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In this paper, we apply to (almost) all the “named” polynomials of the Askey scheme, as defined
by their standard three-term recursion relations, the machinery developed in previous papers. For
each of these polynomials we identify at least one additional recursion relation involving a shift
in some of the parameters they feature, and for several of these polynomials characterized by
special values of their parameters, factorizations are identified yielding some or all of their zeros—
generally given by simple expressions in terms of integers (Diophantine relations). The factorization
findings generally are applicable for values of the Askey polynomials that extend beyond those for
which the standard orthogonality relations hold. Most of these results are not (yet) reported in the
standard compilations.

Copyright q 2009 M. Bruschi et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Recently Diophantine findings and conjectures concerning the eigenvalues of certain
tridiagonal matrices, and correspondingly the zeros of the polynomials associated with their
secular equations, were arrived at via the study of the behavior of certain isochronous many-
body problems of Toda type in the neighborhood of their equilibria [1, 2] (for a review of
these and other analogous results, see [3, Appendix C]). To prove (some of) these conjectures
a theoretical framework was then developed [4–6], involving polynomials defined by three-
term recursion relations—hence being, at least for appropriate ranges of the parameters
they feature, orthogonal. (This result is generally referred to as “Favard theorem,” on the
basis of [7]; however, as noted by Ismail, a more appropriate name is “spectral theorem
for orthogonal polynomials” [8]). Specific conditions were identified—to be satisfied by the
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coefficients, featuring a parameter ν, of these recursion relations—sufficient to guarantee that
the corresponding polynomials also satisfy a second three-term recursion relation involving
shifts in that parameter ν; and via this second recursion relation, Diophantine results of the
kind indicated above were obtained [5]. In Section 2, in order to make this paper essentially
self-contained, these developments are tersely reviewed—and also marginally extended,
with the corresponding proofs relegated to an appendix to avoid interrupting the flow of
the presentation. We then apply, in Section 3, this theoretical machinery to the “named”
polynomials of the Askey scheme [9], as defined by the basic three-term recursion relation
they satisfy: this entails the identification of the parameter ν—which can often be done in
more than one way, especially for the named polynomials involving several parameters—
and yields the identification of additional recursion relations satisfied by (most of) these
polynomials. Presumably such results (especially after they have been discovered) could also
be obtained by other routes—for instance, by exploiting the relations of these polynomials
with hypergeometric functions: we did not find them (except in some very classical cases)
in the standard compilations [9–13], where they in our opinion deserve to be eventually
recorded. Moreover, our machinery yields factorizations of certain of these polynomials
entailing the identification of some or all of their zeros, as well as factorizations relating some
of these polynomials (with different parameters) to each other. Again, most of these results
seem new and deserving to be eventually recorded in the standard compilations although
they generally require that the parameters of the named polynomials do not satisfy the
standard restrictions required for the orthogonality property. To clarify this restriction let us
remark that an elementary example of such factorizations—which might be considered the
prototype of formulas reported below for many of the polynomials of the Askey scheme—
reads as follows:

L
(−n)
n (x) =

(−x)n
n!

, n = 0, 1, 2, . . . , (1.1a)

where L
(α)
n (x) is the standard (generalized) Laguerre polynomial of order n, for whose

orthogonality,

∫∞

0
dx xα exp(−x)L(α)

n (x)L(α)
m (x) = δnm

Γ(n + α + 1)
n!

, (1.1b)

it is, however, generally required that Reα > −1. This formula, (1.1a), is well known
and it is indeed displayed in some of the standard compilations reporting results for
classical orthogonal polynomials (see, e.g., page 109 of the classical book by Magnus and
Oberhettinger [14] or [11, Equation 8.973.4]). And this remark applies as well to the following
neat generalization of this formula, reading

L
(−m)
n (x) = (−1)m (n −m)!

n!
xmL

(m)
n−m(x), m = 0, 1, . . . , n, n = 0, 1, 2, . . . , (1.1c)

which qualifies as well as the prototype of formulas reported below for many of the poly-
nomials of the Askey scheme. (Note, incidentally, that this formula can be inserted without
difficulty in the standard orthogonality relation for generalized Laguerre polynomials, (1.1b),
reproducing the standard relation: the singularity of the weight function gets indeed neatly
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compensated by the term xm appearing in the right-hand side of (1.1c). Presumably, this
property—and the analogous version for Jacobi polynomials—is well known to most experts
on orthogonal polynomials; e.g., a referee of this paper wrote “Although I have known of
(1.1c) for a long time, I have neither written it down nor saw it stated explicitly. It is clear
from reading [15, Paragraph 6.72] that Szëgo was aware of (1.1c) and the more general
case of Jacobi polynomials.”) Most of the formulas (analogous to (1.1c) and (1.1a)) for
the named polynomials of the Askey scheme that are reported below are instead, to the
best of our knowledge, new: they do not appear in the standard compilations where we
suggest they should be eventually recorded, in view of their neatness and their Diophantine
character. They could of course be as well obtained by other routes than those we followed
to identify and prove them (it is indeed generally the case that formulas involving special
functions, after they have been discovered, are easily proven via several different routes). Let
us however emphasize that although the results reported below have been obtained by a
rather systematic application of our approach to all the polynomials of the Askey scheme,
we do not claim that the results reported exhaust all those of this kind featured by these
polynomials. And let us also note that, as it is generally done in the standard treatments
of “named” polynomials [9–13], we have treated separately each of the differently “named”
classes of these polynomials, even though “in principle” it would be sufficient to only treat the
most general class of them—Wilson polynomials—that encompasses all the other classes via
appropriate assignments (including limiting ones) of the 4 parameters it features. Section 4
mentions tersely possible future developments.

2. Preliminaries and Notation

In this section we report tersely the key points of our approach, mainly in order to make
this paper self-contained—as indicated above—and also to establish its notation: previously
known results are of course reported without their proofs, except for an extension of these
findings whose proof is relegated to Appendix A.

Hereafter we consider classes of monic polynomials p
(ν)
n (x), of degree n in their

argument x and depending on a parameter ν, defined by the three-term recursion relation:

p
(ν)
n+1(x) =

(
x + a

(ν)
n

)
p
(ν)
n (x) + b

(ν)
n p

(ν)
n−1(x) (2.1a)

with the “initial” assignments

p
(ν)
−1 (x) = 0, p

(ν)
0 (x) = 1, (2.1b)

clearly entailing

p
(ν)
1 (x) = x + a

(ν)
0 , p

(ν)
2 (x) =

(
x + a

(ν)
1

)(
x + a

(ν)
0

)
+ b

(ν)
1 , (2.1c)

and so on. (In some cases the left-hand side of the first (2.1b)might preferably be replaced by
b
(ν)
0 p

(ν)
−1 (x), to take account of possible indeterminacies of b(ν)0 .)
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Notation. Here and hereafter the index n is a nonnegative integer (but some of the formulas
written below might make little sense for n = 0, requiring a—generally quite obvious—
special interpretation), and a

(ν)
n , b

(ν)
n are functions of this index n and of the parameter ν.

They might—indeed they often do—also depend on other parameters besides ν (see below);
but this parameter ν plays a crucial role, indeed the results reported below emerge from the
identification of special values of it (generally simply related to the index n).

Let us recall that the theorem which guarantees that these polynomials, being defined
by the three-term recursion relation (2.1), are orthogonal (with a positive definite, albeit a
priori unknown, weight function), requires that the coefficients a(ν)

n and b
(ν)
n be real and that

the latter be negative, b(ν)n < 0 (see, e.g., [16]).

