
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2009, Article ID 120213, 46 pages
doi:10.1155/2009/120213

Research Article
The Solution of Embedding Problems
in the Framework of GAPs with Applications
on Nonlinear PDEs

Reinhard Starkl

4810 Bad Ischl, Austria

Correspondence should be addressed to Reinhard Starkl, reinhard.starkl@yahoo.de

Received 13 July 2009; Accepted 24 December 2009

Recommended by Wen Xiu Ma

The paper presents a special class of embedding problems whoes solutions are important for
the explicit solution of nonlinear partial differential equations. It is shown that these embedding
problems are solvable and explicit solutions are given. Not only are the solutions new but also the
mathematical framework of their construction which is defined by a nonstandard function theory
built over nonstandard algebraical structures, denoted as “GAPs”. These GAPsmust not be neither
associative nor division algebras, but the corresponding function theories built over them preserve
the most important symmetries from the classical complex function theory in a generalized form:
a generalization of the Cauchy-Riemannian differential equations exists as well as a generalization
of the classical Cauchy Integral Theorem.

Copyright q 2009 Reinhard Starkl. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Except some small areas, at time the nonlinear world is inaccessible for analytic methods, that
is, for methods without using numerical algorithms, we only know some explicit solutions of
a few nonlinear differential equations (see e.g., [1–13]), and we know precious few about the
“embedding” of nonlinear structures without any symmetry in higher dimensional structures
with symmetry ([14–16], etc.).

This fact legitimates the creation of a new mathematical theory, presented in [17],
which allows an “analytic access” on wider regions of nonlinearity. It was shown that this
theory succeeds in solving nonlinear partial differential equations (concretely the Einstein
equations from General Relativity) if the problem defining parameters (concretely the stress
energy tensor) have a certain symmetry which can be seen as a wide generalization of the
classical symmetry of holomorphy. This new symmetry—in the following denoted as “∗-
symmetry” or “GAP-symmetry” allows the explicit solution of Einstein equations and also
of a broad variety of other partial differential equations.
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This leads to the following question as considered here: is it possible to embed an
arbitrary n-dimensional nonlinear partial differential equation (which only symmetry is
given by smoothness of all coefficient functions) in an N-dimensional nonlinear partial
differential equation with ∗-symmetry, N ≥ n. If this holds, we can solve the given n-
dimensional system by embedding this system into the N-dimensional system, which is
solvable on the base of ∗-symmetry. Since embedding of an equation means embedding of the
coefficient functions (which usually are given by vector fields (tensor fields)), our question
above boils down to the following question:

is it possible to embed an arbitrary n-dimensional smooth vector field (tensor field) into a
“∗-symmetrical”N-dimensional tensor field,N ≥ n?
This question will be answered positively here.
For a better understanding of the practical meaning of this result, some analogies to the

classical situation of holomorphy are given (see the following section and also more details
in [17]).

(i) The simplest GAP is defined by the two-dimensional field C of the complex
numbers. In this case, the ∗-symmetry is defined by the classical symmetry of
holomorphy. It is a well-known fact, that an arbitrary smooth real-valued function
f : I → R, I ⊆ R, can be “embedded” in a complex valued function F : G → C,
G ⊆ C in the sense that the real part of F for values in the region I is identically
with f . Our Embedding Theorem is a generalization of this classical result, by
generalizing the two-dimensional field C to an n-dimensional GAP (generally a
nonassociative, noncommtative, nondivision algebra).

(ii) The classical symmetry of holomorphy leads immediately to related (partly equiv-
alent) symmetries: the well-known Cauchy-Riemannian differential equations and
the well-known Cauchy Integral Theorem. The GAP-formalism generalizes these
symmetries: it is shown that in GAPs, analogies of the Cauchy-Riemannian dif-
ferential equations exist (in the following denoted as Pseudo Cauchy-Riemannian
differential equations or shorter: “PCRE”) as well as analogies of the Cauchy
Integral Theorem (in the following denoted as Pseudo Cauchy Integral Theorem
or shorter: “PCIT”).

(iii) The classical symmetries: Cauchy-Riemannian differential equations and Cauchy’s
Integral Theorem lead to a solution theory of the two-dimensional linear Laplace
equation. In a similar way, their analogies—the PCRE and the PCIT—lead to a
solution theory of n-dimensional nonlinear partial differential equations.

After these considerations, some remarks to the structure of the paper are presented
as follows.

(1) In Section 2.1 the concept of “∗-analyticity” is introduced: we will define the so-
called ∗-analytic tensor fields by demanding that these fields allow a representation
as generalized power series in very general algebras.

(2) In Section 2.2 we will specialize these algebras to the so-called “PAk-structures” by
introducing symmetries which can be seen as wide generalizations/modifications
of the classical associativity symmetry. In the function theories built up over special
PAk-structures (so-called “pseudorings”), there exist generalizations of the well-
known Cauchy-Riemannian differential equations as well as generalizations of the
well-known Cauchy Integral Theorem.
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(3) In Section 2.3 a further generalization is given by generalizing the PAk-structures to
the so-called “GAPs.” It is shown that also in this wide framework the main results
of Section 2.2 hold.

(4) Section 2.4 solves the problem of calculating GAPs explicitly.

(5) Section 3 presents applications of the GAP-formalism on famous partial differential
equations from Theoretical Physics: new explicit solutions of Einstein equations
from General Relativity and Navier-Stokes equations are given. The request of a
further generalization of these results (which would be important from a physical
point of view) shows the necessity of “embedding low dimensional unsymmetrical
structures into higher dimensional symmetrical structures,” that is, the necessity of
an Embedding formalism, which is developed in the following Section 4.

(6) Section 4 presents the Embedding Theorem: it is shown that an arbitrary n-
dimensional smooth vector field always can be embedded into a special N-
dimensional smooth vector field (N ≥ n) restricted by special GAP-symmetries.
In other words, The world of GAPs is wide enough to allow embedding for rather
general (smooth) structures. It is remarkable that the Embedding Theorem not
only shows the possibility of Embedding but also endows the tools for practical
applications. A simple example is given.

Finally some remarks to the style of the presented paper, which is given by
accentuation of constructiveness, are presented like it is demanded by the concrete problems:
not only are statements to existence and uniqueness desired and given but furthermore the
explicit construction of a wide variety of solutions. For this reasons, this paper is not written
for pure mathematicians but for physicists and applied mathematicians.

2. Elements of GAP-Theory

In this chapter the most important mathematical concepts will be presented as necessary
for our solution method. Some of these concepts have been presented in [17], where the
interested reader can find the proofs as missing here. The larger part of concepts is new;
the corresponding propositions of course all will be proved in the following.

2.1. The Concept of ∗-Analyticity in General Algebras

We start by remembering on same elementary terms of algebra theory: let V denote an
arbitrary vector space built over the field R of real numbers, and ∗ : V × V → V an arbitrary
binary distributive operation. The algebraic structure defined by V and ∗will be denoted here
as (V ; ∗). The ∗-operation on V -vectors can be described bymeans of an arbitrary V -base {bi},
i = 1, . . ., dimV according to bi ∗ bj = Ck

(∗)ijbk, where Ck
(∗)ij ∈ R denote the structure constants

of the algebra (V ; ∗) with respect to the base {bi}. Instead of i = 1, . . .,dimV , we will write
in the future i ∈ I1,dimV . The associated base-independent object to the structure constants
Ck

(∗)ij , i, j, k ∈ I1,dimV is the structure constant tensor C(∗) of the algebra: C(∗) = Ck
(∗)ijb

i ⊗ bj ⊗ bk,
with bi ∈ V ∗, where V ∗ denotes the dual space of V and {bi} the dual base of {bj}, defined by
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Table 1

Symmetry Definition Corresponding C(∗)-symmetry

(anti)commutativity x ∗ y = (−)y ∗ x Ck
(∗)ij = (−)Ck

(∗)ji

associativity (x ∗ y) ∗ z = x ∗ (y ∗ z) Cl
(∗)ijC

m
(∗)lk = Cl

(∗)jkC
m
(∗)il

Jacobi symmetry (x ∗ y) ∗ z + (y ∗ z) ∗ x Cl
(∗)ijC

m
(∗)lk + C

l
(∗)jkC

m
(∗)li

+(z ∗ x) ∗ y = 0 +Cl
(∗)kiC

m
(∗)lj = 0

e(∗,L)-existence e(∗,L) ∗ x = x ei(∗,L)C
k
(∗)ij = δ

k
j

e(∗,R)-existence x ∗ e(∗,R) = x Ck
(∗)ij e

j

(∗,R) = δ
k
j

bi(bj) = δij . By means of C(∗) the product x ∗ y, x, y ∈ V can be developed as follows:

x ∗ y =
(
x ∗ y)kbk =

(
xibi
)
∗
(
yjbj
) distributivity

= xiyj
(
bi ∗ bj

) definition of C(∗)
= xiyjCk

(∗)ijbk

=⇒ (x ∗ y)k = xiCk
(∗)ijy

j , k ∈ I1,dim V .

(2.1)

In the future we will denote the quadratic matrix xiCk
(∗)ij by (x∗)kj and the quadratic matrix

Ck
(∗)ijy

j by (∗y)ki or shorter in formal denotation x∗ and ∗y. If rank x∗ < dimV for a fixed
element x, then equation x ∗ y = 0 has a nonzero solution y ∈ V and if rank ∗y < dimV for a
fixed element y, then equation x ∗ y = 0 has a nonzero solution x ∈ V . We remember that in
the special case of a ring operation ∗ a nonzero element x with x ∗ y = 0, y another nonzero
element, is called a zero divisor, and a ring without zero divisors is called a division ring. In this
work we will use the denotation “zero divisor” also for more general algebras in the sense
above.

If (V ; ∗) has a left unit element (shorter: “left unit”), we denote this element as e(∗,L),
defined by e(∗,L) ∗ x = x, for allx ∈ V. If (V ; ∗) has a right unit element (shorter: “right unit”),
we denote this element as e(∗,R), defined by x ∗ e(∗,R) = x, for allx ∈ V. If left unit and right
unit are identical we will write e(∗). The existence of a right unit or a left unit allows to define
the following generalizations of the inverse element conception:

x ∗ x−1(∗,R,R) = e(∗,R), x−1(∗,L,R) ∗ x = e(∗,R),

x ∗ x−1(∗,R,L) = e(∗,L), x−1(∗,L,L) ∗ x = e(∗,L).
(2.2)

Here the symbol x−1(∗,R,R) denotes the right inverse of x in respect of the right unit e(∗,R) (see
the superscripts R,R), x−1(∗,L,R) denotes the left inverse of x in respect of the right unit e(∗,R)
(see the superscripts L,R), and so forth. The existence of a unit element e(∗) = e(∗,R) = e(∗,L)
allows the definition of an inverse element x−1(∗) for x ∈ V : x−1(∗) ∗ x = x ∗ x−1(∗) = e(∗). The
extension (∗) in x−1(∗) will help us to distinguish an inverse vector from the inverse A−1 of a
quadratic matrix A.

The classical algebra symmetries (anti)commutativity, associativity, Jacobi-symmetry,
existence of a left unit/right unit can be described by means of the structure constants as
shown in Table 1.
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The C(∗) symmetries follow immediately from representing the vectors x, y, z in
respect of a vector base {bi} and by calculating the base products bi ∗ bj , (bi ∗ bj) ∗ bk, and
so forth, by the structure constants.

Let V p := V ⊗ V · · · ⊗ V (p times) denote the p-repeated tensor product of the vector
space V and Vq := V ∗ ⊗ V ∗ · · · ⊗ V ∗ (q times) the q-repeated tensor product of the dual space
V ∗. With bi1 ⊗ bi2 · · · ⊗ bip ∈ V p, we denote an arbitrary V p-base, and with bi1 ⊗ bi2 · · · ⊗ biq ∈ Vq
the corresponding dual base. Then a tensor T ∈ V p (also called as “tensor of type (p, 0)”) has
a representation T = Ti1,...,ipbi1 ⊗ bi2 · · · ⊗ bip with Ti1,...,ip = T(bi1 , bi2 , . . . , bip) and a tensor S ∈ Vq
(also called as “tensor of type (0, q)”) has a representation S = Si1,...,iq b

i1 ⊗ bi2 · · · ⊗ biq with
Si1,...,iq = S(bi1 , bi2 , . . . , biq).

After these well-known assumptions, we will start with GAP-Theory by introducing
two new product operations V p × V → V p and Vq × V → Vq as follows.

Definition 2.1. Given an arbitrary algebra (V ; ∗) with structure constant tensor C(∗). Then
the ∗-associatedproduct of order p: �(∗) : V p × V → V p is defined by

(
bi1 ⊗ bi2 · · · ⊗ bip

)
�(∗)bj := Ck

(∗)i1jbk ⊗ bi2 · · · ⊗ bip + bi1 ⊗ C
k
(∗)i2jbk ⊗ bi3 · · · ⊗ bip

+ · · · + bi1 ⊗ bi2 · · · ⊗ bip−1 ⊗ Ck
(∗)ipjbk,

(2.3)

and the ∗-dual associated product of order q: �dual
(∗) : Vq × V → Vq by

(
bi1 ⊗ bi2 · · · ⊗ biq

)
�dual

(∗) bj := C
i1
(∗)kjb

k ⊗ bi2 · · · ⊗ biq + bi1 ⊗ Ci2
(∗)kjb

k ⊗ bi3 · · · ⊗ biq

+ · · · + bi1 ⊗ · · · ⊗ biq−1 ⊗ Ciq
(∗)kjb

k.

(2.4)

It is necessary to write �(∗) instead of �, because later we will deal with different
product operations ∗k, k = 1, 2, . . . and with the corresponding ∗k-associated operations �(∗k).
In the case p = 1, it holds by definition that �(∗) = ∗; in the case q = 1, we write also ∗dual for
�dual

(∗) . Due to the linearity of the vector spaces V p and Vq, the �-products of the base vectors
uniquely define products of the form T�(∗)z and S�dual

(∗) z for arbitrary tensors T ∈ V p, S ∈ Vq,
and z ∈ V . For this we look at the following results:

Proposition 2.2. The components of products T�(∗)z, S�dualz, T ∈ V p, S ∈ Vq, and z ∈ V are given
by

(
T�(∗)z

)i1i2···ip =
(
Tk i2···ipCi1

(∗)kj + T
i1 ki3···ipCi2

(∗)kj + · · · + Ti1i2···ip−1 kCip
(∗)kj
)
zj ,

(
S�dual

(∗) z
)

i1i2···iq
=
(
Sk i2···iqC

k
(∗)i1j + Si1 ki3···iqC

k
(∗)i2j + · · · + Si1i2···iq−1 kCk

(∗)iqj
)
zj .

(2.5)

The following algebraical symmetries hold:

(T1 + T2)�(∗)z =
(
T1�(∗)z

)
+
(
T2�(∗)z

)
, (2.6a)

(T1 ⊗ T2)�(∗)z =
(
T1�(∗)z

) ⊗ T2 + T1 ⊗
(
T2�(∗)z

)
, (2.6b)
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(anti) symmetry of T ⇐⇒ (anti) symmetry of T�(∗)z, (2.6c)

T�(∗)e(∗,R) = pT, (2.6d)

e(∗,R) the right unit of the operation ∗, T1, T2, T ∈ V p, z ∈ V . Analog relations hold for the dual
∗-associated products.

Definition 2.3. We define the maps P [α]
(∗) : V p × V → V p and Pdual[α]

(∗) : Vq × V → Vq as follows:

P
[α]
(∗) (A, z) :=

(· · · ((A�(∗)z
)
�(∗)z

) · · ·�(∗)z
)
�(∗)z, α-times,

P
dual[α]
(∗) (B, z) :=

(
· · ·
((
B�dual

(∗) z
)
�dual

(∗) z
)
· · ·�dual

(∗) z
)
�dual

(∗) z, α-times,
(2.7)

A ∈ V p and B ∈ Vq arbitrary constants, z ∈ V. The map P
[α]
(∗) (A, z) is denoted as the ∗-

generalized power function of the vector z, Pdual[α]
(∗) (B, z) as thedual ∗-generalized power function.

