, pp. 341–376, 1994.

[7] S.-N. Chow, C. Z. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge
University Press, Cambridge, UK, 1994.

[8] H. Giacomini, J. Llibre, andM. Viano, “On the nonexistence, existence and uniqueness of limit cycles,”
Nonlinearity, vol. 9, no. 2, pp. 501–516, 1996.
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