2.1. Additional Recursion Relation

Proposition 2.1. If the quantities A(ν)
n and ω(ν) satisfy the nonlinear recursion relation

[
A

(ν)
n−1 −A

(ν−1)
n−1

][
A

(ν)
n −A

(ν−1)
n−1 +ω(ν)] = [

A
(ν−1)
n−1 −A

(ν−2)
n−1

][
A

(ν−1)
n−1 −A

(ν−2)
n−2 +ω(ν−1)] (2.2a)

with the boundary condition

A
(ν)
0 = 0 (2.2b)

(where, without significant loss of generality, this constant is set to zero rather than to an arbitrary
ν-independent value A: see [5, Equation (4a)]; and we also replaced, for notational convenience, the
quantity α(ν) previously used [5] with ω(ν)), and if the coefficients a(ν)

n and b(ν)n are defined in terms of
these quantities by the following formulas:

a
(ν)
n = A

(ν)
n+1 −A

(ν)
n , (2.3a)

b
(ν)
n =

[
A

(ν)
n −A

(ν−1)
n

][
A

(ν)
n −A

(ν−1)
n−1 +ω(ν)], (2.3b)

then the polynomials p(ν)n (x) identified by the recursion relation (2.1) satisfy the following additional
recursion relation (involving a shift both in the order n of the polynomials and in the parameter ν):

p
(ν)
n (x) = p

(ν−1)
n (x) + g

(ν)
n p

(ν−1)
n−1 (x) (2.4a)

with

g
(ν)
n = A

(ν)
n −A

(ν−1)
n . (2.4b)

This proposition corresponds to [5, Proposition 2.3]. (As suggested by a referee, let us
also mention that recursions in a parameter—albeit of a very special type and different from
that reported above—were also presented long ago in a paper by Dickinson et al. [17].)
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Alternative conditions sufficient for the validity of Proposition 2.1 and characterizing
directly the coefficients a(ν)

n , b
(ν)
n , and g

(ν)
n read as follows (see [5, Appendix B]):

a
(ν)
n − a

(ν−1)
n = g

(ν)
n+1 − g

(ν)
n , (2.5a)

b
(ν−1)
n−1 g

(ν)
n − b

(ν)
n g

(ν)
n−1 = 0, (2.5b)

with

g
(ν)
n = − b

(ν)
n − b

(ν−1)
n

a
(ν)
n − a

(ν−1)
n−1

, (2.5c)

and the “initial” condition

g
(ν)
1 = a

(ν)
0 − a

(ν−1)
0 , (2.5d)

entailing via (2.5c) (with n = 1)

b
(ν)
1 − b

(ν−1)
1 +

(
a
(ν)
0 − a

(ν−1)
0

)(
a
(ν)
1 − a

(ν−1)
0

)
= 0 (2.5e)

and via (2.5a) (with n = 0)

g
(ν)
0 = 0. (2.5f)

Proposition 2.2. Assume that the class of (monic, orthogonal) polynomials p(ν)n (x) defined by the
recursion (2.1) satisfies Proposition 2.1, hence that they also obey the (“second”) recursion relation
(2.4). Then, there also holds the relations:

p
(ν)
n (x) =

[
x − x

(1,ν)
n

]
p
(ν−1)
n−1 (x) + b

(ν−1)
n−1 p

(ν−1)
n−2 (x), (2.6a)

x
(1,ν)
n = −[a(ν−1)

n−1 + g
(ν)
n

]
, (2.6b)

in addition to

p
(ν)
n (x) =

[
x − x

(2,ν)
n

]
p
(ν−2)
n−1 (x) + c

(ν)
n p

(ν−2)
n−2 (x), (2.7a)

x
(2,ν)
n = −[a(ν−2)

n−1 + g
(ν)
n + g

(ν−1)
n

]
, (2.7b)

c
(ν)
n = b

(ν−2)
n−1 + g

(ν)
n g

(ν−1)
n−1 , (2.7c)
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as well as

p
(ν)
n (x) =

[
x − x

(3,ν)
n

]
p
(ν−3)
n−1 (x) + d

(ν)
n p

(ν−3)
n−2 (x) + e

(ν)
n p

(ν−3)
n−3 (x), (2.8a)

x
(3,ν)
n = −[a(ν−3)

n−1 + g
(ν)
n + g

(ν−1)
n + g

(ν−2)
n

]
, (2.8b)

d
(ν)
n = b

(ν−3)
n−1 + g

(ν)
n g

(ν−2)
n−1 + g

(ν−1)
n g

(ν−2)
n−1 + g

(ν)
n g

(ν−1)
n−1 , (2.8c)

e
(ν)
n = g

(ν)
n g

(ν−1)
n−1 g

(ν−2)
n−2 . (2.8d)

These findings correspond to [6, Proposition 1].

2.2. Factorizations

In the following we introduce a second parameter μ, but for notational simplicity we do not
emphasize explicitly the dependence of the various quantities on this parameter.

Proposition 2.3. If the (monic, orthogonal) polynomials p(ν)n (x) are defined by the recursion relation
(2.1) and the coefficients b(ν)n satisfy the relation

b
(n+μ)
n = 0, (2.9)

entailing that for ν = n + μ, the recursion relation (2.1a) reads

p
(n+μ)
n+1 (x) =

(
x + a

(n+μ)
n

)
p
(n+μ)
n (x), (2.10)

then there holds the factorization

p
(m+μ)
n (x) = p̃

(−m)
n−m (x)p(m+μ)

m (x), m = 0, 1, . . . , n, (2.11)

with the “complementary” polynomials p̃(−m)
n (x) (of course of degree n) defined by the following three-

term recursion relation analogous (but not identical) to (2.1):

p̃
(−m)
n+1 (x) =

(
x + a

(m+μ)
n+m

)
p̃
(−m)
n (x) + b

(m+μ)
n+m p̃

(−m)
n−1 (x), (2.12a)

p̃
(−m)
−1 (x) = 0, p̃

(−m)
0 (x) = 1, (2.12b)

entailing

p̃
(−m)
1 (x) = x + a

(m+μ)
m , (2.12c)

p̃
(−m)
2 (x) =

(
x + a

(m+μ)
m+1

)(
x + a

(m+μ)
m

)
+ b

(m+μ)
m+1 =

(
x − x

(+)
m

)(
x − x

(−)
m

)
(2.12d)
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with

x
(±)
m =

1
2

{
− a

(m+μ)
m − a

(m+μ)
m+1 ± [(

a
(m+μ)
m − a

(m+μ)
m+1

)2 − 4b(m+μ)
m+1

]1/2}
, (2.12e)

and so on.

This is a slight generalization (proven below, in Appendix A) of [5, Proposition 2.4].
Note incidentally that also the complementary polynomials p̃(−m)

n (x), being defined by three-
terms recursion relations, see (2.12a), may belong to orthogonal families, hence they should
have to be eventually investigated in such a context, perhaps applying also to them the kind
of findings reported in this paper.

The following two results are immediate consequences of Proposition 2.3.

Corollary 2.4. If (2.9) holds—entailing (2.10) and (2.11)with (2.12)—the polynomial p(n−1)n (x) has
the zero −a(n−1)

n−1 ,

p
(n−1+μ)
n

( − a
(n−1+μ)
n−1

)
= 0, (2.13a)

and the polynomial p(n−2+μ)n (x) has the two zeros x(±)
n−2 (see (2.12e)),

p
(n−2+μ)
n

(
x
(±)
n−2

)
= 0. (2.13b)

The first of these results is a trivial consequence of (2.10); the second is evident from (2.11) and
(2.12d). Note, moreover, that from the factorization formula (2.11), one can likewise find explicitly 3
zeros of p(n−3+μ)n (x) and 4 zeros of p(n−4+μ)n (x), by evaluation from (2.12) p̃(−m)

3 (x) and p̃
(−m)
4 (x) and

by taking advantage of the explicit solvability of algebraic equations of degrees 3 and 4.

These findings often have aDiophantine connotation, due to the neat expressions of the
zeros −a(n−1+μ)

n−1 and x
(±)
n−2 in terms of integers.

Corollary 2.5. If (2.9) holds—entailing (2.10) and (2.11) with (2.12)—and moreover the quantities
a
(m)
n and b

(m)
n satisfy the properties

a
(−m+μ)
n−m

(
ρ
)
= a

(m+μ̃)
n

(
ρ̃
)
, b

(−m+μ)
n−m

(
ρ
)
= b

(m+μ̃)
n

(
ρ̃
)
, (2.14)

then clearly

p̃
(m)
n

(
x; ρ

)
= p

(m+μ̃)
n

(
x; ρ̃

)
, (2.15)

entailing that the factorization (2.11) takes the neat form

p
(m+μ)
n

(
x; ρ

)
= p

(−m+μ̃)
n−m

(
x; ρ̃

)
p
(m+μ)
m

(
x; ρ

)
, m = 0, 1, . . . , n. (2.16)
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Note that—for future convenience, see below—one has emphasized explicitly the possibility that the
polynomials depend on additional parameters (indicated with the vector variables ρ, resp., ρ̃; these
additional parameters must of course be independent of n, but they might depend on m).

The following remark is relevant when both Propositions 2.1 and 2.2 hold.