From this definition, it follows in particular that P [1]
(∗) (A, z) = A�(∗)z, P

[2]
(∗) (A, z) =

(A�(∗)z)�(∗)z/=A�(∗)(z ∗ z), P [3]
(∗) (A, z) = ((A�(∗)z)�(∗)z)�(∗)z, which is different from

A�(∗)((z∗z)∗z) as well as from (A�(∗)(z∗z))�(∗)z, and so forth. Furthermore, it follows that

P
[α+1]
(∗) (A, z) = P [α]

(∗) (A, z)�(∗)z, P
dual[α+1]
(∗) (B, z) = Pdual[α]

(∗) (B, z)�dual
(∗) z,

P
[α]
(∗) (z, z) = (· · · ((z ∗ z) ∗ z) · · · ∗ z) ∗ z =: z[α+1],

P
[α]
(∗)
(
e(∗,L), z

)
=
(· · · ((e(∗,L) ∗ z

) ∗ z) · · · ∗ z) ∗ z = z[α],

(2.8)

where we have introduced the denotation z[α] for reason of simplicity as well as to differ this
expression from the components zα, that is, the square bracket for the “order index” α refers
to the generalized power operation.

By means of the generalized power functions, we will introduce now the concept of
∗-analytic tensor fields. For the following T

p
q(W),W ⊆ R

n denotes the vector space of tensors
of type (p, q)which are smooth in a regionW .

Definition 2.4. Given an arbitrary algebra (Rn; ∗) and arbitrary tensors T ∈ Tp(W), S ∈ Tq(W),
we denote T and S, respectively, as ∗-analytic in region W if there exists an element z0 ∈ W ,
which allows the following representations of T , respectively, S:

Ti1···ip(z) =

{

A[0] +
∑

α≥1
P
[α]
(∗)
(
A[α], z − z0

)
}i1···ip

=
{
A[0] +A[1]�(∗)(z − z0) +

(
A[2]�(∗)(z − z0)

)
�(∗)(z − z0)

+
((
A[3]�(∗)(z − z0)

)
�(∗)(z − z0)

)
�(∗)(z − z0) + · · · }i1···ip ,

(2.9)
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Si1···iq(z) =

{

B[0] +
∑

α≥1
P
dual[α]
(∗) (B[α], z − z0)

}

i1···iq

=
{
B[0] + B[1]�dual

(∗) (z − z0) +
(
B[2]�dual

(∗) (z − z0)
)
�dual

(∗) (z − z0)

+
((
B[3]�dual

(∗) (z − z0)
)
�dual

(∗) (z − z0)
)
�dual

(∗) (z − z0) + · · ·
}

i1···iq
,

(2.10)

z ∈ W , A[α] constants of type (p, 0), B[α] constants of type (0, q). The set of all in regionW∗-
analytic tensors T and S for a fixed z0 is denoted as Tp(W ; ∗)(z0) and Tq(W ; ∗)(z0).

In other words, ∗-analytic tensor fields are Taylor series in respect of the (dual) ∗-
generalized power function, that is, the Taylor coefficients must take a special place within
the “chain structure” of the series. If the series above are infinite, we need a criterion for
convergence. Of course convergence depends on the region W as well as on the concretely
used algebra (Rn; ∗). For a simple convergence criterion, we introduce in the space (Rn)p the
following norm. (Since the vector space R

n is self-dual, that is, R
n = (Rn)∗, we can identify

(Rn)p with (Rn)p = ((Rn)∗)p, and the following norm also is a norm for elements Y ∈ (Rn)p
with ‖Y‖ :=:

∑
i1 i2···ip |Yi1 i2···ip |, p ≥ 1)

‖X‖ :=:
∑

i1 i2···ip

∣∣∣Xi1 i2···ip
∣∣∣, X ∈ (Rn)p, p ≥ 1. (2.11)

Proposition 2.5. Given the norm (2.11) and the denotations of from above, then the series (2.9) is
absolutely convergent in the region W ⊂ R

n if

∣∣∣Cl
(∗)kj
∣∣∣ ≤Ml, ∀j, k ∈ I1,n, with

n∑

l=1

Ml ≤ 1
p
,

∑

α≥0

∥∥A[α]
∥∥‖z − z0‖α <∞, z, z0 ∈W.

(2.12)

The series (2.10) is absolutly convergent in the regionW ⊂ R
n if

∣∣∣Cl
(∗)kj
∣∣∣ ≤Nk, ∀j, l ∈ I1,n, with

n∑

k=1

Nk ≤ 1
q
,

∑

α≥0

∥∥B[α]
∥∥‖z − z0‖α <∞, z, z0 ∈W.

(2.13)

We sum up in the following.

Until now two concepts have been introduced: the concept of ∗-associated Products
�(∗),�dual

(∗) and the concept of ∗-analytic tensor fields. We have seen that the operations

�(∗),�dual
(∗) always have some simple symmetries without restricting the underlying

∗-operation, and that specializing of ∗ cannot induce the classical symmetries of
associativity, commutativity, and Jacobi-symmetry for the operations �(∗),�dual

(∗) . By
means of the ∗-associated products, the so-called ∗-analytic tensor fields have been
defined. These tensor fields always have symmetries without restricting the underlying
∗-operation, that is, ∗-analyticity is a stronger symmetry than smoothness.
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2.2. ∗-Analyticity in PAk-Structures. Nonstandard Function Theory

Now we will define such symmetries of an algebra (Rn; ∗), so that the corresponding ∗-
analytical tensor fields become interesting “nonstandard symmetries”. In particular, we are
interested in symmetries of the partial derivatives, the covariant derivatives, and the Lie-
derivatives of ∗-analytical tensor fields.

Definition 2.6. An algebraic structure (Rn; ∗1, ∗2) is called pseudoassociative of type k (PAk-
structure), k = 1,2, if the operations ∗1, ∗2 satisfy the following commutation relation:

k = 1 :
(
x∗1y

)∗2z = (x∗1z)∗2y, k = 2 : x∗1
(
y∗2z

)
= z∗1

(
y∗2x

)
, (2.14)

for allx, y, z ∈ R
n. In the special case ∗1 = ∗2 = ∗, we denote these structures as pseudorings of

type k.

It is easy to see that a pseudoring of arbitrary type is associative if and only if it is
commutative and a pseudoring with left unit is always commutative.

Proposition 2.7. An algebraic structure (Rn; ∗1, ∗2) is a PAk-structure, k = 1, 2, if and only if the
structure constant tensors C(∗1) and C(∗2) satisfy the following commutation relation (The following
index symbol “[]” is used as an index commutator.):

k = 1 : Ck
(∗1)ijC

m
(∗2)kl = C

k
(∗1)ilC

m
(∗2)kj ,

(
equivalent with Ck

(∗1)i[jC
m
(∗2)|k|l] = 0

)
, (2.15a)

k = 2 : Ck
(∗2)ijC

m
(∗1)lk = Ck

(∗2)ilC
m
(∗1)jk,

(
equivalent with Ck

(∗2)i[jC
m
(∗1)l]k = 0.

)
(2.15b)

This Proposition allows a characterization of PAk-structures by means of the
corresponding structure constant tensors. The problem of the explicit construction of PAk-
structure constant tensors will be solved later. Now we will analyze some relationships
between the inverse of a matrix (written as ( )−1) and the (left/right) inverse elements of
a “corresponding” vector. We will see that such relationships exist for matrices and vectors
derived from PAk-structures.

Proposition 2.8. Given a PA1-structure X = (Rn; ∗1, ∗2) with left unit e(∗2,L) and a PA2-structure
Y = (Rn; ∗1, ∗2) with right unit e(∗1,R), then it holds for arbitrary vectors x ∈ R

n:

in algebra X : (x∗1)−1 = ∗2y with x∗1y = e(∗2,L),

in algebra Y : (x∗2)−1 = y∗1 with x∗2y = e(∗1,R).
(2.16)

In pseudorings the relations above take the very simple form:

Pseudoring of first type with left unit: (x∗)−1 = ∗x−1(∗,R,L) ,

Pseudoring of second type with right unit: (x∗)−1 = x−1(∗,R,R)∗,

Commutative pseudoring with unit : (x∗)−1 = ∗x−1(∗) .

(2.17)
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In the next step we will show that beside the algebraic characterization there also
exists a geometrical characterization of PAk-structures. we will restrict here to a geometrical
interpretation only of the pseudoringsymmetries of first type and look at a differentiable
manifold M with an affine connection. As well-known, the corresponding curvature tensor
Ω can be written in local coordinates as

Ωm
ilj = Γmij,l − Γmil,j + ΓkijΓ

m
kl − ΓkilΓ

m
kj = Γmi[j,l] + Γki[jΓ

m
|k|l], (2.18)

where Γjim denote the affine connection coefficients in local coordinates (To avoid misunder-
standings, we refer to the definitions and denotations given in the appendix: the curvature
tensor of a manifold M (or a tangent bundle) with a connection is denoted with Ω and
its coefficients with Ωm

ilj
, whereas in the more special case of a Riemannian manifold the

curvature tensor is denoted as R and its coefficients with Rm
ilj). On the right side, the second

summand agrees formal with the left side of the relation (2.15a) for the simple case ∗1 = ∗2,
that is, for pseudorin gsymmetry of first type. This formal similarity is growing in the case of
a flat manifold. In this case it holds Ωm

ilj = 0 and if we choose a local coordinate system with
the special symmetries (It can be shown, that coordinate systems with this symmetry exist
and can be constructed explicitly) Γm

i[j,l] = 0, then the relation above reduces to Γk
i[jΓ

m
|k|l] = 0,

which is formal identical with the symmetry (2.15a) of a pseudoring of first type. Therefore
we see

that the curvature tensor prefers the symmetry of pseudoassociativity of first type and not
the symmetry of associativity. (Associativity follows only in the case of flat spaces
with torsion zero, that is, if Γjim = Γjmi. In this case, Γjim shows the symmetry
of the structure constant tensor of a commutative algebra and according to
the considerations above it holds: commutativity + pseudoringsymmetries =
commutativity + associativity).

Since the pseudoring symmetry of first type seems geometric fundamental, we can
expect very interesting symmetries of the corresponding ∗-analytic tensors. As remarked in
the introduction of this section, we are interested especially in the partial derivatives, the
covariant derivatives and the Lie derivatives of ∗-analytical tensor fields. All these derivatives
can be written by means of the so called ∗-derivative, which will be defined now as follows.

Definition 2.9. Given T ∈ Tp(W ; ∗)(z0), S ∈ Tq(W ; ∗)(z0). If the following series expansions

(
D(∗)T

)i1···ip(z) :=

{

A[1] +
∑

α≥2
P
[α−1]
(∗)
(
αA[α], z − z0

)
}i1...ip

=
{
A[1] + 2A[2]�(∗)(z − z0) +

(
3A[3]�(∗)(z − z0)

)
�(∗)(z − z0) + · · · }i1...ip ,

(
D(∗)S

)
i1···iq(z) :=

{

B[1] +
∑

α≥2
P
dual[α−1]
(∗) (αB[α], z − z0)

}

i1···iq

=
{
B[1] + 2B[2]�dual

(∗) (z − z0) +
(
3B[3]�dual

(∗) (z − z0)
)
�dual

(∗) (z − z0) + · · ·
}

i1···iq
(2.19)
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are convergent for z ∈ W , the uniquely defined elements D(∗)T ∈ Tp(W ; ∗)(z0) and D(∗)S ∈
Tq(W ; ∗)(z0) will be denoted as the ∗-derivative of tensor T and the ∗-derivative of tensor S.

We also will write sometimes T ′ instead of D(∗)T and analog for tensor S. From this
definition and relation (2.6c) from Proposition 2.2, it follows immediately that

T is (anti)symmetric ⇐⇒ D(∗)T is (anti)symmetric,

S is (anti)symmetric ⇐⇒ D(∗)S is (anti)symmetric.
(2.20)

Of course it is not ensured that this formal concept of ∗-derivative has the properties of the
classical derivatives as to be a “direction-independent” limit of a difference quotient, and so
forth. The concrete circumstances sensitive depend on the structure of the given algebra. To
get interesting symmetries (we have to define what is interesting!) of the ∗-derivative, we will
specialise the algebra to a pseudoring of first type.

Theorem 2.10. Given a pseudoring of first type (Rn; ∗) and a tensor T ∈ Tp(W ; ∗)(z0),W ⊆ R
n, p ≥

1. Then the partial derivatives of T satisfy the symmetry

T
i1···ip
,m =

(
T ′)l i2···ipCi1

(∗)lm +
(
T ′)i1 l i3···ipCi2

(∗)lm + · · · + (T ′)i1 i2···ip−1 lC
ip
(∗)lm. (2.21)

If there exists a right unit e(∗,R) on (Rn; ∗) an inverse relation holds:

(
T ′)i1···ip =

1
p
T
i1···ip
,m em(∗,R). (2.22)

Proposition 2.11. Let (C; ∗) denote the field of complex numbers. Then the relations (2.21) take the
form of the classical Cauchy-Riemannian differential equations.

Therefore, our considerations generalize the circumstances of classical complex
function theory (and also those of modern function theory built over fields or division
algebras) as follows:

field structure of C −→ pseudoring structure of (Rn; ∗)

dimension 2 of R
2 −→ arbitrary dimension n

vector fields on R
2 −→ tensor fields on R

n.

(2.23)

As the most remarkable generalization seems the generalization of the field structure to the
structure of a nonassociative noncommutative pseudoring structur with zero divisors, these
circumstances legitimize the denotation of (2.21) as Pseudo-Cauchy-Riemannian equations or
shorter as PCRE. The analogon of Theorem 2.10 for tensors S ∈ Tq(W ; ∗)(z0) is given as
follows.
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Theorem 2.12. Given a pseudoring of first type (Rn; ∗) and a tensor S ∈ Tq(W ; ∗)(z0),W ⊆ R
n, q ≥

1, then the partial derivatives of S satisfy the symmetry (The following equations also will be denoted
as PCRE.)

Si1···iq,m =
(
S′)

l i2···iqC
l
(∗)i1m +

(
S′)

i1 li3···iqC
l
(∗)i2m + · · · + (S)i1 i2···iq−1 lC

l
(∗)iqm. (2.24)

If there exists a right unit e(∗,R) of (Rn; ∗), an inverse relation holds:

(
S′)

i1···iq =
1
q
Si1···iq,me

m
(∗,R). (2.25)

Now we will study the covariant derivative of ∗-analytical tensor fields. For this it is
necessary to formalize the PCRE. By considering the properties of the ∗-associated products
�(∗) and �dual

(∗) from Proposition 2.2, we see the possibility of the following formulation:

∂T = O(∗)T�(∗), ∂S = O(∗)S�dual
(∗) . (2.26)

This relations show that partial derivatives can be “transformed” onto “ordinary” ∗-
derivatives. This will offer an interesting approach for solving partial differential equations
by transforming these equations onto ordinary “∗-differential equations”, that is, ordinary
algebra-differential equations.

For studying the covariant derivatives of ∗-analytical tensor fields we remember that
for arbitrary tensors T ∈ Tp(W), S ∈ Tq(W),W ⊂ R

n the covariant derivatives in component
form are defined by

T
i1 i2···ip
;j = T

i1 i2···ip
,j + Tk i2···ipΓi1kj + T

i1 ki3···ipΓi2kj + · · · + Ti1 i2···ip−1 kΓipkj ,

Si1···iq ;j = Si1···iq,j − Ski2···iqΓki1j − Si1 ki3···iqΓki2j − · · · − Si1 i2···iq−1 kΓkiqj ,
(2.27)

where Γijk denotes the Christoffel symbols of the chosen R
n-coordinate system. Comparison

with the relations of Proposition 2.2 shows a strong formal similarity which legitimates the
following denotations:

(
T�(Γ)

)i1 i2···ip := Tk i2···ipΓi1kj + T
i1 ki3···ipΓi2kj + · · · + Ti1 i2···ip−1 kΓipkj ,

(
S�dual

(Γ)

)

i1···iq
:= Ski2···iqΓ

k
i1j

+ Si1 ki3···iqΓ
k
i2j

+ · · · + Si1 i2···iq−1 kΓkiqj .
(2.28)

Proposition 2.13. Given a pseudoring of first type (Rn; ∗) and tensors T ∈ Tp(W ; ∗)(z0), S ∈
Tq(W ; ∗)(z0),W ⊂ R

n, p, q ≥ 1, then the covariant derivatives DT,DS satisfy the following
symmetries:

DT = D(∗)T�(∗) + T�(Γ), DS = D(∗)S�dual
(∗) − S�dual

(Γ) . (2.29)
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Now we will study the Lie-derivatives of ∗-analytical tensor fields. For this we
remember on the Lie-derivative Lv : T

p
q(W) → T

p
q(W) of a tensor T ∈ T

p
q(W) in respect

to a vector field v:

(LvT)
i1···ip
j1···jq = T

i1···ip
j1···jq,mv

m − Tmi2···ip
j1···jq vi1,m − Ti1mi3···ip

j1···jq vi2,m − · · · − Ti1···ip−1mj1···jq v
ip
,m

+ T
i1···ip
m j2···jqv

m
,j1
+ T

i1···ip
j1 mj3···jq v

m
,j2
+ · · · + Ti1···ipj1···jq−1mv

m
,jq
.