Remark 2.6. As implied by (2.3b), the condition (2.9) can be enforced via the assignment

ω(ν) = A
(ν−1+μ)
ν−1 −A

(ν+μ)
ν , (2.17)

entailing that the nonlinear recursion relation (2.3a) reads

[
A

(ν)
n−1 −A

(ν−1)
n−1

][
A

(ν)
n −A

(ν−1)
n−1 +A

(ν−1+μ)
ν−1 −A

(ν+μ)
ν

]

=
[
A

(ν−1)
n−1 −A

(ν−2)
n−1

][
A

(ν−1)
n−1 −A

(ν−2)
n−2 +A

(ν−2+μ)
ν−2 −A

(ν−1+μ)
ν−1

]
.

(2.18)

Corollaries 2.4 and 2.5 and Remark 2.6 are analogous to [5, Corollaries 2.5 and 2.6 and
Remark 2.7].

2.3. Complete Factorizations and Diophantine Findings

The Diophantine character of the findings reported below is due to the generally neat
expressions of the following zeros in terms of integers (see in particular the examples in
Section 3).

Proposition 2.7. If the (monic, orthogonal) polynomials p
(ν)
n (x) are defined by the three-term

recursion relations (2.1) with coefficients a(ν)
n and b

(ν)
n satisfying the requirements sufficient for the

validity of both Propositions 2.1 and 2.2 (namely (2.3), with (2.2) and (2.9), or just with (2.18)), then

p
(n+μ)
n (x) =

n∏
m=1

[
x − x

(1,m+μ)
m

]
, (2.19a)

with the expressions (2.6b) of the zeros x
(1,ν)
m and the standard convention according to which a

product equals unity when its lower limit exceeds its upper limit. Note that these n zeros are n-
independent (except for their number). In particular,

p
(μ)
0 (x) = 1, p

(1+μ)
1 (x) = x − x

(1,1+μ)
1 , p

(2+μ)
2 (x) =

[
x − x

(1,2+μ)
1

][
x − x

(1,2+μ)
2

]
, (2.19b)

and so on.

These findings correspond to [6, Proposition 2.2 (first part)].
The following results are immediate consequences of Proposition 2.7 and of

Corollary 2.4.
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Corollary 2.8. If Proposition 2.7 holds, then also the polynomials p
(n−1+μ)
n (x) and p

(n−2+μ)
n (x) (in

addition to p(n+μ)n (x), see (2.19)) can be written in the following completely factorized form (see (2.6b)
and (2.12e)):

p
(n−1+μ)
n (x) =

[
x + a

(n−1)
n−1

] n−1∏
m=1

[
x − x

(1,m+μ)
m

]
, (2.20a)

p
(n−2+μ)
n (x) =

[
x − x

(+)
m

][
x − x

(−)
m

] n−2∏
m=1

[
x − x

(1,m+μ)
m

]
. (2.20b)

Analogously, complete factorizations can clearly be written for the polynomials p(n−3+μ)n (x) and
p
(n−4+μ)
n (x), see the last part of Corollary 2.4.

And of course the factorization (2.11) together with (2.19a) entails the (generally Diophantine)
finding that the polynomial p(m+μ)

n (x) with m = 1, . . . , n features the m zeros x(1,�+μ)
� , � = 1, . . . , m,

see (2.6b):

p
(m+μ)
n

(
x
(1,�+μ)
�

)
= 0, � = 1, . . . , m, m = 1, . . . , n. (2.21)

Proposition 2.9. Assume that, for the class of polynomials p
(ν)
n (x), there hold the preceding

Proposition 2.1, and moreover that, for some value of the parameter μ (and of course for all nonnegative
integer values of n), the coefficients c(2n+μ)n vanish (see (2.7a) and (2.7c)),

c
(2n+μ)
n = b

(2n+μ−2)
n−1 + g

(2n+μ)
n g

(2n+μ−1)
n−1 = 0, (2.22a)

then the polynomials p(2n+μ)n (x) factorize as follows:

p
(2n+μ)
n (x) =

n∏
m=1

[
x − x

(2,2m+μ)
m

]
, (2.22b)

entailing

p
(μ)
0 (x) = 1, p

(2+μ)
1 (x) = x − x

(2,2+μ)
1 , p

(4+μ)
2 (x) =

[
x − x

(2,2+μ)
1

][
x − x

(2,4+μ)
2

]
, (2.22c)

and so on.
Likewise, if for all nonnegative integer values of n, the following two properties hold (see (2.8a),

(2.8c), and (2.8d)):

d
(3n+μ)
n = b

(3n+μ−3)
n−1 + g

(3n+μ)
n g

(3n+μ−2)
n−1 + g

(3n+μ−1)
n g

(3n+μ−2)
n−1 + g

(3n+μ)
n g

(3n+μ−1)
n−1 = 0, (2.23a)

e
(3n+μ)
n = 0, that is, g(3n+μ)

n = 0 or g
(3n+μ−1)
n−1 = 0 or g

(3n+μ−2)
n−2 = 0, (2.23b)
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then the polynomials p(3n+μ)n (x) factorize as follows:

p
(3n+μ)
n (x) =

n∏
m=1

[
x − x

(3,3m+μ)
m

]
, (2.23c)

entailing

p
(μ)
0 (x) = 1, p

(3+μ)
1 (x) = x − x

(3,3+μ)
1 , p

(6+μ)
2 (x) =

[
x − x

(3,3+μ)
1

][
x − x

(3,6+μ)
2

]
, (2.23d)

and so on.
Here of course the n (n-independent!) zeros x

(2,2m+μ)
m , respectively, x(3,3m+μ)

m are defined by
(2.7b), respectively, (2.8b).

These findings correspond to [6, Proposition 2].

3. Results for the Polynomials of the Askey Scheme

In this section, we apply to the polynomials of the Askey scheme [9] the results reviewed
in the previous section. This class of polynomials (including the classical polynomials) may
be introduced in various manners: via generating functions, Rodriguez-type formulas, their
connections with hypergeometric formulas, and so forth. In order to apply our machinery,
as outlined in the preceding section, we introduce them via the three-term recursion relation
they satisfy:

pn+1
(
x;η

)
=
[
x + an

(
η
)]
pn

(
x;η

)
+ bn

(
η
)
pn−1

(
x;η

)
(3.1a)

with the “initial” assignments

p−1
(
x;η

)
= 0, p0

(
x;η

)
= 1, (3.1b)

clearly entailing

p1
(
x;η

)
= x + a0

(
η
)
, p2

(
x;η

)
=
[
x + a1

(
η
)][

x + a0
(
η
)]

+ b1
(
η
)
, (3.1c)

and so on. Here the components of the vector η denote the additional parameters generally
featured by these polynomials.

Let us emphasize that in this manner we introduced the monic (or “normalized” [9])
version of these polynomials; below we generally also report the relation of this version to
the more standard version [9].

To apply our machinery we must identify, among the parameters characterizing these
polynomials, the single parameter ν playing a special role in our approach. This can be
generally done in several ways (even for the same class of polynomials, see below). Once this
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identification (i.e., the assignment η ≡ η(ν)) has been made, the recursion relations (3.1)
coincide with the relations (2.1) via the self-evident notational identification:

p
(ν)
n (x) ≡ pn

(
x;η(ν)

)
, a

(ν)
n ≡ an

(
η(ν)

)
, b

(ν)
n ≡ bn

(
η(ν)

)
. (3.2)

Before proceeding with the report of our results, let us also emphasize that when
the polynomials considered below feature symmetries regarding the dependence on their
parameters—for instance, they are invariant under exchanges of some of them—obviously
all the properties of these polynomials reported below can be duplicated via such symmetry
properties; but it would be a waste of space to report explicitly the corresponding formulas,
hence such duplications are hereafter omitted (except that sometimes results arrived at
by different routes can be recognized as trivially related via such symmetries: when
this happens this fact is explicitly noted). We will use systematically the notation of
[9]—up to obvious changes made whenever necessary in order to avoid interferences
with our previous notation. When we obtain a result that we deem interesting but
is not reported in the standard compilations [9–13], we identify it as new (although
given the very large literature on orthogonal polynomials, we cannot be certain that
such a result has not been already published; indeed we will be grateful to any reader
who were to discover that this is indeed the case and will let us know). And let
us reiterate that even though we performed an extensive search for such results, this
investigation cannot be considered “exhaustive”: additional results might perhaps be
discovered via assignments of the ν-dependence η(ν) different from those considered
below.