(2.30)

Proposition 2.14. Given two pseudorings of first type (Rn; ∗) and (Rn; ◦), furthermore the tensors
T ∈ Tp(W ; ∗)(z0), S ∈ Tq(W ; ∗)(z0),W ⊂ R

n, p, q ≥ 1 and a vector v ∈ T1(W ; ◦)(z0). Then the Lie-
derivatives LvT and LvS satisfy the following symmetries (The following operation ◦T is defined by
C k

(◦T )mj = Ck
(◦)jm, that is, by “transposition” of the corresponding quadratic matrix with fixed index

k.):

LvT = D(∗)T�(∗)v − T�(◦T )D(◦)v, LvS = D(∗)S�dual
(∗) v + S�dual

(◦T )D(◦)v. (2.31)

For a pseudoring of first type (Rn; ∗) with right unit e(∗,R) and a tensor field, it holds that

D(∗)T = Le(∗,R)T, T ∈ Tp(W ; ∗)(z0), (2.32a)

(
Lgf
)′ = Lgf

′ + Lg ′f, f, v ∈ T1(W ; ∗)(z0). (2.32b)

Relation (2.32a) shows a very simple characterization of the ∗-derivative by the Lie-derivative, but it
is only possible in a pseudoring with a right unit.

After the partial derivatives, covariant derivatives and Lie-derivatives we will study
the exterior derivatives of ∗-analytic forms. Let us denote the set of all in region W ⊆ R

n

smooth q -forms with Aq(W), and the subset of all inW∗-analytical q-forms with Aq(W ; ∗)(z0).

Proposition 2.15. Given a pseudoring (Rn; ∗) of first type, an arbitrary nontrivial q-form ω ∈
Aq(W ; ∗)(z0), and arbitrary vector fields u, v ∈ T1(W ; ∗)(z0), w ∈ T1(W ; ∗)(z0), v not constant (“Not
constant” means of course not constant in the considered coordinate system), then it holds that

d ∧ω = 0 ⇐⇒ (Rn; ∗) is commutative,

u ∗ v ∈ T1(W ; ∗)(z0) ⇐⇒ (Rn; ∗) is commutative,

w∗dualv ∈ T1(W ; ∗)(z0) ⇐⇒ (Rn; ∗) is commutative,

u−1(∗) ∈ T1(W ; ∗)(z0) ⇐⇒ (Rn; ∗) is commutative.

(2.33)

This proposition shows that some fundamental symmetries with practical importance
only exist in commutative pseudorings: the ∗-product of ∗-analytical vector fields is ∗-analytic
only for commutative pseudorings, and an analogue result holds for the ∗dual-product. Also
the inverse element of a ∗-analytical vector field will be ∗-analytical only in a commutative
pseudoring. Let us sum up the relations for the classical derivatives as follows:
Pseudo-Cauchy-Riemann equations:

∂T = D(∗)T�(∗), ∂S = D(∗)S�dual
(∗) , (2.34a)
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Covariant derivatives:

DT = D(∗)T�(∗) + T�(Γ), DS = D(∗)S�dual
(∗) − S�dual

(Γ) , (2.34b)

Lie-derivative:

LvT = D(∗)T�(∗)v − T�(◦T )D(◦)v, LvS = D(∗)S�dual
(∗) v + S�dual

(◦T )D(◦)v,

D(∗)T = Le(∗,R)T,
(2.34c)

Exterior derivative:

d ∧ω = 0 ⇐⇒ (Rn; ∗) is commutative, ω ∈ Aq(W ; ∗)(z0), (2.34d)

with (Rn; ∗), (Rn; ◦) pseudorings of first type, T ∈ Tp(W ; ∗)(z0), S ∈ Tq(W ; ∗)(z0),W ⊂ R
n, v ∈

T1(W ; ◦)(z0).We sum up in the following paragraph.

Our aim was to study ∗-analytical tensor fields in the framework of pseudorings,
which have been introduced here as a fundamental concept. It was shown that
pseudoringsymmetry is an algebraic symmetry which also appears in the world of
differential geometry, moreover: the geometrical world prefers the pseudoringsymmetry
against the classical symmetry of associativity. For this the study of pseudorings is
legitimized, and so the study of tensor fields built over pseudorings. In particular
we have studied the partial derivatives of ∗-analytical tensor fields, their covariant
derivatives, their Lie-derivatives and their exterior derivatives, all this in the frame of
pseudoringsymmetry. It was shown, that all these fundamental derivatives can be written
in terms of the so-called ∗-derivative, which has been introduced here as a fundamental
concept, following from the symmetry of ∗-analyticity.

2.3. Generalizations. The World of GAPs

Until nowwe have dealt with PAk-structures (Rn; ∗1, ∗2) and pseudorings (Rn; ∗), that is, with
algebraic structures defined by maximal two product operations. For some later applications,
this framework will be too small and shall be generalized here (The most applications on
mathematical physics only need some small parts of this section: the concept of a GAP, of a
GAP characteristic, and of GAP Exponentials). Such an algebra generalization will lead us to
the concept of GAPs (PAk-structures and pseudorings will be shown as themost simple GAP-
structures) and will allow us to generalize the function theoretical concepts of ∗-analyticity,
∗-derivative, ∗-integration, and so forth, from the section above by replacing the underlying
PAk-structures (pseudorings) by GAPs.

The aim of this section is to generalize the concepts of PAk-structures, ∗-analyticity, ∗-
derivative, ∗-integration, Pseudo Cauchy Riemann equations, and so forth.

Let us denote X = (Rn; ∗1, ∗2, . . . , ∗M) as an algebraic structure with the operations
∗α : R

n × R
n → R

n, α ∈ I1,M,M an arbitrary natural number which also might be infinite.
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To generalize the concept of ∗-analyticity we have to generalize the concept of the power
function from Section 2.1. For this we introduce the maps P [α]

(∗1,∗2,...,∗α) : (R
n)p × (Rn) → (Rn)p

and Pdual[α]
(∗1,∗2,...,∗α) : (R

n)q × (Rn) → (Rn)q as follows:

P
[α]
(∗1,∗2,...,∗α)(A, z) :=

(· · · ((A�(∗α)z
)
�(∗α−1)z

) · · ·�(∗2)z
)
�(∗1)z, α-times,

P
dual[α]
(∗1,∗2,...,∗α)(B, z) :=

(
· · ·
((
B�dual

(∗α) z
)
�dual

(∗α−1)z
)
· · ·�dual

(∗2) z
)
�dual

(∗1) z, α-times,
(2.35)

A ∈ (Rn)p, B ∈ (Rn)q arbitrary constants, z ∈ R
n. After these assumption we can introduce

the concept of “chain-analyticity”.

Definition 2.16. Given an arbitrary algebraic structure X = (Rn; ∗1, ∗2, . . . , ∗M) and arbitrary
tensors T ∈ Tp(W1), S ∈ Tq(W1), we denote T and S, respectively, as chain-analyticin region
W1, if there exists an element z0 ∈ W1, which allows the following representations of T ,
respectively, S:

Ti1···ip(z) =

{

A[0] +
M∑

α=1

P
[α]
(∗1,∗2,...,∗α)(A[α], z − z0)

}i1···ip
:= A[0] +A[1]�(∗1)(z − z0)

+
(
A[2]�(∗2)(z − z0)

)
�(∗1)(z − z0)

+
((
A[3]�(∗3)(z − z0)

)
�(∗2)(z − z0)

)
�(∗1)(z − z0) + · · · ,

Si1···iq(z) =

{

B[0] +
M∑

α=1

P
dual[α]
(∗1,∗2,...,∗α)(B[α], z − z0)

}

i1···iq

:= B[0] + B[1]�dual
(∗1) (z − z0) +

(
B[2]�dual

(∗2) (z − z0)
)
�dual

(∗1) (z − z0)

+
((
B[3]�dual

(∗3) (z − z0)
)
�dual

(∗2) (z − z0)
)
�dual

(∗1) (z − z0) + · · · ,

(2.36)

z ∈ W1, A[α] a constant of type (p, 0), B[α] a constant of type (0, q). The set of all in region
W1 chain-analytical tensors T and S for fixed z0 is denoted as Tp(W1; ∗1, ∗2, . . . , ∗M)(z0) and
Tq(W1; ∗1, ∗2, . . . , ∗M)(z0).

Consider that in the series above an infinite value of M is allowed and an infinite set
of ∗α-operations is allowed to contain an infinite subset of identical operations. In the case
∗1 = ∗2 = · · · = ∗M (=finite or infinite), we will denote the structures above as ∗-analytical
as in the earlier case of a single product operation. The denotation “chain-analytical” comes
from the fact, that the series above are built by ∗α-operations like the “elements of a chain”.
We see, that for different ∗α-operations the structure of chain-analytical tensor fields is much
more general than the structure of simple ∗-analytical tensor fields. Now we will generalize
the concept of PAk-structures for vector spaces with different dimensions.

Now I will present a concept, which allows a short overview about all symmetries—
PAk-symmetry as well as standard symmetries—of a given algebraic structure. For this we
assign the algebraic structure X = (Rn; ∗1, ∗2, . . . , ∗M) a M ×M-matrix G(X), denoted as the
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symmetry characteristic of the algebra X as follows:

G(X)αβ :=

{
k if the subalgebra

(
R
n; ∗α, ∗β

)
is a PAk-structure,

0 otherwise.

}

(2.37)

(“0” means: “no PAk symmetry is assumed” and not: “no PAk-symmetry is allowed”. With
other words: In the case “0” it is possible that a PAk-symmetry exists, but it is not ensured.)

Definition 2.17. An algebraic structure X = (Rn; ∗1, ∗2, . . . , ∗M) is called a GAP of order M, if
the symmetry characteristicG(X) includes at least one value 1 or 2. In this caseG(X) is denoted
as the GAP characteristic of the GAP X.

In other words a GAP is an algebraic structure which has at least one PA1-symmetry
or one PA2 -symmetry. For further applications it will be advantageable, to generalize the
GAP-characteristic by giving an overview not only about the PAk-symmetries but also
about the ”standard symmetries” of all algebraic structures (Rn; ∗α), that is, of its possible
(anti)commutativity, Jacobi-symmetry, associativity, existence of a right unit e(∗,R), existence
of a left unit e(∗,L), and so forth. Since these symmetries all are defined for a single algebra
operation, they only will appear in the main diagonal of G(X). Concretely we introduce the
following denotations as subscripts of the elements G(X)αα:

c ∼ commutativity,

ac ∼ anticommutativity,

J ∼ Jacobi-symmetry,

e(R) ∼ existence of a right unit,

e(L) ∼ existence of a left unit,

e ∼ existence of a unit.

(2.38)

As an example, we consider an algebraic structure X = (Rn; ∗1, ∗2, ∗3, ∗4) with the following
symmetry characteristic:

G(X) =

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 0

0 0e(R) 1 0

0 0 0ac,J 0

0 2 0 0

⎞

⎟⎟⎟⎟⎟
⎠

(2.39)

which means that the algebra (Rn; ∗2) has a right unit, the algebra (Rn; ∗3) is anticommutative
and satisfies the Jacobi-symmetry (i.e., (Rn; ∗3) is a Lie-algebra), the algebra (Rn; ∗4) is
commutative, the algebraic structure (Rn; ∗1, ∗2) is a PA1-structure, and the algebraic structure
(Rn; ∗4, ∗2) is a PA2-structure. Per definition X is a GAP.

Now some special types of GAPswill be introducedwhich allow awide generalization
of the functional theoretical concepts of ∗-analyticity, ∗-derivative, Pseudo Cauchy Riemann
equations, ∗-integration, and so forth.
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Definition 2.18. A PA1-chain is a GAP X = (Rn; ∗1, ∗2, . . . , ∗M) with PAkαα−1 = 1, α ∈ I2,M. A
PA1-chain is denoted as a closed PA1-chain, if additionally to the above it holds PAk1M = 1.
A closed PA1-chain of Lie-typeis defined as a closed PA1-chain of order 3 with the additional
restriction

(
x∗3y

)∗2z +
(
y∗2z

)∗1x + (z∗1x)∗3y = 0, ∀x, y, z ∈ R
n. (2.40)

The concept of a PA1-chain allows a wide generalization of the earlier concept of the
∗-derivation, which will be presented now.

Definition 2.19. Given a PA1-chain X = (Rn; ∗1, ∗2, . . . , ∗M) and chain-analytic tensors T ∈
Tp(W1; ∗1, . . . , ∗M)(z0), S ∈ Tq(W1; ∗1, . . . , ∗M)(z0), then the following series expansions

(
D(∗1)T

)i1···ip(z) :=

{

A[1] +
M∑

α≥2
P
[α−1]
(∗2,...,∗α)(αA[α], z − z0)

}i1···ip

:=
{
A[1] + 2A[2]�(∗2)(z − z0) +

(
3A[3]�(∗3)(z − z0)

)
�(∗2)(z − z0) + · · · }i1···ip ,

(
D(∗1)S

)
i1···iq(z) :=

{

B[1] +
M∑

α≥2
P
dual[α−1]
(∗2,...,∗α) (αB[α], z − z0)

}

i1···iq

:=
{
B[1] + 2B[2]�dual

(∗2) (z − z0) +
(
3B[3]�dual

(∗3) (z − z0)
)
�dual

(∗2) (z − z0) + · · ·
}

i1···iq
,

(2.41)

z ∈ W1, uniquely define elements D(∗1)T ∈ Tp(W1; ∗2, . . . , ∗M)(z0) and D(∗1)S ∈
Tq(W1; ∗2, . . . , ∗M)(z0) which will be denoted as the ∗1-derivative of tensor T and the ∗1-derivative
of tensor S.