3.1. Wilson

The monic Wilson polynomials (see [9], and note the notational replacement of the 4
parameters a, b, c, d used there with α, β, γ, δ)

pn(x;α, β, γ, δ) ≡ pn
(
x;η

)
(3.3a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= α2 − Ãn − C̃n, bn

(
η
)
= −Ãn−1C̃n, (3.3b)

where

Ãn =
(n + α + β)(n + α + γ)(n + α + δ)(n − 1 + α + σ)

(2n − 1 + α + σ)(2n + α + σ)
, (3.3c)

C̃n =
n(n − 1 + β + γ)(n − 1 + β + δ)(n − 1 + γ + δ)

(2n − 2 + α + σ)(2n − 1 + α + σ)
, (3.3d)

σ ≡ β + γ + δ, ρ ≡ βγ + βδ + γδ, τ ≡ βγδ. (3.3e)
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The standard version of these polynomials reads (see [9]):

Wn(x;α, β, γ, δ) = (−1)n(n − 1 + α + β + γ + δ)npn(x;α, β, γ, δ). (3.4)

Let us also recall that these polynomials pn(x;α, β, γ, δ) are invariant under any
permutation of the 4 parameters α, β, γ, δ.

As for the identification of the parameter ν (see (3.2)), two possibilities are listed in
the following subsections.

3.1.1. First Assignment

α = −ν. (3.5)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n =

[
6(2n − 2 − ν + σ)

]−1
n
{
4 − 5σ + 6ρ − 6τ + (5 − 6σ + 6ρ)ν

+
[ − 10 + 9σ − 6ρ + (−9 + 6σ)ν

]
n

+ (8 − 4σ + 4ν)n2 − 2n3},
(3.6a)

ω(ν) = −ν2, (3.6b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Wilson polynomials (3.3):

p
(ν)
n (x) = pn(x;−ν, β, γ, δ). (3.7)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Wilson polynomials satisfy the second recursion relation (2.4a)with

g
(ν)
n =

n(n − 1 + β + γ)(n − 1 + β + δ)(n − 1 + γ + δ)
(2n − 2 − ν + σ)(2n − 1 − ν + σ)

. (3.8)

Note that this finding is obtained without requiring any limitation on the 4 parameters of the
Wilson polynomials pn(x;α, β, γ, δ).

It is, moreover, plain that with the assignment

ν = n − 1 + β, namely, α = −n + 1 − β, (3.9)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = β − 1. These are new findings. As for the additional findings
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entailed by Corollary 2.5, they are reported in Section 3.1.3. And Proposition 2.7 becomes as
well applicable, entailing (new finding) the Diophantine factorization

pn(x;−n + 1 − β, β, γ, δ) =
n∏

m=1

[
x + (m − 1 + β)2

]
, (3.10)

while Corollary 2.8 entails even more general properties, such as (new finding)

pn
[ − (� − 1 + β)2;−m + 1 − β, β, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.11)

Remark 3.1. A look at the formulas (3.3) suggests other possible assignments of the parameter
ν satisfying (2.9), such as ν = n − 2 + σ, namely, α = 2 − n − σ. However, these
assignments actually fail to satisfy (2.9) for all values of n, because for this to happen, it is
not sufficient that the numerator in the expression of b(ν+μ)n vanish, it is, moreover, required
that the denominator in that expression never vanish. In the following, we will consider only
assignments of the parameter ν in terms of n that satisfy these requirements.

3.1.2. Second Assignment

α = −ν
2
, β =

1 − ν

2
. (3.12)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n =

[
6(4n−3−2ν+2γ+2δ)]−1n{3 − 4γ − 4δ + 6γδ + (7 − 9γ − 9δ + 12γδ)ν + 3(1 − γ − δ)ν2

− [
11 − 12γ − 12δ + 12γδ + 3(5 − 4γ − 4δ)ν + 3ν2

]
n

+ 4(3 + 2ν − 2γ − 2δ)n2 − 4n3},
(3.13a)

ω(ν) = −ν
2

4
, (3.13b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Wilson polynomials (3.3):

p
(ν)
n (x) = pn

(
x;−ν

2
,
1 − ν

2
, γ, δ

)
. (3.14)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Wilson polynomials satisfy the second recursion relation (2.4a)with

g
(ν)
n =

n(n − 1 + γ + δ)(2n − 1 − ν + 2γ)(2n − 1 − ν + 2δ)
(4n − 3 − 2ν + 2γ + 2δ)(4n − 1 − 2ν + 2γ + 2δ)

. (3.15)
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Note that this assignment entails now the (single) restriction β = α + 1/2 on the 4 parameters
of the Wilson polynomials pn(x;α, β, γ, δ).

It is, moreover, plain that with the assignments

ν = n − 1
2
, hence α = −n

2
+
1
4
, β = −n

2
+
3
4
, (3.16a)

ν = n − 2 + 2δ, γ = δ − 1
2
, α = −n

2
+ 1 − δ, β = −n

2
+
3
2
− δ, (3.16b)

respectively,

ν = n − 1 + 2δ, γ = δ +
1
2
, α = −n

2
+
1
2
− δ, β = −n

2
+ 1 − δ, (3.16c)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = −1/2, μ = −2 + 2δ, respectively, μ = −1 + 2δ. These are
new findings. As for the additional findings entailed by Corollary 2.5, they are reported
in Section 3.1.3. And Proposition 2.7 becomes as well applicable, entailing the Diophantine
factorizations

pn

(
x;−n

2
+
1
4
,−n

2
+
3
4
, γ, δ

)
=

n∏
m=1

[
x +

(
2m − 1

4

)2]
, (3.17a)

pn

(
x;−n

2
+ 1 − δ,−n

2
+
3
2
− δ, δ − 1

2
, δ

)
=

n∏
m=1

[
x +

(
m − 2 + 2δ

2

)2]
, (3.17b)

respectively,

pn

(
x;−n

2
+
1
2
− δ,−n

2
+ 1 − δ, δ +

1
2
, δ

)
=

n∏
m=1

[
x +

(
m − 1 + 2δ

2

)2]
. (3.17c)

(A referee pointed out that (3.17a) is not new, as one can evaluate explicitly pn(x;α, β, γ, δ)
when n+α+β+1 = 0,which is indeed the case in (3.17a); and, moreover, that the two formulas
(3.17b) and (3.17c) coincide, since their left-hand sides are identical as a consequence of the
symmetry property of Wilson polynomials under the transformation δ ⇒ δ + 1/2.)

And Corollary 2.8 entails even more general properties, such as (new finding)

pn

[
−
(
2� − 1

4

)2

;−m
2

+
1
4
,−m

2
+
3
4
, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n, (3.18a)

pn

[
−
(
� − 2 + 2δ

2

)2

;−m
2

+ 1 − δ,−m
2

+
3
2
− δ, δ − 1

2
, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n,

(3.18b)
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respectively,

pn

[
−
(
� − 1 + 2δ

2

)2

;−m
2

+
1
2
− δ,−m

2
+ 1 − δ, δ +

1
2
, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n.

(3.18c)

Moreover, with the assignments

ν = 2n − 2 + 2δ, α = −n + 1 − δ, β = −n +
3
2
− δ, (3.19a)

respectively,

ν = 2n − 1 + 2δ, α = −n +
1
2
− δ, β = −n + 1 − δ, (3.19b)

Proposition 2.9 becomes applicable, entailing (new findings) the Diophantine factorizations

pn

(
x;−n + 1 − δ,−n +

3
2
− δ, γ, δ

)
=

n∏
m=1

[
x + (m − 1 + δ)2

]
, (3.20a)

respectively,

pn

(
x;−n +

1
2
− δ,−n + 1 − δ, γ, δ

)
=

n∏
m=1

[
x + (m − 1 + δ)2

]
, (3.20b)

obviously implying the relation

pn

(
x;−n + 1 − δ,−n +

3
2
− δ, γ, δ

)
= pn

(
x;−n +

1
2
− δ,−n + 1 − δ, γ, δ

)
. (3.20c)

3.1.3. Factorizations

The following new relations among monic Wilson polynomials are implied by Proposition 2.3
with Corollary 2.5:

pn(x;−m + 1 − β, β, γ, δ)

= pn−m(x;m + β, γ, 1 − β, δ)pm(x;−m + 1 − β, β, γ, δ), m = 0, 1, . . . , n,
(3.21a)

pn

(
x;−m

2
+ 1 − δ,−m

2
+
3
2
− δ, δ − 1

2
, δ

)

= pn−m

(
x;

m

2
− 1
2
+ δ,

m

2
+ δ, 1 − δ,−δ +

3
2

)
pm

(
x;−m

2
+ 1 − δ,−m

2
+
3
2
− δ, δ − 1

2
, δ

)
,

m = 0, 1, . . . , n.
(3.21b)
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Note that the polynomials appearing as second factors in the right-hand side of these
formulas are completely factorizable, see (3.10) and (3.17b) (we will not repeat this remark
in the case of analogous formulas below).

3.2. Racah

The monic Racah polynomials (see [9])

pn(x;α, β, γ, δ) ≡ pn
(
x;η

)
(3.22a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= Ãn + C̃n, bn

(
η
)
= −Ãn−1C̃n, (3.22b)

where

Ãn =
(n + 1 + α)(n + 1 + α + β)(n + 1 + β + δ)(n + 1 + γ)

(2n + 1 + α + β)(2n + 2 + α + β)
, (3.22c)

C̃n =
n(n + α + β − γ)(n + α − δ)(n + β)

(2n + α + β)(2n + 1 + α + β)
. (3.22d)

The standard version of these polynomials reads (see [9])

Rn(x;α, β, γ, δ) =
(n + α + β + 1)n

(α + 1)n(β + δ + 1)n(γ + 1)n
pn(x;α, β, γ, δ). (3.23a)

Note, however, that in the following we do not require the parameters of these polynomials
to satisfy one of the restrictions α = −N, β+δ = −N, or γ = −N,withN a positive integer and
n = 0, 1, . . . ,N,whose validity is instead required for the standard Racah polynomials [9].

Let us recall that these polynomials are invariant under various reshufflings of their
parameters:

pn(x;α, β, γ, δ) = pn(x;α, β, β + δ, γ − β)

= pn(x; β + δ, α − δ, γ, δ)

= pn(x; γ, α + β − γ, α,−α + γ + δ).

(3.23b)

Let us now identify the parameter ν as follows (see (3.2)):

α = −ν. (3.24)
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With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = [6(2n − ν + β)]−1n

{
β(2 + 3γ + 3δ) − [2 + 3(γ + δ) + 6γ(β + δ)]ν

+ [4+6(γ+δ)+3(βγ−βδ+2γδ)−3(2β+γ+δ)ν]n
+ 4(−ν + β)n2 + 2n3},

(3.25a)

ω(ν) = (ν − 1)(ν + γ + δ), (3.25b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Racah polynomials (3.22):

p
(ν)
n (x) = pn(x;−ν, β, γ, δ). (3.26)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Racah polynomials satisfy the second recursion relation (2.4a)with

g
(ν)
n = − n(n + β)(n + β + δ)(n + γ)

(2n − ν + β)(2n + 1 − ν + β)
. (3.27)

Note that this finding is obtained without requiring any limitation on the 4 parameters of the
Racah polynomials pn(x;α, β, γ, δ).

It is, moreover, plain that with the assignments

ν = n, hence α = −n, (3.28a)

ν = n − δ, hence α = −n + δ, (3.28b)

respectively,

ν = n + β − γ, hence α = −n − β + γ, (3.28c)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = 0, μ = −δ, respectively, μ = β − γ . These are new findings.
As for the additional findings entailed by Corollary 2.5, they are reported in Section 3.2.1.
And Proposition 2.7 becomes as well applicable, entailing (new findings) the Diophantine
factorizations

pn(x;−n, β, γ, δ) =
n∏

m=1

[
x − (m − 1)(m + γ + δ)

]
, (3.29a)

pn(x;−n + δ, β, γ, δ) =
n∏

m=1

[
x − (m + γ)(m − δ − 1)

]
, (3.29b)
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respectively,

pn(x;−n − β + γ, β, γ, δ) =
n∏

m=1

[
x − (m − 1 + β − γ)(m + β + δ)

]
. (3.29c)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn
[
(� − 1)(� + γ + δ);−m, β, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n, (3.30a)

pn
[
(� + γ)(� − δ − 1);−m + δ, β, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n, (3.30b)

respectively,

pn
[
(� − 1 + β − γ)(� + β + δ);−m − β + γ, β, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.30c)

3.2.1. Factorizations

The following new relations among Racah polynomials are implied by Proposition 2.3 with
Corollary 2.5:

pn(x;−m, β,−1, 1) = pn−m(x;m, β,−1, 1)pm(x;−m, β,−1, 1), m = 0, 1, . . . , n, (3.31a)

pn(x;−m+δ, β,−δ, δ)=pn−m(x;m−δ, 2δ+β, δ,−δ)pm(x;−m+δ, β,−δ, δ), m=0, 1, . . . , n,
(3.31b)

pn(x;−m − β + γ, β, γ, c − γ)

= pn−m(x;m+β−γ+c,−β+2γ−c, γ, c−γ)pm(x;v−m−β+γ, β, γ, c−γ), m=0, 1, . . . , n,
(3.31c)

pn(x;α,−m, γ, δ) = pn−m(x;α,m, δ, γ)pm(x;α,−m, γ, δ), m = 0, 1, . . . , n, (3.31d)

pn(x, α,−m−α+η, η, δ)=pn−m(x, η,m, η+δ−α, α)pm(x, α,−m−α+η, η, δ), m=0, 1, . . . , n.
(3.31e)

3.3. Continuous Dual Hahn (CDH)

In this section (some results of which were already reported in [5]) we focus on the monic
continuous dual Hahn (CDH) polynomials pn(x;α, β, γ) (see [9], and note the notational
replacement of the 3 parameters a, b, c used there with α, β, γ),

pn(x;α, β, γ) ≡ pn
(
x;η

)
, (3.32a)

defined by the three-term recursion relations (3.1) with

an

(
η
)
= α2 − (n + α + β)(n + α + γ) − n(n − 1 + β + γ), (3.32b)

bn
(
η
)

= −n(n − 1 + α + β)(n − 1 + α + γ)(n − 1 + β + γ). (3.32c)
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The standard version of these polynomials reads (see [9])

Sn(x;α, β, γ) = (−1)npn(x;α, β, γ). (3.33)

Let us recall that these polynomials pn(x;α, β, γ) are invariant under any permutation
of the three parameters α, β, γ .

Let us now proceed and provide two identifications of the parameter ν, see (3.2).

3.3.1. First Assignment

α = −ν. (3.34)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = n

[
− 5
6
+ β + γ − βγ + (β + γ − 1)ν +

(
3
2
− β − γ + ν

)
n − 2

3
n2
]
, (3.35a)

ω(ν) = −ν2, (3.35b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized CDH polynomials (3.32):

p
(ν)
n (x) = pn(x;−ν, β, γ). (3.36)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized CDH polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n = n(n − 1 + β + γ). (3.37)

Note that this finding is obtained without requiring any limitation on the 3 parameters of the
CDH polynomials pn(x;α, β, γ).