We see that the tensors D(∗1)T and D(∗1)S do not contain the operation ∗1 any longer
and so we cannot define D(∗1)D(∗1)T or D(∗1)D(∗1)S. Only D(∗2)D(∗1)T and D(∗2)D(∗1)S make
sense, and also D(∗3)D(∗2)D(∗1)T and D(∗3)D(∗2)D(∗1)S, and so forth. Thus we will define the
operators

Dk
(∗k,∗k−1,...,∗1) := D(∗k)D(∗k−1) · · ·D(∗1), k ∈ I1,M (2.42)

as the chain derivatives of order k. In the special case ∗1 = ∗2 = · · · = ∗k := ∗we write simplifying
Dk

(∗) instead of Dk
(∗,∗,...,∗). From the definitions above it follows for z ∈W1:

(
Dk

(∗k,∗k−1,...,∗1)T
)i1···ip

(z) :=

{

A[k] +
M∑

α≥k+1
P
[α−k]
(∗2,...,∗α)

(
α(α − 1) · · · (α − k)A[α], z − z0

)
}i1···ip

,

(
Dk

(∗k,∗k−1,...,∗1)S
)

i1···iq
(z) :=

{

B[k] +
M∑

α≥k+1
P
dual[α−k]
(∗2,...,∗α)

(
α(α − 1) · · · (α − k)B[α], z − z0

)
}

i1···iq
,

(2.43)
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and we see that

Dk
(∗k,∗k−1,...,∗1)T ∈ Tp(W1; ∗k+1, . . . , ∗M)(z0), Dk

(∗k,∗k−1,...,∗1)S ∈ Tq(W1; ∗k+1, . . . , ∗M)(z0). (2.44)

Theorem 2.20. Given a PA1-chain X = (Rn; ∗1, ∗2, . . . , ∗M) and a chain-analytic tensor T ∈
Tp(W1; ∗1, . . . , ∗M)(z0), p ≥ 1. Then the following symmetries hold:

(
Dk

(∗k,∗k−1,...,∗1)T
)i1···ip
,α

=
(
Dk+1

(∗k+1,∗k,...,∗1)T
)li2···ip

Ci1
(∗k+1)lα

+
(
Dk+1

(∗k+1,∗k,...,∗1)T
)i1li3···ip

Ci2
(∗k+1)lα + · · · +

(
Dk+1

(∗k+1,∗k,...,∗1)T
)i1i2···ip−1l

C
ip
(∗k+1)lα,

(2.45)

for allα ∈ I1,n1 , i1, . . . , ip ∈ I1,n2 , k ∈ I0,M−1 (In the case k = 0 the left side must be interpreted as

T
i1···ip
,α ). An inverse relation exists, if the algebra (Rn; ∗1) has a right unit e(∗1,R):

(
Dk+1

(∗k+1,∗k,...,∗1)T
)i1 i2i3···ip

=
1
p

(
Dk

(∗k,∗k−1,...,∗1)T
)i1···ip
,m

em(∗1,R). (2.46)

Theorem 2.21. Given a PA1-chain X = (Rn; ∗1, ∗2, . . . , ∗M) and a chain-analytic tensor S ∈
Tq(W1; ∗1, . . . , ∗M)(z0), p ≥ 1. Then the following symmetries hold:

(
Dk

(∗k,∗k−1,...,∗1)S
)

i1···iq,α

=
(
Dk+1

(∗k+1,∗k,...,∗1)S
)

li2···iq
Cl

(∗k+1)i1α

+
(
Dk+1

(∗k+1,∗k,...,∗1)S
)

i1li3···iq
Cl

(∗k+1)i2α + · · · +
(
Dk+1

(∗k+1,∗k,...,∗1)S
)

i1i2···iq−1l
Cl

(∗k+1)iqα,

(2.47)

for allα ∈ I1,n1 , i1, . . . , ip ∈ I1,n2 , k ∈ I1,M−1 (In the case k = 0 the left side must be interpreted as
Si1···iq,α). An inverse relation exists, if the algebra (Rn; ∗1) has a right unit e(∗1,R):

(
Dk+1

(∗k+1,∗k,...,∗1)S
)

i1i2···iq
=

1
q

(
Dk

(∗k,∗k−1,...,∗1)S
)

i1···iq,m
em(∗1,R). (2.48)

The proofs of Theorems 2.20 and 2.21 run the same lines as the proofs of Theorems
2.10 and 2.12. Relations (2.45) and (2.47) will be denoted as Pseudo Cauchy Riemann equations
(PCRE) as in the simple case of a single vector space and a single product operation. (The
expression D0

(∗0,∗0−1,...,∗1)T must be interpreted as T, and D0
(∗0,∗0−1,...,∗1)S as S.) Now we will

generalize the former concept of ∗-integration.



18 Advances in Mathematical Physics

Definition 2.22. Given an arbitrary algebra X = (Rn; ∗1, ∗2, . . . , ∗M)and chain-analytic tensors T ∈
Tp(W1; ∗1, . . . , ∗M)(z0), S ∈ Tq(W1; ∗1, . . . , ∗M)(z0), p ≥ 1, and further let (Rn; ∗0) an algebra with
the property

(Rn; ∗1, ∗0) is a PA1-structure, (2.49)

Then the series

(
D−1

(∗0)T
)i1···ip

(z) :=

{
M∑

α≥0
P
[α+1]
(∗0,∗1,...,∗α)

(
1

α + 1
A[α], z − z0

)}i1···ip
+Ki1···ip

:=
{
K +A[0]�(∗0)(z − z0) +

(
1
2
A[1]�(∗1)(z − z0)

)
�(∗0)(z − z0)

+
((

1
3
A[2]�(∗2)(z − z0)

)
�(∗1)(z − z0)

)
�(∗0)(z − z0) + · · ·

}i1···ip
,

(
D−1

(∗0)S
)

i1···iq
(z) :=

{
M∑

α≥0
P
dual[α+1]
(∗0,∗1,...,∗α)

(
1

α + 1
B[α], z − z0

)}

i1···iq
+ Li1...iq

:=
{
L + B[0]�dual

(∗0) (z − z0) +
(
1
2
B[1]�dual

(∗1) (z − z0)
)

�dual
(∗0) (z − z0)

+
((

1
3
B[2]�dual

(∗2) (z − z0)
)

�dual
(∗1) (z − z0)

)
�dual

(∗0) (z − z0) + · · ·
}i1···ip

,

(2.50)

with z ∈W1, K and L arbitrary constants, are called the ∗0-integrals or the ∗0-antiderivatives of
the tensors T and S.

The denotation D−1
(∗0) is well chosen because it is D(∗0)D

−1
(∗0)T = D−1

(∗0)D(∗0)T and
D(∗0)D

−1
(∗0)S = D−1

(∗0)D(∗0)S.We see, that

T ∈ Tp(W1; ∗1, . . . , ∗M)(z0) =⇒ D−1
(∗0)T ∈ Tp(W1; ∗0, ∗1, . . . , ∗M)(z0),

S ∈ Tq(W1; ∗1, . . . , ∗M)(z0) =⇒ D−1
(∗0)S ∈ Tq(W1; ∗0, ∗1, . . . , ∗M)(z0).

(2.51)

Proposition 2.23. If X is a PA1-chain, then the ∗0-integrals D−1
(∗0)T and D−1

(∗0)S can be expressed by
the classical integral conception as follows:

D−1
(∗0)T(z) =

∫
T(z)�(∗0)dz, D−1

(∗0)S(z) =
∫
S(z)�dual

(∗0)dz. (2.52)

Theorem 2.24. X a PA1-chain and L a smooth closed curve in regionW1. Then it is

∮

L

T(z)�(∗0)dz = 0,
∮

L

S(z)�dual
(∗0)dz = 0. (2.53)
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This Theorem generalizes the well-known classical Cauchy Integral Theorem for GAPs
and is denoted as Pseudo Cauchy Integral Theorem (PCIT). For the next step we remember
on the classical denotation y′ = dy/dx for a scalar differentiable function y(x), or formally
y′dx = dy. It shall be shown now, that for the ∗-derivative of vector-valued functions a similar
result holds:

Proposition 2.25. Given a PA1-chain X = (Rn; ∗0, ∗1, . . . , ∗M) and vectors U ∈ T1(W ; ∗0, ∗1,
. . . , ∗M)(z0), V ∈ T1(W ; ∗0, ∗1, . . . , ∗M)(z0). Then it holds

dU(z) = D(∗0)U�(∗0)dz, dV (z) = D(∗0)V�dual
(∗0)dz. (2.54)

Proof. We start from the relation (2.52), with T ∈ T1(W1; ∗1, . . . , ∗M)(z0) and S ∈ T1(W1;
∗1, . . . , ∗M)(z0). Now we define U(z) = D−1

(∗0)T(z), V (z) = D−1
(∗0)S(z), from which follows

U ∈ T1(W ; ∗0, ∗1, . . . , ∗M)(z0), V ∈ T1(W ; ∗0, ∗1, . . . , ∗M)(z0) as it is assumed above. Inserting
U and V in (2.52) we obtain U(z) =

∫
D(∗0)U�(∗0)dz, ⇔ dU(z) = D(∗0)U�(∗0)dz, and

analog:V (z) =
∫
D(∗0)V�dual

(∗0) dz, ⇔ dV (z) = D(∗0)V�dual
(∗0) dz.

We sum up in the following paragraph

In this section, the main earlier results have been generalized,along with the algebraic
structures as well as the tensor fields built over these structures. In particular the
PAk-structures have been generalized by the concept of the so-called “GAPs”. We have
investigated special GAPs like PA1 chains and their specializations (closed PA1-chains
and closed PA1-chains of Lie-type), and have shown that the main results of the classical
complex function theory (Cauchy Riemannian differential equations, Cauchy Integral
Theorem) also hold in PA1-chains.

2.4. The Explicit Construction of GAPs

The aim of this section is the explicit construction of a wide variety of GAPs.

In other words, we have to construct structure constant tensors of pseudorings, PAk-
structures, and PA1-chains explicitly. This problemmakes sense, because without knowledge
of concrete GAPs, the results of the sections above would be not applicable in practice. In the
following, we introduce the maps Hn : Z → ]0, n], n ∈ N (Z the set of integers, N the set of
natural numbers) with n ≥ 1 by

Hn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x −mn, if mn < x ≤ (m + 1)n,

x if 0 < x ≤ n,
x +mn if −mn < x ≤ (−m + 1)n,

(2.55)

wherem ∈ N denotes the smallest possible value, defined uniquely by the variable x and the
conditions above (For example, let us consider the case n = 3, x = 3.7. Then m is uniquely
defined bym = 1, since it ismn < x ≤ (m+1)n only form = 1. Then it isHn(x) = x−mn = 0.7).
From this definition it follows immediatelyHn(x + y) = Hn(y + x), andHn(x +Hn(y + z)) =
Hn(y +Hn(z + x)) = Hn(z +Hn(x + y)) = Hn(x + y + z).
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Proposition 2.26. Given the constants P ∈ N,M ∈ I1,P , and AM ∈ R, aM, σ ∈ Z. Then PAk-
structures (Rn; ∗1, ∗2) are given by the following structure constant tensors:

case k = 1 : Ck
(∗1)ij =

P∑

M=1

AMδk
Hn(aMi+σj)

, Cm
(∗2)kl = δ

m
Hn(k+σl)

, (2.56a)

case k = 2 : Ck
(∗1)ij = δ

k
Hn(σi+j)

, Cm
(∗2)kl =

P∑

M=1

AMδm
Hn(aMk+σl)

. (2.56b)

Proof. We show that the algebra (2.56a) satisfies the PA1-condition Ck
(∗1)i[jC

m
(∗2)|k|l] = 0.

Writing all sums explicitely we get
∑n

k=1 C
k
(∗1)ijC

m
(∗2)kl =

∑n
k=1
∑P

M=1A
Mδk

Hn(aMi+σj)
δm
Hn(k+σl)

=
∑P

M=1A
Mδm

Hn(Hn(aMi+σj)+σl)
, because δk

Hn(aMi+j) only delivers a nontrivial value for the index

value k = Hn(aMi + j) and this index k must be inserted in the term δm
Hn(k+σl)

. Since it is
Hn(Hn(aMi + σj) + σl) = Hn(aMi + σj + σl), the right side above is symmetrical in indices
j and l. Thus the left side is symmetrical in indices j and l, that is, the PA1-symmetry holds
and statement (2.56a) has been proved. Now we have to show that algebra (2.56b) satisfies
the PA2-condition Ck

(∗2)i[jC
m
(∗1)l]k = 0 :

∑n
k=1 C

k
(∗2)ijC

m
(∗1)lk =

∑n
k=1
∑P

M=1A
Mδk

Hn(aMi+σj)δ
m
Hn(σl+k)

=
∑P

M=1A
Mδm

Hn(σl+Hn(aMi+σj)) = δm
Hn(σl+aMi+σj). The right side is symmetrical in indices j and

l, and so the left side is, that is, the PA2-symmetry holds and statement (2.56b) has been
proved.

Proposition 2.27. Let be n ∈ N, σ ∈ Z arbitrary. Then the structure constant tensor

Ck
(∗)ij = δ

k
Hn(i+σj)

, i, j, k ∈ I1,n (2.57)

defines a pseudoring of first type (Rn; ∗). In the case σ = 1, a unit element exists, given by ej(∗) = δ
j
n,

and furthermore it hold s that

∃λ ∈ R
n, λ /= 0 with �λ−1(∗) , (2.58a)

A non existing λ−1(∗) does not imply λ2 = 0. (2.58b)

Because the PAk-structures above are defined by Kronecker-symbols, we will denote
them as PAk-structures of Kronecker-type or shorter as Kronecker PAk-structures. According to
the property (2.58a) a commutative Kronecker pseudoring is not a division algebra. It is easy
to show, that this property also holds for noncommutative Kronecker pseudorings. Also the
property (2.58a) can be generalized for noncommutative Kronecker pseudorings, where λ−1(∗)
must be replaced by λ−1(∗,R,R) , and so forth. (see the definition of λ−1(∗,R,R) , λ−1(∗,R,L) , λ−1(∗,L,R) , λ−1(∗,L,L)
in (2.2)). We see that a Kronecker algebra has a very simple structure, because the values
of the structure constants are given by only two reals: 0 and 1. Now another type of PAk-
structures will be presented which is more subtle than the Kronecker type.

Proposition 2.28. Given an algebra (Rn; ∗1, ∗2) as follows:

C h
(∗α)ij = diδ

h
j + b(∗α)djδ

h
i + didjh

h
(∗α), α = 1, 2,

(
in formal denotation : C(∗α) = d ⊗ I + b(∗α)I ⊗ d + d ⊗ d ⊗ h(∗α)

) (2.59)
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with d, h(∗1), h(∗2) ∈ R
n, d /= 0, b(∗1), b(∗2) ∈ R arbitrary nonzero constants. Then (Rn; ∗1, ∗2) is a

PAα-structure if and only if

〈
d, h(∗α)

〉
= −1 + σ(α)

{
b(∗2) − bσ(α)(∗1)

}
with σ(α) = (−1)α−1, α = 1, 2. (2.60)

(Rn; ∗α), α = 1, 2has a right unit e(∗α,R) if and only if

〈
d, h(∗α)

〉
= −1,Then it is e(∗α,R) = −b−1(∗α)h(∗α). (2.61)

The PAk-structures presented above are built by combinations of rank 2-tensors and
rank 1-tensors. Therefore we will denote these structures as PAk-structures of splitting type
or shorter as splitting PAk-structures. From this follows immediately the structure of splitting
pseudorings. It is easy to show, that Kronecker PAk-structures generally cannot be transformed
onto splitting PAk-structures by basistransformations in R

n, that is, these both structures are
really different.

Splitting pseudorings have a large advantage to Kronecker pseudorings because it
allow the explicit calculation of P

√
z, z−1, and so forth.

Proposition 2.29. Given the structure constant tensor

Ck
(∗)ij = diδ

k
j + bdjδ

k
i + didjh

k with hkdk = −1,
(
in formal denotation : C(∗α) = d ⊗ I + bI ⊗ d + d ⊗ d ⊗ h, with 〈h, d〉 = −1)

(2.62)

i, j, k ∈ I1,n, b ∈ R only restricted by b /= 0. Then the following statements hold:

Statement 1. The algebra (Rn; ∗) defines an n-dimensional pseudoring of first type with right unit
e(∗,R) = −b−1h.

Statement 2. In this algebra a vector z has a right invers element z−1(∗,R,R) in respect of the right unit,
if and only if 〈z, d〉/= 0.

Statement 3. In (Rn; ∗) the power functions, roots and inverses of vectors are calculable explicitly as
follows:

z[P] = bP−2
{
(b + P − 1)〈d, z〉P−1z + (P − 1)〈d, z〉Ph

}
, P ∈ N, (2.63)

z−1(∗,R,R) = −b−2
{
b〈d, z〉−2z + (1 + b)〈d, z〉−1h

}
, (2.64)

where z[P] is defined by z[P] = (· · · ((z ∗ z) ∗ z) · · · ) ∗ z. In the case b = 1 the relation (2.63) also
holds for arbitrary rational numbers.
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Statement 4. For b = 1 it holds

A non existing λ−1(∗) implies λ2 = 0,

U ∈ T1(W ; ∗)(z0) =⇒ λ < d, U >∈ T1(W ; ∗)(z0) iff �λ−1(∗) ,

U ∈ T1(W ; ∗)(z0) =⇒ d < λ, U >∈ T1(W ; ∗)(z0) iff �λ−1(∗) .

(2.65)

Proposition 2.29 shows, that in the framework of splitting pseudorings the inverse
elements as well as the roots of vectors are calculable explicitly, that is, without using
numerical methods. In Kronecker algebras this is not possible. Now we will show, that PA1-
chains and furthermore PA1-chains of Lie-type can be constructed explicitly, proving, that the
world of the PAk-structures is compatible with the world of generalized Lie-symmetries:

Proposition 2.30. The following algebraic structures define PA1-chains X = (Rn; ∗1, ∗2, . . . ,
∗M) :Kronecker PA1-chains:

Ck
(∗α)ij = δ

k
Hn(i+σj)

, α = 1, . . . ,M, σ ∈ Z arbitrary, (2.66a)

Splitting PA1-chains:

C k
(∗α)ij = diδ

k
j + b(∗α)djδ

k
i + didjh

k
(∗α), α ∈ I1,M,

with 1 + b(∗α) +
〈
d, h(∗α)

〉
= b(∗α−1), α ∈ I2,M.

(2.66b)

Modified Splitting

Ck
(∗α)ij = d(∗α)iA

k
(∗α)j + gjB

k
(∗α)i, α ∈ I1,M,

with the restrictions
(2.66c)

PA1-chains:

Ak
(∗α+1)jd(∗α)k = 0, Bk(∗α+1)jd(∗α)k = ud(∗α+1)j ,

Ak
(∗α+1)jB

m
(∗α)k = uAm

(∗α)j , u ∈ R arbitrary.
(2.66d)

Proposition 2.31. The following algebraic structure (Rn; ∗1, ∗2, ∗3) defines a closed PA1-chain from
Lie type:

C k
(∗α)ij = diδ

k
j + b(∗α)djδ

k
i + didjh

k
(∗α), α ∈ I1,3, with

b(∗1) =
1
3
(〈
h(∗2), d

〉 − 〈h(∗1), d
〉)
,

b(∗2) = −1 + 2
3
〈
h(∗2), d

〉
+
1
3
〈
h(∗1), d

〉
,

b(∗3) = 1 +
〈
h(∗1), d

〉
,

hm(∗1)b(∗2) + h
m
(∗2)b(∗3) + h

m
(∗3)b(∗1) = 0.

(2.67)
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Until now we have delt with special PAk -structures (Kronecker structures and
splitting structures). Now we will analyze the problem, if PAk-structures can be combined
in a way, that we come to PAk-structures again. There are two ways to analyze this problem.
The first way is to try a construction of new n-dimensional PAk-structure by combining n-
dimensional PAk-structures, the second way is to try a construction of new N-dimensional
PAk-structure by combining n-dimensional PAk-structures, N > n. We will give answers to
both problems by the following both propositions.

Proposition 2.32. Given a GAP X = (Rn; ∗1, ∗2, ∗3, ∗4) with the characteristic

G(X) =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎠
. (2.68)

Then the algebra Y = (Rn;�1,�2) defined by

Ck
(�1)ij

:= Ck
(∗1)ij + C

k
(∗2)ij , Ck

(�2)ij
:= Ck

(∗3)ij + C
k
(∗4)ij (2.69)

is a PA1-structure, if and only if

Ck
(∗2)i[jC

m
(∗3)|k|l] = −Ck

(∗1)i[jC
m
(∗4)|k|l]. (2.70)

Given a GAP X = (Rn; ∗1, ∗2, ∗3, ∗4) with the characteristic:

G(X) =

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠
. (2.71)

Then the algebra Z = (Rn;�1,�2) defined by

Ck
(�1)ij

:= Cs
(∗1)ijC

k
(∗2)spu

p, Ck
(�2)ij

:= C s
(∗3)ijC

k
(∗4)spv

p, u, v ∈ R
n arbitrary (2.72)

is a PA1-structure.
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Proof. To prove the first statement we calculate

Ck
(�1)ij

Cm
(�2)kl

=
(
C k

(∗1)ij + C
k

(∗2)ij
)(
Cm

(∗3)kl + C
m
(∗4)kl
)

= C k
(∗1)ijC

m
(∗3)kl + C

k
(∗1)ijC

m
(∗4)kl + C

k
(∗2)ijC

m
(∗3)kl + C

k
(∗2)ijC

m
(∗4)kl,

=⇒ Ck
(�1)i[j

Cm
(�2)|k|l]

= C k
(∗1)i[jC

m
(∗3)|k|l] + C

k
(∗1)i[jC

m
(∗4)|k|l] + C

k
(∗2)i[jC

m
(∗3)|k|l] + C

k
(∗2)i[jC

m
(∗4)|k|l]

GAP-symmetries(2.69)
= C k

(∗1)i[jC
m
(∗4)|k|l] + C

k
(∗2)i[jC

m
(∗3)|k|l].

(2.73)

We see, that the PA1 -symmetry Ck
(�1)i[j

Cm
(�2)|k|l] = 0 holds if and only if C k

(∗1)i[jC
m
(∗4)|k|l] +

C k
(∗2)i[jC

m
(∗3)|k|l] = 0, according to (2.70). To prove the second statement we calculate

Ck
(�1)ij

Cm
(�2)kl

= Cs
(∗1)ijC

k
(∗2)spu

pC r
(∗3)klC

m
(∗4)rqv

q,

=⇒ Ck
(�1)i[j

Cm
(�2)|k|l] = C

s
(∗1)i[jC

k
(∗2)|spu

pCr
(∗3)k|l]C

m
(∗4)rqv

q

GAP-symmetries (2.72)
= C s

(∗1)i[jC
k
(∗2)|s|l]u

pCr
(∗3)kpC

m
(∗4)rqv

q GAP-symmetries (2.72)
= 0.

(2.74)

Proposition 2.33. Given a PA1-structureX = (Rn; ∗1, ∗2). Then the following algebra Y =
(R2n;�) is a pseudoring of first type:

Ck
(�)ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C k
(∗1)ij , if i, j, k ∈ I1,n,

C k−n
(∗2)i−nj−n, if i, j, k ∈ In+1,2n,

0, in all other cases.

(2.75)

Proof. Per defnition it is

Ck
(�)ijC

m
(�)kl =

n∑

k=1

Ck
(�)ijC

m
(�)kl +

2n∑

k=n+1

Ck
(�)ijC

m
(�)kl (2.76)

for arbitrary indices i, j, l,m ∈ I1,2n. Let us consider first the case that i ∈ I1,n. Then nontrivial
elements of Ck

(�)ij only exist in the case j, k ∈ I1,n, defined by Ck
(�)ij = C k

(∗1)ij , and the term



Advances in Mathematical Physics 25

above takes the form

Ck
(�)ijC

m
(�)kl =

n∑

k=1

Ck
(�)ijC

m
(�)kl =

n∑

k=1

Ck
(∗1)ijC

m
(�)kl

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if l > n or m > n,

n∑

k=1

Ck
(∗1)ijC

m
(∗2)kl, if l,m ∈ I1,n.

(2.77)

Thus it follows for i ∈ I1,n :

Ck
(�)i[jC

m
(�)|k|l] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if l > n or m > n

n∑

k=1

C k
(∗1)i[jC

m
(∗2)|k|l], if l,m ∈ I1,n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= 0 (2.78)

in every case, because the algebra (Rn; ∗1, ∗2) is assumed as a PA1-structure, that is, it is∑n
k=1 C

k
(∗1)i[jC

m
(∗2)|k|l] = 0 for i ∈ I1,n.

Let us consider now the case that i ∈ In+1,2n. Then nontrivial elements of Ck
(�)ij only

exist in the case j, k ∈ In+1,2n, defined by Ck
(�)ij = C

k−n
(∗2)i−nj−n, and we get

Ck
(�)ijC

m
(�)kl =

2n∑

k=n+1

Ck
(�)ijC

m
(�)kl =

2n∑

k=n+1

C k−n
(∗1)i−nj−nC

m
(�)kl

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if l ≤ n or m ≤ n,

2n∑

k=n+1

Ck−n
(∗1)i−nj−nC

m−n
(∗2)k−nl−n, if l,m ∈ In+1,2n.

(2.79)

Thus it follows with the denotations ι = i − n, j = j − n, k = k − n, l = l − n,m = m − n :

Ck
(�)i[jC

m
(�)|k|l] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if l ≤ n or m ≤ n,

n∑

k=1

Ck

(∗1)ι[j
Cm

(∗2)
∣
∣
∣k
∣
∣
∣l]

in all other cases,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= 0. (2.80)

in every case, because the indices ι, j, k, l,mmove in the region I1,n, and the algebra (Rn; ∗1, ∗2)
is assumed as a PA1-structure.
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In this section a wide variety of GAPs has been constructed explicitly. In particular two
different types of explicit calculable PAk-structures have been characterized: Kronecker
PAk-structures and (generalized) Splitting PAk-structures. Also PA1-chains and even
PA1-chains of Lie-type can be constructed explicitly.

3. Applications of GAP-Theory on Solving Partial Differential
Equations. New Explicit Solutions of Einstein Equations and
Navier-Stokes Equations

In this chapter we will show, that GAP-Theory allows interesting applications on
Theoretical Physics by calculating new explicit solutions of Einstein’s field equations from
General Relativity Theory and new explicit solutions of Navier-Stokes equations.

In some cases, the gained solutions are presented not only in the (compact and elegant)
notation of GAP-Theory but also in the more circumstantial classical notation. This allows the
checking of the results by readers without knowledges in GAP-Theory (Assumed are only the
definitions of the vector spaces T1(W ; ∗)(ξ0) and T1(W ; ∗)(ξ0) from Section 2.1.) by inserting the
presented solutions into the corresponding differential equations.

3.1. New Explicit Solutions of Einstein Equations

We start with Einsteins field equations

Rij − 1
2
Rgij = −κTij . (3.1)

Here gij denotes the metric tensor of an n-dimensional Riemannian manifold M with
relativistic signature, Rij the Ricci tensor defined by

Rij = gmkRmijk =
1
2
gmk
(
gmk,ij + gij,mk − gik,jm − gjm,ik

)
+ gmkghl

(
ΓhijΓlmk − ΓhikΓlmj

)
,

Γhij =
1
2
(
ghi,j − gij,h + gjh,i

)
,

(3.2)

Γhij the Christoffel symbols of first kind, and R := gijRij the curvature scalar. The right side
of Einstein equations is defined by the relativistic gravitational constant κ = 8πγ/c4 = 1.86 ·
10−27 cm/g (γ the classical gravitational constant) and the energy momentum tensor Tij of the
considered matter.

Einstein equations represent a system of nonlinear PDEs of second order to calculate
the covariant components gij of the metric. The left side of these equations is linear in the
second derivatives but nonlinear in the first derivatives of the covariant metric gij and also
nonlinear in the covariant metric itself, because gmk is a nonlinear function of gij . Generally
also the right side of Einstein equations is nonlinear in the metric and the type of nonlinearity
depends on the concrete physically situation.

In the past a lot of explicit solutions of Einstein equations have been constructed, but
most of them are restricted on the very special case Rij = λgij (Einstein spaces). Among these
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solutions only a small set is of physical importance because most of them have too special
mathematical symmetries for describing physically gravitational fields. By contrast we will
develope a variety of explicit solutions in the framework of GAP-Theory without assuming
Einstein spaces.

Algebraic tools for solving Einstein equations have been used in [18, 19] (associative
and commutative algebras) and [4] (nonassociative and noncommutative algebras; see also
the overview given in [4]), discussions of certain generalizations of Einstein equations with
algebra-valued metrics. Unlike we will deal here with the classical Einstein equations, that is,
with real-valued, four dimensional metrics, and special GAPs are used for describing certain
inherent symmetries of the explicit solutions. These GAPs differ from the algebras used in
the papers cited above.

Finally some remarks to the denotions in this chapter are presented: ηij is the
covariante Minkowski metric, ηjk defined by ηijηjk = δkj . In relativistic theories, the indices
run from 0 to 3 or—for generalizations—from 0 to n. In the framework of algebra theory,
however, the left index range is not 0 but 1 and the relativistic denotion would lead to some
problems andmisunderstandings. For this we always will use the index range 1, . . . , 4 or—for
generalizations—from 1 to n. Furthermore, sometimes we will write 〈u, v〉 for gijuivj .

Theorem 3.1 (in GAP-notation). Given a four-dimensional splitting pseudoring (R4; ∗) with the
splitting parameters b, d, h and the restrictions

b = 1 or b = −3, didjη
ij = 0, (3.3)

and further given an arbitrary vector field a ∈ T1(W ; ∗)(ξ0), W ⊆ M, then all metric tensors of the
form

gij(ξ) = am(ξ)Cl
(∗)m{iηj}l (3.4)

(C(∗) the corresponding structure constant tensor, Cl
(∗)m{iηj}l := C

l
(∗)miηjl +C

l
(∗)mjηil) are solutions of

the four-dimensional vacuum Einstein equations in a local coordinate system (ξ).

Theorem 3.2 (in classical notation). Given the reals b, di, hi, i = 1, . . . , 4 with the restrictions

b = 1 or b = −3, didjηij = 0, dih
i = −1, (3.5)

And further given an arbitrary vector field a ∈ T1(W ; ∗)(ξ0), W ⊆ M, then all metric tensors
of the form

gij(ξ) = 2am(ξ)dmηij + b
[
dia

m(ξ)ηmj + djam(ξ)ηmi
]
+ (am(ξ)dm)

[
dih

lηlj + djhlηli
]

(3.6)

are solutions of the four-dimensional vacuum Einstein equations in a local coordinate system ( ξ).

The proof is omitted for space reason, the interested reader may insert the solution into
the vacuum Einstein equations Rij = 0. It is remarkable that vacuum solutions are realizable
in the case of commutative algebras (b = 1) as well as in the case of noncommutative algebras
(b = −3).
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Now we will show that the vacuum metric above is a new unknown metric and not
only a certain representation of the well-knownKerr metric or if themetric in [17]. For this we
remember on the structure of the Kerr metric, which is given in Boyer-Lindquist coordinates
t, r, φ, θ as follows:

ds2 =
(
1 − rsr

ρ2

)
c2dt2 +

2rsrasin2θ

ρ2
cdtdφ − ρ2

Λ2
dr2 − ρ2dθ2 −

(

r2 + a2 +
rsra

2

ρ2
sin2θ

)

dφ2,

(3.7)

rs the Schwarzschild radius, a the Kerr parameters and ρ2 := r2 + a2cos2θ, Λ2 := r2 − rsr + a2.
In the following matrix form:

(
gij
)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
1 − rsr

ρ2

)
0

2rsrasin2θ

ρ2
c 0

· · · − ρ
2

Λ2
0 0

· · · · · · −
(

r2 + a2 +
rsra

2

ρ2
sin2θ

)

0

· · · · · · · · · −ρ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.8)

remember that the two fundamental symmetries of the Kerr metric—which describes an
uncharged rotating black hole—are given by (∂/∂t)gij = 0 (time-independence) and
(∂/∂φ)gij = 0 (axial symmetry).

The matrix form of our metric (3.6) is given by

(
gij
)
=

⎛

⎜⎜⎜⎜⎜
⎝

2
(
ψ + d1w1

)
d1w2 + d2w1 d1w3 + d3w1 d1w4 + d4w1

· · · 2
(−ψ + d2w2

)
d2w3 + d3w2 d2w4 + d4w2

· · · · · · 2
(−ψ + d3w3

)
d3w4 + d4w3

· · · · · · · · · 2
(−ψ + d4w4

)

⎞

⎟⎟⎟⎟⎟
⎠
, (3.9)

with wj(ξ) := ηjk(bak + hk), ψ(ξ) := akdk, a ∈ T1(W ; ∗)(ξ0) an arbitrary field. It is easy to
see that there does not exist any coordinate transformation such that the metric (3.9) takes
the structure of the Kerr metric (3.8). The zeros in (3.8) cannot be realized by preserving
the structure of the nontrivial elements, that is, our vacuum metric is not from Kerr type; the
Kerr symmetries of time-independence and axial symmetry are replaced by the symmetry of
∗-analyticity.