It is, moreover, plain that with the assignment

ν = n − 1 + β, hence α = −n + 1 − β, (3.38)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = −1 + β. These are new findings. As for the additional findings
entailed by Corollary 2.5, they are reported in Section 3.3.3. And Proposition 2.7 becomes as
well applicable, entailing (new findings) the Diophantine factorization

pn(x;−n + 1 − β, β, γ) =
n∏

m=1

[
x + (m − 1 + β)2

]
. (3.39)
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And Corollary 2.8 entails even more general properties, such as (new finding)

pn
[ − (� − 1 + β)2;−m + 1 − β, β, γ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.40)

Likewise, with the assignment

ν = 2n + β, α = −2n − β, γ =
1
2
, (3.41)

Proposition 2.9 becomes applicable, entailing (new finding) the Diophantine factorization

pn

(
x;−2n − β, β,

1
2

)
=

n∏
m=1

[
x + (2m − 1 + β)2

]
. (3.42)

3.3.2. Second Assignment

α = −1
2
ν + c, β = −1

2
(ν + 1) + c (3.43)

where c is an a priori arbitrary parameter.
With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = n

[
− 4
3
+
3
2
γ +

5
2
c − c2 − 2γc +

(
− 5
4
+ γ + c

)
ν − 1

4
ν2 + (2 − γ − 2c + ν)n − 2

3
n2
]
,

(3.44a)

ω(ν) = −1
4
(1 − 2c + ν)2, (3.44b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized CDH polynomials (3.32):

p
(ν)
n (x) = pn

(
x; c − ν

2
, c − ν

2
− 1
2
, γ

)
. (3.45)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized CDH polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n = n

(
n − 1 − ν

2
+ γ + c

)
. (3.46)

Note that this assignment entails the (single) limitation β = α − 1/2 on the parameters of the
CDH polynomials.
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It is, moreover, plain that with the assignment

ν = n + 2c − 3
2
, hence α = −n

2
+
3
4
, β = −n

2
+
1
4
, (3.47)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = 2c − 3/2. These are new findings. As for the additional findings
entailed by Corollary 2.5, they are reported in Section 3.3.3. And Proposition 2.7 becomes as
well applicable, entailing (new findings) the Diophantine factorization

pn

(
x;−n

2
+
3
4
,−n

2
+
1
4
, γ

)
=

n∏
m=1

[
x +

(
2m − 1

4

)2]
. (3.48)

And Corollary 2.8 entails even more general properties, such as (new finding)

pn

[
−
(
2� − 1

4

)2

;−m
2

+
3
4
,−m

2
+
1
4
, γ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.49)

Likewise with the assignments

ν = 2(n − 1 + c + γ), hence α = −n + 1 − γ, β = −n +
1
2
− γ, (3.50a)

respectively,

ν = 2
(
n − 3

2
+ c + γ

)
, hence α = −n +

3
2
− γ, β = −n + 1 − γ, (3.50b)

Proposition 2.9 becomes applicable, entailing (new findings) the Diophantine factorizations

pn

(
x;−n + 1 − γ,−n +

1
2
− γ, γ

)
=

n∏
m=1

[
x + (m − 1 + γ)2

]
, (3.51a)

respectively,

pn

(
x;−n +

3
2
− γ,−n + 1 − γ, γ

)
=

n∏
m=1

[
x + (m − 1 + γ)2

]
. (3.51b)

Note that the right-hand sides of the last two formulas coincide; this implies (new
finding) that the left-hand sides coincide as well.
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3.3.3. Factorizations

The following new relations among continuous dual Hahn polynomials are implied by
Proposition 2.3 with Corollary 2.5:

pn(x;−m + 1 − β, β, γ) = pn−m(x;m + β, 1 − β, γ)pm(x;−m + 1 − β, β, γ), m = 0, 1, . . . , n.
(3.52)

3.4. Continuous Hahn (CH)

The monic continuous Hahn (CDH) polynomials pn(x;α, β, γ, δ) (see [9], and note the
notational replacement of the 4 parameters a, b, c, d used there with α, β, γ, δ),

pn(x;α, β, γ, δ) ≡ pn
(
x;η

)
, (3.53a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= −i(α + Ãn + C̃n

)
, bn

(
η
)
= Ãn−1C̃n, (3.53b)

where

Ãn = − (n − 1 + α + β + γ + δ)(n + α + γ)(n + α + δ)
(2n − 1 + α + β + γ + δ)(2n + α + β + γ + δ)

, (3.53c)

C̃n =
n(n − 1 + β + γ)(n − 1 + β + δ)

(2n + α + β + γ + δ − 1)(2n + α + β + γ + δ − 2)
. (3.53d)

The standard version of these polynomials reads (see [9])

Sn(x;α, β, γ, δ) = (−1)npn(x;α, β, γ, δ). (3.54a)

Let us recall that these polynomials are symmetrical under the exchange of the first
two and last two parameters:

pn(x;α, β, γ, δ) = pn(x; β, α, γ, δ) = pn(x;α, β, δ, γ) = pn(x; β, α, δ, γ). (3.54b)

Let us now proceed and provide two identifications of the parameter ν, see (3.2).

3.4.1. First Assignment

α = −ν. (3.55)
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With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = in

−β + γ + δ − 2γδ + (1 − 2β)ν + (β − γ − δ − ν)n
2(2 − β − γ − δ + ν − 2n)

, (3.56a)

ω(ν) = −i ν, (3.56b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized CH polynomials (3.53):

p
(ν)
n (x) = pn(x;−ν, β, γ, δ). (3.57)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized CH polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n =

in(n − 1 + β + γ)(n − 1 + β + δ)
(2n − 2 − ν + β + γ + δ)(2n − 1 − ν + β + γ + δ)

. (3.58)

Note that this assignment entails no restriction on the 4 parameters of the CH polynomials
pn(x;α, β, γ, δ).

It is, moreover, plain that with the assignment

ν = n − 1 + γ, hence α = −n + 1 − γ, (3.59)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = −1 + γ . These are new findings. And Proposition 2.7 becomes
as well applicable, entailing (new findings) the Diophantine factorization

pn(x;−n + 1 − γ, β, γ, δ) =
n∏

m=1

[
x + i(m − 1 + γ)

]
. (3.60)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn
[ − i(� − 1 + γ);−m + 1 − γ, β, γ, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.61)

3.4.2. Second Assignment

Analogous results also obtain from the assignment

γ = −ν. (3.62)
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With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = − in[n(α + β − δ + ν) + (2δ − 1)ν + α(2β − 1) − β + δ]

2(2n − 2 + α + β + δ − ν)
, (3.63a)

ω(ν) = iν, (3.63b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized CH polynomials (3.53):

p
(ν)
n (x) = pn(x;α, β,−ν, δ). (3.64)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized CH polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n =

in(n − 1 + α + β)(n − 1 + β + δ)
(2n − 2 − ν + α + β + δ)(2n − 1 − ν + α + β + δ)

. (3.65)

Note that this assignment entails no restriction on the 4 parameters of the CH polynomials
pn(x;α, β, γ, δ).

It is, moreover, plain that with the assignment

ν = n − 1 + α, hence γ = −n + 1 − α, (3.66)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = −1 + α. These are new findings. And Proposition 2.7 becomes as
well applicable, entailing (new finding) the Diophantine factorization

pn(x;α, β,−n + 1 − α, δ) =
n∏

m=1

[
x − i(m − 1 + α)

]
. (3.67)

And Corollary 2.8 entails even more general properties, such as (new finding)

pn
[
i(� − 1 + α);α, β,−m + 1 − α, δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.68)

3.5. Hahn

In this subsection, we introduce a somewhat generalized version of the standard (monic)
Hahn polynomials. These (generalized) monic Hahn polynomials pn(x;α, β, γ) (see [9], and
note the replacement of the integer parameter N with the arbitrary parameter γ : hence the
standard Hahn polynomials are only obtained for γ = N with N a positive integer and n =
1, 2, . . . ,N),

pn(x;α, β, γ) ≡ pn
(
x;η

)
, (3.69a)
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are defined by the three-term recursion relations (3.1)with

an

(
η
)
= −(Ãn + C̃n

)
, bn

(
η
)
= −Ãn−1C̃n, (3.69b)

where

Ãn =
(n + 1 + α)(n + 1 + α + β)(−n + γ)
(2n + 1 + α + β)(2n + 2 + α + β)

, (3.69c)

C̃n =
n(n + 1 + α + β + γ)(n + β)
(2n + α + β)(2n + 1 + α + β)

. (3.69d)

The standard version of these polynomials reads (see [9])

Qn(x;α, β, γ) =
(n + 1 + α + β)n
(1 + α)n(−γ)n

pn(x;α, β, γ). (3.70)

Let us now proceed and provide three identifications of the parameter ν, see (3.2).

3.5.1. First Assignment

α = −ν. (3.71)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n =

n[β + (1 + 2γ)ν − (β + 2γ + ν)n]
2(2n − ν + β)

, (3.72a)

ω(ν) = ν − 1, (3.72b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Hahn polynomials (3.69):

p
(ν)
n (x) = pn(x;−ν, β, γ). (3.73)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Hahn polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n = − n(n + β)(n − 1 − γ)

(2n − ν + β)(2n + 1 − ν + β)
. (3.74)

Note that this assignment entails no restriction on the 3 parameters of the Hahn polynomials
pn(x;α, β, γ).
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It is, moreover, plain that with the assignments

ν = n (3.75a)

respectively,

ν = n + 1 + β + γ, (3.75b)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = 1+β+ γ . These are new findings. And Proposition 2.7 becomes as
well applicable, entailing (new findings) the Diophantine factorizations

pn(x;n, β, γ) =
n∏

m=1

(x −m + 1), (3.76a)

respectively,

pn(x;n + 1 + β + γ, β, γ) =
n∏

m=1

(x −m − β − γ). (3.76b)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn(� − 1;m, β, γ) = 0, � = 1, . . . , m, m = 1, . . . , n, (3.77a)

respectively,

pn(� + β + γ ;m + 1 + β + γ, β, γ) = 0, � = 1, . . . , m, m = 1, . . . , n. (3.77b)

3.5.2. Second Assignment

β = −ν + γ + c, (3.78)

where c is an arbitrary parameter.
With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = −nα − γ − c + ν + 2αγ + (−α + c − ν + 3γ)n

2(α + γ + c − ν + 2n)
, (3.79a)

ω(ν) = 1 − ν + 2γ + c, (3.79b)
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implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Hahn polynomials (3.69):

p
(ν)
n (x) = pn(x; α,−ν + γ + c, γ). (3.80)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Hahn polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n =

n(n + α)(n − 1 − γ)
(2n − ν + α + γ + c)(2n + 1 − ν + α + γ + c)

. (3.81)

Note that this assignment entails no restriction on the 3 parameters of the Hahn polynomials
pn(x;α, β, γ).

It is, moreover, plain that with the assignments

ν = n + γ + c, hence β = −n, (3.82a)

respectively,

ν = n + 1 + α + 2γ + c, hence β = −(n + 1 + α + γ), (3.82b)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = γ + c, respectively, μ = 1 + α + 2γ + c. These are new findings.
And Proposition 2.7 becomes as well applicable, entailing (new findings) the Diophantine
factorizations

pn(x;α,−n, γ) =
n∏

m=1

(x +m − 1 − γ), (3.83a)

respectively,

pn(x;α,−n − 1 − α − γ, γ) =
n∏

m=1

(x +m + α). (3.83b)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn(−� + 1 + γ ;α,−m, γ) = 0, � = 1, . . . , m, m = 1, . . . , n, (3.84a)

respectively,

pn(−� − α;α,−m − 1 − α − γ, γ) = 0, � = 1, . . . , m, m = 1, . . . , n. (3.84b)
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3.5.3. Third Assignment

β = −ν + c, γ = ν, (3.85)

where c is an arbitrary parameter.
With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = −n

[
ν + α − c + 2αν + (ν − α + c)n

]
2(2n − ν + α + c)

, (3.86a)

ω(ν) = ν, (3.86b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Hahn polynomials (3.69):

p
(ν)
n (x) = pn(x;α,−ν + c, ν). (3.87)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Hahn polynomials satisfy the second recursion relation (2.4a) with

g
(ν)
n = − n(n + α)(n + 1 + α + c)

(2n − ν + α + c)(2n + 1 − ν + α + c)
. (3.88)

Note that this assignment entails no restriction on the 4 parameters of the Hahn polynomials
pn(x;α, β, γ).

It is, moreover, plain that with the assignment

ν = n + c, β = −n, γ = n + c, (3.89)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = c. These are new findings. And Proposition 2.7 becomes as well
applicable, entailing (new finding) the Diophantine factorization

pn(x;α,−n, n + c) =
n∏

m=1

(x −m − c). (3.90)

And Corollary 2.8 entails even more general properties, such as (new finding)

pn(� + c;α,−m,m + c) = 0, � = 1, . . . , m, m = 1, . . . , n. (3.91)

3.6. Dual Hahn

In this subsection, we introduce a somewhat generalized version of the standard (monic) dual
Hahn polynomials. These (generalized) monic dual Hahn polynomials pn(x; γ, δ, η) (see [9],



Advances in Mathematical Physics 29

and note the replacement of the integer parameter N with the arbitrary parameter η: hence
the standard Hahn polynomials are only obtained for η = N with N a positive integer and
n = 1, 2, . . . ,N),

pn(x; γ, δ, η) ≡ pn
(
x;η

)
, (3.92a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= Ãn + C̃n, bn

(
η
)
= −Ãn−1C̃n, (3.92b)

where

Ãn = (n + 1 + γ)(n − η), C̃n = n(n − 1 − δ − η). (3.92c)

The standard version of these polynomials reads (see [9])

Rn(x; γ, δ, η) =
1

(1 + γ)n(−η)n
pn(x; γ, δ, η). (3.93)

Let us now proceed and provide two identifications of the parameter ν.

3.6.1. First Assignment

η = ν. (3.94)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = n

[
1
3
+
−γ + δ

2
− γν −

(
1 + ν +

−γ + δ

2

)
n +

2
3
n2
]
, (3.95a)

ω(ν) = ν(1 + ν + γ + δ), (3.95b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized dual Hahn polynomials (3.92):

p
(ν)
n (x) = pn(x; γ, δ, ν). (3.96)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized dual Hahn polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = −n(n + γ). (3.97)
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Note that this assignment entails no restriction on the 3 parameters of the dual Hahn
polynomials pn(x; γ, δ, η).

It is, moreover, plain that with the assignments

ν = n − 1, hence η = n − 1, (3.98a)

(which is, however, incompatible with the requirement characterizing the standard dual Hahn
polynomials: η = N with N a positive integer and n = 1, 2, . . . ,N), respectively,

ν = n − 1 − δ, hence η = n − 1 − δ, (3.98b)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = −1, respectively, μ = −1 − δ. These are new findings. As
for the additional findings entailed by Corollary 2.5, they are reported in Section 3.6.3.
And Proposition 2.7 becomes as well applicable, entailing (new findings) the Diophantine
factorizations

pn(x; γ, δ, n − 1) =
n∏

m=1

[
x − (m − 1)(m + γ + δ)

]
, (3.99a)

respectively,

pn(x; γ, δ, n − 1 − δ) =
n∏

m=1

[
x − (m + γ)(m − 1 − δ)

]
. (3.99b)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn
[
(� − 1)(� + γ + δ); γ, δ,m − 1

]
= 0, � = 1, . . . , m, m = 1, . . . , n, (3.100a)

respectively,

pn
[
(� + γ)(� − 1 − δ); γ, δ,m − 1 − δ

]
= 0, � = 1, . . . , m, m = 1, . . . , n. (3.100b)

While for

ν = 2n, hence η = 2n, and moreover δ = γ, (3.101a)

respectively,

ν = 2n − δ, hence η = 2n − δ, and moreover δ = −γ, (3.101b)

Proposition 2.9 becomes applicable, entailing (new findings) the Diophantine factorizations

pn(x; γ, γ, 2n) =
n∏

m=1

[
x − 2(2m − 1)(m + γ)

]
, (3.102a)
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respectively,

pn(x; γ,−γ, 2n + γ) =
n∏

m=1

[
x − (2m − 1 + γ)(2m + γ)

]
. (3.102b)

3.6.2. Second Assignment

γ = −ν, δ = ν + c. (3.103)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = n

[
1
3
+ (1 + η)ν +

1
2
c −

(
1 + ν + η +

1
2
c

)
n +

2
3
n2
]
, (3.104a)

ω(ν) = (ν − 1)(ν + c), (3.104b)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Dual Hahn polynomials (3.92):

p
(ν)
n (x) = pn(x;−ν, ν + c, η). (3.105)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized dual Hahn polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = −n(n − 1 − η). (3.106)

Note that this assignment entails no restriction on the 3 parameters of the dual Hahn
polynomials pn(x; γ, δ, η).

It is, moreover, plain that with the assignments

ν = n, hence γ = −n, δ = n + c, (3.107a)

respectively,

ν = n − 1 − η − c, hence γ = −n + 1 + η + c, δ = n − 1 − η, (3.107b)

the factorizations implied by Proposition 2.3 and the properties implied by Corollary 2.4
become applicable with μ = 0, respectively, μ = −1 − η − c. These are new findings.
As for the additional findings entailed by Corollary 2.5, they are reported in Section 3.6.3.