It remains to show that the metric is not from the type presented in [17]. For this we
compare the following:

Metric in [17] : gij(ξ) = ηij + Cl
(∗){ij}Al(ξ) = ηij +

(
Cl

(∗)ij + C
l
(∗)ji
)
Al(ξ),

Metric above : gij(ξ) = am(ξ)
(
Cl

(∗)m{iηj}l = a
m(ξ)
(
Cl

(∗)miηjl + C
l
(∗)mjηil

) (3.10)

with A ∈ T1(W ; ∗)(ξ0), a ∈ T1(W ; ∗)(ξ0). It is easy to see that the metrics are of different types.
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(i) The intrinsic symmetries of the vector fields A ∈ T1(W ; ∗)(ξ0) and a ∈
T1(W ; ∗)(ξ0) are of different types (T1(W ; ∗)(ξ0) /=T1(W ; ∗)(ξ0)).

(ii) The formal structure of the metrics differs, because the structure constant tensor
appears in different manners: (Cl

(∗)ijAl(ξ)/=am(ξ)Cl
(∗)mi, C

l
(∗){ij} /=C

l
(∗)m{iηj}l).

(iii) The metric in [17] cannot describe nontrivial vacuum solutions (i.e., vacuum
solutions for nonflat spaces; see [17]), whereas our new metric describes nontrivial
vacuum solutions.

For these reasons, we recognize the metric presented here as a new, unknown vacuummetric.
Now we will solve Einstein equations for a nonvanishing stress energy tensor.

Theorem 3.3 (in GAP-notation). Given an n-dimensional splitting pseudoring (Rn; ∗) with the
splitting parameters b, d, h and the restrictions

didjη
ij = 0, (3.11)

and further given the n-dimensional Einstein equations in a local coordinate system (ξ) in the form

Rij − 1
2
Rgij = −κεdidj with

ε(ξ) = −κ
−1b2(n − 2)

〈
w,D2

(∗)f
〉
− b〈w,D(∗)f

〉〈
d,D(∗)a

〉

2
(
1 +
〈
w,D(∗)f

〉) , wldl = 0,

(3.12)

a, f ∈ T1(W ; ∗)(ξ0), W ⊆ M arbitrary vector fields, restricted only by the condition ai /= γdi, γ a
scalar field, wl constants, then these equations can be solved explicitly by

gij(ξ) =
(
1 +
〈
w,D(∗)f

〉)
ηij +

(
Ch

(∗)ij + C
h
(∗)ji
)
ah(ξ), (3.13)

C(∗) the structure constant tensor of the splitting pseudoring.

Theorem 3.4 (in classical notation). Given the reals b, di, hi,wi, i = 1, . . . , n with the restrictions

didjη
ij = 0, hidi = −1, wldl = 0, (3.14)

and further given the n-dimensional Einstein equations in a local coordinate system (ξ) in the form

Rij − 1
2
Rgij = −κε(ξ)didj , (3.15)

ε a scalar field, these equations can be solved explicitly by

gij(ξ) =
(
1 +wm(D(∗)f

)
m

)
ηij + (b + 1)

[
diaj(ξ) + djai(ξ)

]
+ 2didjhmam(ξ), (3.16)
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where C(∗) is the structure constant tensor of the splitting pseudoring, a, f ∈ T1(W ; ∗)(ξ0), W ⊆
M arbitrary vector fields, restricted only by the condition ai /= γdi, γ a scalar field. The concrete
structure of the vector fields a, f defines the structure of the scalar field ε.

The proof is omitted for space reason, the interested reader may insert the solution
above into the Einstein equations. Theorem 3.4 is less general than Theorem 3.3 because
nothing is told about the concrete structure of the scalar field ε. (The classical notation of
ε would be very circumstantial.) We see that solutions of the inhomogeneous n-dimensional
Einstein equations are realizable in the case of commutative algebras (b = 1) as well as in
the case of noncommutative algebras (b /= 1), and that a noncommutative algebra with b = −1
exists, where the solutions take the most simple structure.

Consider, furthermore, that Theorem 3.3 is not a simple generalization of Theorem 3.1
by generalizing the dimension and introducing a nonvanishing stress energy tensor.
Theorem 3.1 works in the framework of T1(W ; ∗)(ξ0), whereas Theorem 3.3 works in the
framework of T1(W ; ∗)(ξ0).

It remains to show that the metric in Theorem 3.3 differs from the metric presented in
[17]. For this we compare the following:

Metric in [17] : gij(ξ) = ηij +
(
Cl

(∗)ij + C
l
(∗)ji
)
Al(ξ),

with arbitrary splitting parameters

Metric above : gij(ξ) =
(
1 +
〈
w,D(∗)f

〉)
ηij +

(
Cl

(∗)ij + C
l
(∗)ji
)
al(ξ)

with restricted splitting parameters didjηij = 0,

(3.17)

with A, a, f ∈ T1(W ; ∗)(ξ0). The metrics become identical if we restrict the algebraic
framework of the first metric by didjηij = 0 and the second metric by D(∗)f = 0; in all other
cases the metrics are different.

Finally some remarks to the physical importance of the stress energy tensor above are
presented. For this we have a look on the following overview:

stress energy tensor physical characterization

Tij =
(
p + ε

)
uiuj + pgij macroskopic matter

(3.18a)

Tij =
1
4π

(
FimF

m
j − 1

4
FpqF

pqgij

)

with Fim := Am;i −Ai;m free electromagnetic stress energy tensor
(3.18b)

Tij = μ0uiuj +
1
4π

(
FimF

m
j − 1

4
FpqF

pqgij

)
incoherent matter in the electromagnetic field.

(3.18c)

(i) The case (3.18a) describes macroscopic matter with velocity ui, pressure p, and
energy density ε.
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(ii) The case (3.18b) describes the interchanging of the space-time structure with the
electromagnetic field, where F denotes the antisymmetric electromagnetic field
tensor, defined by the potential A.

(iii) The case in (3.18c) describes the interchanging of the space-time structure with
incoherent matter in the electromagnetic field.

The stress energy tensor considered in Theorem 3.3 is defined by Tij = εdidj , which
allows a physical interpretation as macroscopic matter with velocity di (constancy by
introducing a special coordinate system), energy density ε, and pressure p = 0. It can be
shown that also special electromagnetic fields lead to the stress energy tensor above.

3.2. New Explicit Solutions of Navier-Stokes Equations

“Although these [Navier-Stokes] equations were written down in the 19th century, our understanding
of them remains minimal. The challenge is to make substantial progress toward a mathematical theory
which will unlock the secrets hidden in the Navier-Stokes equations.”

With these words, the Clay Mathematic Institute describes a problem which is
denoted as one of the seven “Millennium Problems” (see at http://www.claymath.org/).
In the official formulation (The complete formulation can be found for instance in
http://www.claymath.org./) by [20], the Navier-Stokes equations are presented as follows.

“The Euler and Navier-Stokes equations describe the motion of a fluid in R
n (n = 2 or

3). These equations are to be solved for an unknown velocity vector u(x, t) = (ui(x, t))1≤i≤n ∈
R
n and pressure p(x, t) ∈ R, defined for position x ∈ R

n and time t ≥ 0.We restrict attention
here to incompressible fluids filling all of R

n. The Navier-Stokes equations are then given by

∂

∂t
ui +

n∑

j=1

uj
∂ui
∂xj

= νΔui −
∂p

∂xi
+ fi(x, t), x ∈ R

n, t ≥ 0, (3.19a)

divu =
n∑

j=1

∂ui
∂xi

= 0, x ∈ R
n, t ≥ 0, (3.19b)

with initial conditions

u(x, 0) = u0(x), x ∈ R
n. (3.20)

Here, u0(x) is a given, C∞ divergence-free vector field on R
n, fi(x, t) are the

components of a given, externally applied force (e.g., gravity), ν is a positive coefficient (the
viscosity), and Δ =

∑n
j=1(∂

2/∂x2
j ) is the Laplacian in the space variables. . .”

Before presenting our new GAP-solution method, we remember some standard
methods and main results of Navier-Stokes solution theory. Leray [21] has introduced the
program of analyzing weak solutions of Navier-Stokes equations and he was able to show
that in the three-dimensional case always exists a weak solution with suitable growth
properties. Lerays method was taken and amended by Scheffer [22], Caffarelli et al. [23], Lin
[24], Shnirelman [25], and others with the main result that the growth conditions of weak
solutions can be classified quantitative [23, 24].
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But at time it is not possible to perform the step from weak solutions to the physically
interesting smooth solutions; we do not know if smooth initial conditions always induce
smooth solutions or not. Also uniqueness of weak solutions is not known. Furthermore, the
concrete construction of Navier-Stokes-solutions is a very hard problem. Standard methods
for a nonnumerical construction are groupmethods, also the classical method of separation is
used in a modified way, but actually the gained results are very small, which is not a surprise;
all nonnumerical methods deal with very symmetric structures, and we cannot expect that
such special tools delivers very general results.

In the official formulation [20] of the “Navier-Stokes Millenium Problem”, these
difficulties are summarized as follows:

“· · · our understand [of the Navier-Stokes equations] is a very primitive level. Standard
methods from PDE appear inadequate to settle the problem.”

In the following, we will rewrite the Navier-Stokes system (3.19a) and (3.19b). With
(In the following considerations, always a cartesian coordinate system is assumed. Thus
the contravariant components ui of the vector field u can be identified with the covariant
components ui from [20] in (3.19a) and (3.19b)). ui,j := ∂ui/∂xj , qi := −p,i + fi, the Einstein
summation convention, and the generalization of R

n to a regionW ⊆ R
n (in the caseW /=R

n,
adequate boundary conditions must be assumed), we get

ui,t − νΔui + ujui,j = qi, (3.21a)

ui,i = 0, for x ∈W, t ≥ 0. (3.21b)

We will solve these equations under the assumptions u(x, t) = U(z(x, t)), q(x, t) = Q(z(x, t)),
where the n-dimensional vector fields U(z) and Q(z) are assumed as ∗-analytic in the n-
dimensional vector z of the following structure:

z(x, t) = λ ∗ x + μt, W ⊆ R
n, t ∈ [0,∞[, z ∈Wz. (3.22)

Here λ, μ ∈ R
n denote arbitrary fixed constants andWz ⊆ R

n denotes the region of z.

Theorem 3.5. Given a commutative pseudoring (Rn; ∗) with structure constants Ck
(∗)ij , C

m
(∗)[3] :=

Cim
(∗)i, C(∗)[1]m := Ci

(∗)mi, and further given two arbitrary vectors λ, μ ∈ R
n, the n-dimensional Navier-

Stokes system (3.21a) and (3.21b) with viscosity coefficientν ∈ R and an arbitrary inhomogeneity of
the symmetry

q(x, t) = Q(z(x, t)),

Q ∈ T1(Wz; ∗)(z0) an arbitrary field
(3.23)

with z(x, t) from (3.22), then the following statements hold.
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Statement 1. A solution u(x, t) of the Navier-Stokes differential equations (3.21a) is given by

(a) u(x, t) = U(z(x, t)),

(b) U(z) = −2νλ ∗ C(∗)[3] ∗ Y−1(∗) (z) ∗ D(∗)Y,

Y (z) defined by the linear differential equation,

(c) ν2
(
C(∗)[3]

)2 ∗ λ3 ∗ D2
(∗)Y − νC(∗)[3] ∗ λ ∗ μ ∗ D(∗)Y − 1

2

(
D−1

(∗)Q
)
∗ Y = 0.

(3.24)

Statement 2. If the inhomogeneity Q satisfies the condition

C
[jk]
(∗)i
(
D(∗)Q

)i = 0, (3.25)

it becomes interpretable as the pressure gradient Q = grad p, and therefore the pressure is
explicitly given by

p(x, t) =
∫
Qi(z(x, t))dxi. (3.26)

Statement 3. If furthermore

C(∗)[1]iCk
(∗)ijλ

j = 0, (3.27)

also the divergence condition (3.21b) is satisfied.

Before considering the proof structure (the extensive proof is omitted for space
reason), we will give some hints to the statements above from a physical point of view as
well as from a mathematical point of view. We begin by remembering that the entire Navier-
Stokes-problem as formulated in (3.19a) and (3.19b) can be split up to three subproblems:

(1) the problem of solving the Navier-Stokes differential equation (3.19a) for an
arbitrary given inhomogeneity (−∂p/∂xi + fi must not be a gradient),

(2) the problem of restricting (3.19a) solutions by demanding inhomogeneities of
gradient form.

(3) the problem of restricting (3.19a)-solutions (for gradient inhomogenities as well as
for arbitrary inhomogeneities) by demanding the divergence condition (3.19b).

The solution of problem 1 is interesting from a mathematical point of view and the
solution of problem 2 is interesting not only from a mathematical but also from a physical
point of view, because for many practical applications, gradient inhomogeneities (pressure
gradient) are assumed. Finally the solution of problem 3 (for gradient inhomogeneities) is
interesting for getting a prize (see the “Millennium Problem”).

Our statements in the Theorem 3.5 follow this classification: Statement 1 solves the
problem 1 (without any restriction on the used algebraic framework), Statement 2 solves
the problem 2 (by restricting the algebraic framework according to (3.25)), and Statement 3
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gives a condition for solving the remaining problem 3 (by a further restriction of the algebraic
framework according to (3.27)). It can be shown explicitly that algebras exist, such that the
problems 1 and 2 can be solved explicitly (Kronecker-algebras, see the Section 2), but at time
we do not know an algebra such that all three problems become solvable at the same time
(for a new, unknown solution set).

Therefore, the statements of Theorem 3.5 are interesting from a mathematical point of
view (Statement 1) as well as from a physical point of view (Statement 2), but—of course—
the Millennium Problem remains unsolved.

Now some remarks to the solution structure (3.21a) and (3.21b) are presented.

(i) The solution structure holds for arbitrary commutative pseudorings; we are not
restricted on splitting pseudorings as in the case of the Einstein solutions above.

(ii) The vector Y−1(∗) (z) appears, that is, the solution U(z) generally will have
singularities. In division algebras, these singularities are described entirely by
values zα, α = 1, 2, . . . with the property Y−1(∗) (zα) = 0, but in nondivision
algebras there exist a larger set of singularities (see Section 2 and also the following
considerations). In other words, the solution structure above allows an explicit
description of the singularities depending on the chosen algebra.

(iii) It must be mentioned that our considerations here were restricted on the simple
cases of commutative pseudorings and the special T1-symmetry. Noncommutative
pseudorings and generalizations of T1-symmetry (or T1-symmetry) lead to very
complex Navier-Stokes solutions which cannot be presented in this framework.

Finally some hints to the proof-structure are presented.

(1) It is shown that in the case of a commutative pseudoring (which is assumed)
the assumed symmetry Q(z) ∈ T1(Wz; ∗)(z0) of the inhomogeneity leads to the
symmetry u(x, t) = U(z) ∈ T1(Wz; ∗)(z0).

(2) This property ofU now allows the transformation of the Navier-Stokes differential
equation (3.21a) onto a ”GAP-Riccati differential equation” (i.e., an algebra valued
Riccati equation).

(3) The assumed commutativity of the pseudoring now allows to solve this GAP-
Riccati equation in the same way as the classical scalar Riccati-equation by
transforming this equation onto a linear (algebra-valued) second-order differential
equation (see (3.24)(c)).

(4) The explicit solution of this linear differential equation by comparison of
coefficients is a simple problem, which only depends on the concrete structure of
D−1

(∗)Q, that is, on the structure of the given inhomogeneity Q.

(5) After calculating the vector field Y (z) from (3.24)(c), we get the vector field U(z)
according to (3.24)(b). The inverse vector field Y−1(∗) (z) is calculable explicitly for
the physical interesting dimensions n ≤ 3, in the case of a splitting pseudoring
(see Section 2) also for arbitrary dimensions n, and therefore, U(z) is calculable
explicitly.

(6) After calculating the vector field U(z), we get the Navier-Stokes solution u(x, t)
according to (3.24)(a) by inserting z(x, t) = λ ∗ x + μt (see (3.22)).
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3.3. The Necessity of an Embedding Formalism

The results above show that GAP-Theory allows the explicit solution of important nonlinear
partial differential equations from Theoretical Physics. For space reason, we have restricted
these applications on Einstein field equations and Navier-Stokes equations, but GAP-Theory
also allows applications on other famous differential equations as the Yang-Mills equation,
the Korteweg-de Vries equation, and so forth.

The fundamental symmetry-framework of our considerations was the symmetry of
∗-analyticity (GAP-symmetry) which has turned out as “compatible” with the considered
partial differential equations in the sense that it allows an explicit solution formalism. From
the mathematical point of view, ∗-analyticity seems to be a useful tool to look inside the
structure of covariant differential equations, but from the physical point of view ∗-analyticity
represents a strong restriction: in many cases problem defining physically vector fields
(tensor fields) will be not be ∗-analytical but only smooth.

To demonstrate the concrete problems, we have a look on the Theorem 3.5 for solving
the Navier-Stokes system (3.21a) and (3.21b) in the framework of ∗-analyticity: Theorem 3.5
shows that a ∗-analytical inhomogeneity q allows an explicit solution of the Navier-Stokes
differential equation (3.21a) for arbitrary commutative pseudorings, and that furthermore for
a special set of these pseudorings also the divergence condition (3.21b) holds. But for many
applications, the inhomogeneity q will not be ∗-analytical but a gradient, and in this case
Theorem 3.5 is applicable only on ∗-analytical gradients, which represents a strong restriction.

Similar considerations hold for the Einstein equations: In Theorem 3.3 ∗-analyticity
appears in the stress energy tensor (in a hidden form) as well as in the metric tensor, but a lot
of physical interesting stress energy tensors will not be ∗-analytical.

These considerations boil down to the following question: is it possible to embed
an arbitrary n-dimensional smooth vector field f (tensor field) into an N-dimensional ∗-
analytical vector field F (tensor field) for a sufficient large dimension N ≥ n in the sense,
that the first n components of F allow a representation of the n components of f? (An exact
definition of “embedding” will be given in Section 4.)

In the case of a positive answer, we can embed a n-dimensional nonlinear partial differential
equation defined by only smooth vector fields onto a N-dimensional nonlinear partial differential
equation defined by ∗-analytical vector fields, and this high-dimensional differential equation can be
solved in the framework of GAP-Theory as demonstrated in the sections above.

Finally the first n components of the obtained N-dimensional solution vector field
(tensor field) represent the solution of the n-dimensional start problem.

Section 4 will show that such an Embedding formalism of smoothness into ∗-
analyticity (or more general: chain analyticity) exists.

4. Embedding Problems for GAPs. New Products

Embedding problems (also denoted as Immersion problems) are important in mathematical
physics as well as in nonlinear system theory [14, 16, 26, 27] and can be formulated in
various ways. Roughly spoken immersion theory asks if an n-dimensional structure with
small symmetry can be seen as a “projection” of an N-dimensional structure with high
symmetry, n ≤ N. Of course the answer depends on the concretely given symmetry classes
as well as on the dimensions n andN.
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In the following, we are interested on a special class of embedding problems, defined by the
question if smoothness (which is a very general symmetry) can be embedded into chain-
analyticity (which is a rather special symmetry).

Definition 4.1. Given an n-dimensional smooth vector field f ∈ T1(Wn), Wn ⊆ R
n, and an

N-dimensional chain-analytic vector field F ∈ T1(WN ; ∗1, . . . , ∗M)(z0), X = (RN ; ∗1, . . . , ∗M) an
arbitrary PA1-chain, then f is denoted as embaddable into F if it holds that

fγ(z) = Fγ(Z)|Zn+1=Zn+2···=ZN=0, with Zγ = zγ , γ ∈ I1,n. (4.1)

If this relation holds for arbitrary f ∈ T1(Wn), then T1(Wn) is denoted as embaddable into
T1(WN ; ∗1, . . . , ∗M)(z0).

Of course the possibility of embeddingT1(Wn) intoT1(WN ; ∗1, . . . , ∗M)(z0) will depend
on the concrete form of the given PA1-chain X as well as on the proportion of n to N.
Is T1(Wn) embaddable for N-dimensional Kronecker PA1-chains, N finite and/or for N-
dimensional Splitting PA1-chains, N finite? Or must N be infinite? We will answer these
questions by specializing on the subset T1

[P](W
n) ⊆ T1(Wn) defined by all polynomials of

order p ≤ P ∈ N, and by specializing PA1-chains to pseudorings.

Theorem 4.2. Given the following classes ofN-dimensional pseudorings T1(RN ; ∗)(z0):

Ck
(∗)ij
(
μ
)
= δk

HN(i+HN(uμ(j))), uμ
(
j
)
:= jμ, μ > 2log(n + 1), μ ∈ N, i, j, k ∈ I1,N,

(4.2)

with the index functionHN from (2.55), then the following statements hold.

Statement 1. For every given pair n, P ∈ N there exist finite numbersN(n, P, μ) ∈ N such that
T1
[P](W

n) is embaddable into T1
[P](W

N ; ∗)(0), 0 ∈Wn ⊂WN.

Statement 2. A sufficient condition for embedding is given by

N ≥Nmin
(
n, P, μ

)
, with Nmin

(
n, P, μ

)
:= n + nμP. (4.3)

Statement 3. Let aγ[p]β1β2···βp with γ, β1, . . . , βp ∈ I1,n, p ∈ I0,P denote the coefficients of an

arbitrary element f ∈ T1
[P](W

n). Then under the assumption (4.3) the coefficients Ai
[p], p ∈

I0,P , i ∈ I1,N of the corresponding element F ∈ T1
[P](W

N ; ∗)(0) are defined by

A
γ

[0] = a
γ

[0], A
γ+
∑p

k=1 (βk)
μ

[p] = aγ[p]β1β2···βp , p ∈ I1,P . (4.4)

Proof

Step 1. The pseudoring symmetry of T1(RN ; ∗)(z0) : for a given μ, it is
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Cl
(∗)ij
(
μ
)
Cm

(∗)lk
(
μ
)
= δl

HN(i+HN(u(j)))δ
m
HN(l+HN(u(k))) = δ

m
HN(HN(i+HN(u(j)))+HN(u(k)))

= δm
HN(i+HN(u(j))+u(k)) = δ

m
HN(i+u(j)+u(k)),

=⇒ Cl
(∗)i[j
(
μ
)
Cm

(∗)|l|k]
(
μ
)
= 0,

(4.5)

where we have used the propertyHN(HN(k) +m) = HN(k +m), and so forth.

Step 2. The conditions of embaddability T1
[P](W

n) into T1
[P](W

N ; ∗1, . . . , ∗P )(0) in general PA1-
chains: By definition every element f ∈ T1

[P](W
n), 0 ∈ Wn has a representation (In the

following we use Greek indices for the range I1,n, Latin indices for the ranges I1,N and I0,P .)

fγ(z) = aγ[0] + a
γ

[1]β1
zβ1 + aγ[2]β1β2z

β1zβ2 + · · · + aγ[P]β1β2···βP z
β1zβ2 · · · zβP , (4.6)

z ∈ Wn, where the coefficients aγ[p]β1···βp ∈ R for γ, β1, . . . , βp ∈ I1,n, p ∈ I0,P can be assumed
as total symmetric in the indices β1, . . . , βp. Furthermore, for a general given PA1-chain X =
(RN ; ∗1, . . . , ∗P ) every element F ∈ T1

[P](W
N ; ∗1, . . . , ∗P )(0) has a representation

F(Z) = A[0] +A[1]∗1Z +
(
A[2]∗2Z

)∗1Z +
((
A[3]∗3Z

)∗2Z
)∗1Z

+ · · · + (· · · ((A[M]∗PZ
)∗P−1Z

)∗P−2 · · ·
)∗1Z, Z ∈WN

(4.7)

with certain vector-valued coefficients A[p] ∈ R
N , p ∈ I0,P . In component representation,

Fk(X) = Ak
[0] +A

i
[1]C

k
(∗1)ijZ

j +Ai
[2]C

l1
(∗2)ij1Z

j1Ck
(∗1)l1j2Z

j2

+ · · · +Ai
[P]C

l1
(∗P )ij1Z

j1Cl2
(∗P−1)l1j2Z

j2 · · ·Ck
(∗1)lP−1jP Z

jP

rewritten= Ak
[0] +A

i
[1]C

k
(∗1)ijZ

j +Ai
[2]C

l1
(∗2)ij1C

k
(∗1)l1j2Z

j1Zj2

+ · · · +Ai
[P]C

l1
(∗P )ij1C

l2
(∗P−1)l1j2 · · ·C

k
(∗1)lP−1jP Z

j1Zj2 jP .

(4.8)

The restriction on the subsetWn ⊆ WN by Zn+1 = Zn+2 · · · = ZN = 0, Zα = zα, α ∈ I1,n leads
to

Fγ(Z)|Zn+1=Zn+2···=ZN=0 = A
γ

[0] +A
i
[1]C

γ

(∗1)iβ1z
β1 +Ai

[2]C
l1
(∗2)iβ1C

γ

(∗1)l1β2z
β1zβ2

+ · · · +Ai
[P]C

l1
(∗P )iβ1C

l2
(∗P−1)l1β2 · · ·C

γ

(∗1)lP−1βP z
β1zβ2 · · · zβP , γ ∈ I1,n,

(4.9)
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and the embedding condition (4.1) takes the form

a
γ

[0] + a
γ

[1]β1
zβ1 + aγ[2]β1β2z

β1zβ2 + · · · + aγ[P]β1β2···βP zβ1zβ2 · · · zβP

= Aγ

[0] +A
i
[1]C

γ

(∗1)iβ1z
β1 +Ai

[2]C
l1
(∗2)iβ1C

γ

(∗1)l1β2z
β1zβ2

+ · · · +Ai
[P]C

l1
(∗P )iβ1C

l2
(∗P−1)l1β2C

γ

(∗1)lP−1βP z
β1zβ2 · · · zβP , γ ∈ I1,n.

(4.10)

Comparison of the components leads to the following equation system:

A
γ

[0] = a
γ

[0], Ai
[p]C

l1
(∗p)iβ1C

l2
(∗p−1)l1β2 · · ·C

γ

(∗1)lp−1βp = a
γ

[p]β1β2···βp , (b), (4.11)

γ, β1, . . . , βp ∈ I1,n, p ∈ I1,P , or in detailed denotion:

A
γ

[0] = a
γ

[0],

Ai
[1]C

γ

(∗1)iβ1 = a
γ

[1]β1
,

Ai
[2]C

l1
(∗2)iβ1C

γ

(∗1)l1β2 = a
γ

[2]β1β2
,

Ai
[3]C

l1
(∗3)iβ1C

l2
(∗2)l1β2C

γ

(∗1)l2β3 = a
γ

[3]β1β2β3
,

...

Ai
[P]C

l1
(∗P )iβ1C

l2
(∗P−1)l1β2 · · ·C

γ

(∗1)lP−1βP = aγ[P]β1β2···βP ,

(4.12)

γ, β1, . . . , βp ∈ I1,n. We see that the total symmetry in the covariant indices of the right side
is compatible with the total symmetry in the covariant indices of the left side which follows
immediately from the PA1-chain symmetry. The question is now if this system is solvable for
arbitrary given n, P and components aγ[P]β1···βp , γ, β1, . . . , βp ∈ I1,n, p ∈ I0,P , that is, if we can

find an adequate dimension N(n, P), adequate coefficients Ai
[α], α ∈ I0,P , i ∈ I1,N , and an

adequate PA1-chain with structure constants Ck
(∗α)ij such that (4.12) get solvable. Since not

only the coefficients Ai
[α] but also the structure constants are unknown, the equation system

is nonlinear.

Step 3. The conditions of embaddability T1
[P](W

n) into T1
[P](W

N ; ∗)(0) in the special PA1-chain
(4.2): now we have to insert the pseudoring structure (4.2) in the equation system above.
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For this we calculate

Cl1
(∗2)iβ1C

γ

(∗1)l1β2 = δ
l1
HN(i+HN(uμ(β1)))δ

γ

HN(l1+HN(uμ(β2)))

= δγ
HN(HN(i+HN(uμ(β1)))+HN(uμ(β2)))

see step 1 above
= δ

γ

HN(i+uμ(β1)+uμ(β2)),

Cl1
(∗3)iβ1C

l2
(∗2)l1β2C

γ

(∗1)l2β3
= δl1

HN(i+HN(uμ(β1)))δ
γ

HN(l1+uμ(β2)+uμ(β3))

= δγ
HN(HN(i+HN(uμ(β1)))+uμ(β2)+uμ(β3))

see step 1 above
= δ

γ

HN(i+uμ(β1)+uμ(β2)+uμ(β3)),

(4.13)

and we obtain for the general case

Cl1
(∗p)iβ1C

l2
(∗p−1)l1β2 · · ·C

γ

(∗1)lp−1βp = δ
γ

HN(i+uμ(β1)+uμ(β2)+···+uμ(βp))

inserting uμ(βm)
= δ

γ

HN(i−(β1)μ−(β2)μ−···−(βp)μ)

= δγ
HN(i−

∑p

k=1 (βk)
μ)
, p ∈ I1,P .

(4.14)

Inserting in the equation system (4.11), we get

A
γ

[0] = a
γ

[0], (4.15a)

A
HN(γ+

∑p

k=1 (βk)
μ)

[p] = aγ[p]β1β2···βp , (4.15b)

γ, β1, β2, . . . , βp ∈ I1,n, p ∈ I1,P .Nowwe have to show that for arbitrary given n, P and arbitrary
components aγ[P]β1···βp , there exist natural numbers μ(n, P) and N(n, P, μ) and coefficients

Ai
[α], α ∈ I0,P , i ∈ I1,N with the property above. The positive answer will be given in the

next step.

Step 4. The solvability of the equation system (4.15a) and (4.15b): for the following considera-
tions, we define the set

I
[p+1]
1,n :=

{(
γ, β1, β2, . . . , βp

)
with γ, βi ∈ I1,n, βi+1 ≥ βi

}
, p ∈ I1,P , (4.16)

that is, I
[p+1]
1,n is a subset of the set I[p+1]1,n := I1,n × I1,n × · · · × I1,n, (p + 1 times) defined by

the additional property βi+1 ≥ βi. We see that I
[p+1]
1,n is the definition region of the index

field (γ, β1, β2, . . . , βp) from the coefficients aγ[p]β1β2···βp in (4.15b), since for these coefficients
the total symmetry in the covariant indices hold by assumption. For the following, it is
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advantageous to write β instead of (β1, β2, . . . , βp) and (γ, β) instead of (γ, β1, β2, . . . , βp).With
these denotions, we can formulate a necessary and sufficient condition for the solvability of
(4.15a) and (4.15b) for arbitrary given n, P, and for arbitrary given coefficients aγ[p]β1β2···βp as
follows:

HN

(

γ +
p∑

k=1

(
βk
)μ
)

/=HN

(

γ +
p∑

k=1

(
βk

)μ
)

for
(
γ, β
)
/=
(
γ, β
)
, (4.17)

with (γ, β), (γ, β) ∈ I
[p+1]
1,n , p ∈ I1,P (if the following relation is not satisfied, that is, if

there exists for a fixed p at least one pair of (p + 1)-tuples (γ, β)/= (γ, β) such that HN(γ +
∑p

k=1 (βk)
μ) = HN(γ +

∑p

k=1 (βk)
μ
), the condition (4.15b) would imply for the fixed p:

a
γ

[p]β1β2···βp = a
γ

[p]β1β2···βp
, whichmeans a specialization by the coefficients aγ[p]β1β2···βp). We have to

show that this relation holds under our assumptions of μ(n, P) andN(n, P, μ) ≥Nmin(n, P, μ)
as stated in (4.2), (4.3). In the caseN(n, P, μ) ≥ Nmin(n, P, μ) = n + nμP , it is γ +

∑p

k=1(βk)
μ ≤

Nmin(n, P, μ) for p ∈ I1,P which implies HN(γ +
∑p

k=1 (βk)
μ) = γ +

∑p

k=1 (βk)
μ for p ∈ I1,P .

Inserting in (4.15a) and (4.15b), we obtain the statement (4.4). The solvability condition (4.17)
takes the form γ +

∑p

k=1 (βk)
μ
/= γ +

∑p

k=1 (βk)
μ
or rewritten as

p∑

k=1

(
βk
)μ −

p∑

k=1

(
βk
)μ
/= γ − γ, for

(
γ, β
)
/=
(
γ, β
)
, (4.18)

(γ, β), (γ, β) ∈ I
[p+1]
1,n , p ∈ I1,P . From the considerations above, we see that this condition is

sufficient for the solvability of the the system (4.15b) for general given n, P, aγ[p]β1β2···βp . Since
γ − γ moves in the region [−n, n], the condition is certainly satisfied by demanding

∣∣∣∣∣

p∑

k=1

(βk)
μ −

p∑

k=1

(βk)
μ

∣∣∣∣∣
> n, for β /= β, (4.19)

β, β ∈ I
[p+1]
1,n , p ∈ I1,P . The worst case of this new condition is given if only one component

of β differs from one component of β. Let k0 denote the corresponding index, then we obtain
from above the worst case in the form |(βk0)

μ − (βk0)
μ| > n, for βk0 /= βk0 . The worst case of

this scenario is given by the minimal possible difference, that is, by βk0 = 1, βk0 = 2. In this
case μ is defined by the sufficient condition |1 − 2μ| > n or 2μ > n + 1 which is satisfied by
μ > 2log(n + 1) as stated in (4.2).

I will denote this Theorem as the Pseudoring Embedding Theorem, and the pseudoring
(4.2) as embedding pseudoring. The Theorem shows that a non ∗-analytic vector field always
can be embedded into a higher-dimensional ∗-analytic vector field. Furthermore, this
Theorem not only characterizes the possibility of embedding but also allows an explicit
description of the practical embedding process. Some remarks for a deeper understanding
are as follows.
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(i) Since the map uμ in the embedding pseudoring is not a linear map, the embedding
pseudoring is neither commutative nor associative: embedding is not compatible
with commutativity and associativity.

(ii) The embedding pseudoring is a Kronecker algebra, which leads to the question if
also splitting pseudorings can be used for embedding. It can be shown that this is
not possible in a general framework, that is, for embedding problems Kronecker
algebras are more important than splitting algebras. Otherwise, the applications
in [17] show that in the framework of solving partial differential equations the
splitting algebras seem to be more important than Kronecker algebras. The upshot
is that both algebra-types are important.

(iii) The embedding condition (4.3) on the embedding dimension N ≥ Nmin is a
sufficient condition. It is possible that there exist cases where a smaller dimension
N ≤Nmin is purposeful.

(iv) Until now our embedding analyse was restricted on polynomials. It can be
generalized on arbitrary smooth vector fields, but in this case the embedding
dimensionN will not remain finite, according to the embedding relation (4.3). Thus
it would be interesting to investigate if (4.3) is not only sufficient but also necessary.

(v) Relation (4.4) shows that the coefficients Ai
[p] of the vector field F are not defined

entirely by the coefficients aγ[p]β1β2···βp of the vector field f : a lot of coefficients Ai
[p]

remain unrestricted. In other words, embedding from f into F does not define F
entirely but only partially.

(vi) Until now our investigation was fixed on the case of vector-field embedding
problems. More general is the case of tensor field embedding problems, which can
be solved in an analogue way. An analyse is omitted here for space reason.

As a simple example, we consider the case of embedding an (n = 2)-dimensional
polynomial of order P = 3. Then the parameter μ ∈ N is restricted by the condition μ >
2log(n+ 1), and the smallest natural solution is given by μ = 2. The embedding dimensionN
is restricted by the condition N ≥ Nmin(n, P, μ) = n + nμP = 2 + 22 · 3 = 14, and we take the
smallest valueN = 14. According to (4.4), the coefficients Ai

[p] of the embedding polynomial
F take the form

p = 0 :
γ = 1 : A1

[0] = a
1
[0],

γ = 2 : A2
[0] = a

2
[0],

p = 1 :
γ = 1 : A2

[1] = a
1
[1]1, A

5
[1] = a

1
[1]2,

γ = 2 : A3
[1] = a

2
[1]1, A

6
[1] = a

2
[1]2,

p = 2 :
γ = 1 : A3

[2] = a
1
[2]11, A

6
[2] = a

1
[2]12, A

9
[2] = a

1
[2]22,

γ = 2 : A4
[2] = a

2
[2]11, A

7
[2] = a

2
[2]12, A

10
[2] = a

2
[2]22,

p = 3 :
γ = 1 : A4

[3] = a
1
[3]111, A

7
[3] = a

1
[3]112, A

10
[3] = a

1
[3]122, A

13
[3] = a

1
[3]222,

γ = 2 : A5
[3] = a

2
[3]111, A

8
[3] = a

2
[3]112, A

11
[3] = a

2
[3]122, A

14
[3] = a

2
[3]222,

(4.20)
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and according to the remarks above the remaining coefficientsAi
[p] can be chosen to zero, that

is, A3
[0] = A

4
[0] = · · · = A14

[0] = 0, A1
[1] = A

4
[1] = A

7
[1] = A

8
[1] = · · · = A14

[0] = 0, and so forth.
Finally we will discuss a certain extension of our pseudoring-theory, which is

interesting for certain embedding problems. We remember that until now we only have
dealed with products �(∗) : V p × V → V p and �dual

(∗) : Vq × V → Vq, which leads to the
question if “similar” products V p × V p → V p and Vq × Vq → Vq can be defined with similar
properties. This will be done now.

Definition 4.3. Given an arbitrary algebra (V ; ∗)with structure constant tensorC(∗), then the ∗-
associated product of order p: �(∗) : V p × V p → V p is defined by

(
X�(∗)Y

)k1k2···kp := Xi1i2···ipCk1
(∗)i1j1C

k2
(∗)i2j2 · · ·C

kp
(∗)ipjpY

j1j2···jp , (4.21)

and the dual-associated product of order q: �dual
(∗) : Vq × V q → Vq is defined by

(
X�dual

(∗) Y
)

k1k2···kq
:= Xi1i2···iqC

i1
(∗)k1j1C

i2
(∗)k2j2 · · ·C

iq
(∗)kqjqY

j1j2···jq . (4.22)

Proposition 4.4. Given a PA1-structure (V ; ∗1, ∗2), then the following symmetry holds:

(
X�(∗1)Y

)
�(∗2)Z =

(
X�(∗1)Z

)
�(∗2)Y, ∀X,Y,Z ∈ V p. (4.23)

Proof. It is

{(
X�(∗1)Y

)
�(∗2)Z

}m1m2···mp

= (X�(∗1)Y )
k1k2···kpCm1

(∗2)k1l1C
m2
(∗2)k2l2 · · ·C

mp

(∗2)kplpZ
l1l2···lp

= Xi1i2···ipCk1
(∗1)i1j1C

k2
(∗1)i2j2 · · ·C

kp
(∗1)ipjpY

j1j2···jpCm1
(∗2)k1l1C

m2
(∗2)k2l2 · · ·C

mp

(∗2)kplpZ
l1l2···lp

rewritten= X
i1i2···ip

Y j1j2···jpZl1l2···lpCk1
(∗1)i1j1C

k2
(∗1)i2j2 · · ·C

kp
(∗1)ipjpC

m1
(∗2)k1l1C

m2
(∗2)k2l2 · · ·C

mp

(∗2)kplp .

(4.24)

Since Ckα
(∗1)iα[lαC

mα

(∗2)|kα|jα] = 0, α ∈ I1,p, the term above can be written as

Xi1i2···ipY j1j2···jpZl1l2···lpCk1
(∗1)i1l1C

k2
(∗1)i2l2 · · ·C

kp
(∗1)iplpC

m1
(∗2)k1j1C

m2
(∗2)k2j2 · · ·C

mp

(∗2)kpjp

rewritten= Xi1i2···ipCk1
(∗1)i1l1C

k2
(∗1)i2l2 · · ·C

kp
(∗1)iplpZ

l1l2···lpCm1
(∗2)k1j1C

m2
(∗2)k2j2 · · ·C

mp

(∗2)kpjpY
j1j2···jp

rewritten=
(
X�(∗1)Z

)k1k2···kpCm1
(∗2)k1j1C

m2
(∗2)k2j2 · · ·C

mp

(∗2)kpjpY
j1j2···jp

=
{(
X�(∗1)Z

)
�(∗2)Y

}m1m2···mp .

(4.25)

In other words, the PA1-symmetry is induced from the operations ∗1, ∗2 to the
operations �(∗1),�(∗2). The next question is if the property of ∗-analyticity is preserved,
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that is, if X,Y ∈ T2(W ; ∗)(ξ0) induces (X�(∗)Y ) ∈ T2(W ; ∗)(ξ0), and if X ∈ T2(W ; ∗)(ξ0) and
Y ∈ T2(W ; ∗)(ξ0) induce (X�dual

(∗) Y ) ∈ T2(W ; ∗)(ξ0). The next proposition gives a positive
answer.

Proposition 4.5. For a pseudoring (Rn; ∗), the following symmetries hold:

X,Y ∈ T2(W ; ∗)(ξ0) =⇒
(
X�(∗)Y

) ∈ T2(W ; ∗)(ξ0)
if (Rn; ∗) is commutative or the vector field Y is a constant,

(4.26)

X ∈ T2(W ; ∗)(ξ0), Y ∈ T2(W ; ∗)(ξ0) =⇒
(
X�dual

(∗) Y
)
∈ T2(W ; ∗)(ξ0)

if (Rn; ∗) is commutative or vector field Y is a constant.
(4.27)

Proof. To show (4.26) we have to show that for the product (X�(∗)Y ) the PCRE hold under
the given assumptions, that is,

(
X�(∗)Y

)kl
,m =

[
D(∗)
(
X�(∗)Y

)]sl
Ck

(∗)sm +
[
D(∗)
(
X�(∗)Y

)]ks
Cl

(∗)sm (4.28)

with adequate D(∗)(X�(∗)Y ).With Zkl := (X�(∗)Y )
kl = XijCk

(∗)ipC
l
(∗)jqY

pq, we calculate

Zkl
,m = Xij

,mC
k
(∗)ipC

l
(∗)jqY

pq +XijCk
(∗)ipC

l
(∗)jqY

pq
,m

PCRE=
[(

D(∗)X
)sj
Ci

(∗)sm +
(
D(∗)X

)is
C
j

(∗)sm
]
Ck

(∗)ipC
l
(∗)jqY

pq

+XijCk
(∗)ipC

l
(∗)jq
[(

D(∗)Y
)sq
C
p

(∗)sm +
(
D(∗)Y

)ps
C
q

(∗)sm
]
.

(4.29)

In the case of a constant Y , we obtain

Zkl
,m =
[(

D(∗)X
)sj
Ci

(∗)smC
k
(∗)ipC

l
(∗)jq +

(
D(∗)X

)is
C
j

(∗)smC
k
(∗)ipC

l
(∗)jq
]
Ypq

pseudoringsymmetry
=

[(
D(∗)X

)sj
Ci

(∗)spC
k
(∗)imC

l
(∗)jq +

(
D(∗)X

)is
C
j

(∗)sqC
k
(∗)ipC

l
(∗)jm
]
Ypq

=
[(

D(∗)Z
)il
Ck

(∗)im +
(
D(∗)Z

)ki
Cl

(∗)im
]
Ypq, with

(
D(∗)Z

)il :=
(
D(∗)X

)sj
Ci

(∗)sp C
l
(∗)jqY

pq,

(4.30)
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and the second statement of (4.26) has been proved. To show the first statement, we start
from the partial derivations above.

Zkl
,m =

[(
D(∗)X

)sj
Ci

(∗)smC
k
(∗)ipC

l
(∗)jq +

(
D(∗)X

)is
C
j

(∗)smC
k
(∗)ipC

l
(∗)jq
]
Ypq

+Xij
[(

D(∗)Y
)sq
C
p

(∗)smC
k
(∗)ipC

l
(∗)jq +

(
D(∗)Y

)ps
C
q

(∗)smC
k
(∗)ipC

l
(∗)jq
]

comm. pseudoring
=

[(
D(∗)X

)sj
Ci

(∗)spC
k
(∗)imC

l
(∗)jq +

(
D(∗)X

)is
C
j

(∗)sqC
k
(∗)ipC

l
(∗)jm
]
Ypq

+Xij
[(

D(∗)Y
)sq
C
p

(∗)siC
k
(∗)mpC

l
(∗)jq +

(
D(∗)Y

)ps
C
q

(∗)sjC
k
(∗)ipC

l
(∗)mq
]

rena min g indices
=

[(
D(∗)X

)ij
Cs

(∗)ipC
k
(∗)smC

l
(∗)jq + (D(∗)X)ijCs

(∗)jqC
k
(∗)ipC

l
(∗)sm
]
Ypq

+Xij
[(

D(∗)Y
)pq

Cs
(∗)piC

k
(∗)msC

l
(∗)jq +

(
D(∗)Y

)pq
Cs

(∗)qjC
k
(∗)ipC

l
(∗)ms
]

= Ck
(∗)sm
[(

D(∗)X
)ij
Cs

(∗)ipC
l
(∗)jqY

pq +Xij(D(∗)Y
)pq

Cs
(∗)piC

l
(∗)jq
]

+ Cl
(∗)sm
[(

D(∗)X
)ij
Cs

(∗)jqC
k
(∗)ipY

pq +Xij(D(∗)Y
)pq

Cs
(∗)qjC

k
(∗)ip
]

= Ck
(∗)sm
(
D(∗)Z

)sl + Cl
(∗)sm
(
D(∗)X

)ks
, with

(
D(∗)Z

)sl :=
(
D(∗)X

)ij
Cs

(∗)ipC
l
(∗)jqY

pq +Xij(D(∗)Y
)pq

Cs
(∗)piC

l
(∗)jq

=
[(

D(∗)X
)
�(∗)Y +X�(∗)

(
D(∗)Y

)]sl
.

(4.31)

The proof of the statement (4.27) runs the same lines.

We see that the property of ∗-analyticity generally will not be preserved by the
operations �(∗) and �dual

(∗) , only for simple underlying structures (commutative pseudorings)
or for a simple operand (a constant). Thus it makes sense to introduce the concept of weak
∗-analytical fields as �(∗)-products and �dual

(∗) -products of ∗-analytical fields, which allows
applications in general relativity as well as in system theory, but will not be discussed here
for space reason.

In this chapter, a class of Embedding Problems has been analyzed with the result that
polynomial n-dimensional vector fields always can be embedded into polynomial N-
dimensional, ∗-analytic vector fields, N ≥ n finite. In the case N → ∞, the results
hold for arbitrary smooth vector fields. Furthermore, not only the existence of embedding
was shown, but the embedding process was described explicitly. Finally new product
operations with interesting properties have been analyzed.

5. Conclusion and Outlook

The paper presents and solves a new type of Embedding Problems which are important for
solving nonlinear partial differential equations. The most important results are as follows.



Advances in Mathematical Physics 45

(i) A set of algebras was found (so-called “PA1-chains” or “GAPs”), such that for
the corresponding function theories a generalization of the Cauchy-Riemannian
differential equations exists as well as a generalization of the classical Cauchy
Integral Theorem.

(ii) Awide variety of GAPs can be characterized explicitly by presenting their structure
constant tensors explicitly.

(iii) GAP-Theory endows new explicit solutions of Einsteins field equations from
General Relativity Theory and new explicit solutions of the n-dimensional Navier-
Stokes equations.

(iv) A new Embedding Theorem was formulated, which allows a wide generalization
of the results above: it was shown explicitly that an arbitrary n-dimensional
smooth vector field always can be embedded into a specialN-Dimensional Smooth
Vector Field (N ≥ n) restricted by PA1-symmetries. In other words, the world
of PA1-chains is wide enough to allow embedding for rather general (“smooth”)
structures.

(v) Some consequences of the Embedding Theorem for the explicit solution of
nonlinear partial differential equations have been discussed.

(vi) A simple example for the Embedding Theorem has been given.

The following investigations and generalizations would be useful, the construction of
more general PA1-chains which would generalize our Embedding Theorem.
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