32 Advances in Mathematical Physics

And Proposition 2.7 becomes as well applicable, entailing (new findings) the Diophantine
factorizations

pn(x;−n, n + c, η) =
n∏

m=1

[
x − (m − 1)(m + c)

]
, (3.108a)

respectively,

pn(x;−n + 1 + η + c, n − 1 − η, η) =
n∏

m=1

[
x − (m − 1 − η)(m − 2 − η − c)

]
. (3.108b)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn
[
(� − 1)(� + c);−m,m + c, η

]
= 0, � = 1, . . . , m, m = 1, . . . , n, (3.109a)

respectively,

pn
[
(� − 1 − η)(� − 2 − η − c);−m + 1 + η + c,−m − 1 − η, η

]
= 0, � = 1, . . . , m, m = 1, . . . , n.

(3.109b)

While for

ν = 2n − η, hence γ = −2n + η, and moreover c = 0, hence δ = 2n − η, (3.110a)

respectively,

ν = 2n + 1, hence γ = −2n − 1, and moreover c = −2(η + 1), hence δ = 2n − 1 − 2η,
(3.110b)

Proposition 2.9 becomes applicable, entailing (new findings) the Diophantine factorizations

pn(x;−2n + η, 2n − η, η) =
n∏

m=1

[
x − (2m − 2 − η)(2m − 1 − η)

]
, (3.111a)

respectively,

pn(x;−2n − 1, 2n − 1 − 2η, η) =
n∏

m=1

[
x − 2(2m − 1)(m − 1 − η)

]
. (3.111b)
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3.6.3. Factorizations

The following new relations among dual Hahn polynomials are implied by Proposition 2.3
with Corollary 2.5:

pn(x; γ,−γ,m − 1) = pn−m(x; γ,−γ,−m − 1)pm(x; γ,−γ,m − 1), m = 0, 1, . . . , n, (3.112a)

pn(x; γ, δ,m − 1 − δ) = pn−m(x; δ, γ,−m − 1 − γ)pm(x; γ, δ,m − 1 − δ), m = 0, 1, . . . , n,
(3.112b)

pn(x;−m,m, η) = pn−m(x;m,−m,η)pm(x;−m,m, η), m = 0, 1, . . . , n, (3.112c)

pn(x;−m + 1 + η + c,m − 1 − η, η)

= pn−m(x;m−1−η,−m+1+η+c,−η−c−2)pm(x;−m+1+η+c,m−1−η, η), m=0, 1, . . . , n.
(3.112d)

3.7. Shifted Meixner-Pollaczek (sMP)

In this subsection, we introduce and treat a modified version of the standard (monic)
Meixner-Pollaczek polynomials. The standard (monic)Meixner-Pollaczek (MP) polynomials
pn(x;α, λ) (see [9]),

pn(x;α, λ) ≡ pn
(
x;η

)
, (3.113a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= α(n + λ) =

n + λ

tanφ
, (3.113b)

bn
(
η
)
= −1

4
(
1 + α2)n(n − 1 + 2λ) = −n(n − 1 + 2λ)

4sin2φ
. (3.113c)

The standard version of these polynomials reads (see [9])

P
(λ)
n (x; tanφ) =

(2 sinφ)n

n!
pn(x;α, λ), α ≡ 1

tanφ
. (3.114)

However, we have not found any assignment of the parameters α and λ in terms of
ν allowing the application of our machinery. We, therefore, consider the (monic) “shifted
Meixner-Pollaczek” (sMP) polynomials

pn(x;α, λ, β) = pn(x + β;α, λ), (3.115)
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defined of course via the three-term recursion relation (3.1)with

an

(
η
)
= α(n + λ) + β =

n + λ

tanφ
+ β, (3.116a)

bn
(
η
)
= −1

4
(
1 + α2)n(n − 1 + 2λ) = −n(n − 1 + 2λ)

4sin2φ
. (3.116b)

Then, with the assignment

λ = −1
2
(ν + c), β = −1

2
i(ν + C) (3.117)

(entailing no restriction on the parameters α, λ, β, in as much as the two parameters c and C
are arbitrary), one can set, consistently with our previous treatment,

A
(ν)
n =

1
2
n(αn − αν − iν − iC − αc − α), ω(ν) =

1
2
i(2ν + c + C), (3.118)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized shifted Meixner-Pollaczek polynomials:

p
(ν)
n (x) = pn

(
x;α,−1

2
(ν + c),−1

2
i(ν + C)

)
. (3.119)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these (normalized) shifted Meixner-Pollaczek polynomials satisfy the second recursion
relation (2.4a) with

g
(ν)
n = −1

2
n(α + i). (3.120)

It is, moreover, plain that with the assignment

ν = n − 1 − c hence, λ = −1
2
(n − 1), β = −1

2
i(n − 1 − c + C), (3.121)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = −1− c. And Proposition 2.7 becomes as well applicable, entailing
(new finding) the Diophantine factorization

pn

(
x;α,−1

2
(n − 1),−1

2
i(n − 1 − c + C)

)
=

n∏
m=1

[
x − i

(
m − 1 +

C − c

2

)]
. (3.122)
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And Corollary 2.8 entails even more general properties, such as (new finding)

pn

(
i

(
l − 1 +

C − c

2

)
;α,−1

2
(m − 1),−1

2
i(m − 1 − c + C)

)
= 0, � = 1, . . . , m, m = 1, . . . , n.

(3.123)

3.8. Meixner

In this section (some results of which were already reported in [5]), we focus on the monic
Meixner polynomials pn(x; β, c) (see [9]),

pn(x; β, c) ≡ pn
(
x;η

)
, (3.124a)

defined by the three-term recursion relations (3.1) with

an

(
η
)
=

βc + (1 + c)n
c − 1

, bn
(
η
)
= −cn(n − 1 + β)

(c − 1)2
. (3.124b)

The standard version of these polynomials reads (see [9]):

Mn(x; β, c) =
1

(β)n

(
c − 1
c

)n

pn(x; β, c). (3.125)

We now identify the parameter ν via the assignment

β = −ν. (3.126)

One can then set, consistently with our previous treatment,

A
(ν)
n =

n
[
1 + c + 2cν − (1 + c)n

]
2(1 − c)

, ω(ν) = ν, (3.127)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Meixner polynomials (3.25):

p
(ν)
n (x) = pn(x;−ν, c). (3.128)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Meixner polynomials satisfy the second recursion relation (2.4a)with

g
(ν)
n =

cn

1 − c
. (3.129)
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Note that this assignment entails no restriction on the 2 parameters of the Meixner polyno-
mials pn(x; β, c).

It is, moreover, plain that with the assignment

ν = n − 1, hence β = 1 − n, (3.130)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = −1. These are new findings. And Proposition 2.7 becomes as well
applicable, entailing (new finding) the Diophantine factorization

pn(x; 1 − n, c) =
n∏

m=1

(x −m + 1). (3.131)

And Corollary 2.8 entails even more general properties, such as (new finding)

pn(� − 1; 1 −m, c) = 0, � = 1, . . . , m, m = 1, . . . , n. (3.132)

Likewise for

ν = 2n hence β = −2n and moreover c = −1, (3.133)

Proposition 2.9 becomes applicable, entailing (new finding) the Diophantine factorization

pn(x;−2n,−1) =
n∏

m=1

(x − 2m + 1). (3.134)

3.9. Krawtchouk

The monic Krawtchouk polynomials pn(x;α, β) (see [9]: and note the notational replacement
of the parameters p and N used there with the parameters α and β used here, implying that
only when β = N and n = 1, 2, . . . ,N with N a positive integer these polynomials pn(x;α, β)
coincide with the standard Krawtchouk polynomials),

pn(x;α, β) ≡ pn
(
x;η

)
, (3.135a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= −αβ + n(2α − 1), bn

(
η
)
= α(1 − α)n(n − 1 − β). (3.135b)

The standard version of these polynomials reads (see [9])

Kn(x;α, β) =
1

αn(−β)n
pn(x;α, β). (3.136)
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We now identify the parameter ν via the assignment

β = ν. (3.137)

One can then set, consistently with our previous treatment,

A
(ν)
n = n

[
1
2
− α − αν +

(
− 1
2
+ α

)
n

]
, ω(ν) = ν, (3.138)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Krawtchouk polynomials (3.135):

p
(ν)
n (x) = pn(x;α, ν). (3.139)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these normalized Krawtchouk polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = −αn. (3.140)

Note that this assignment entails no restriction on the 2 parameters of the Krawtchouk
polynomials pn(x;α, β).

It is, moreover, plain that with the assignment

ν = n − 1, hence β = n − 1 (3.141)

(which is, however, incompatible with the definition of the standard Krawtchouk polyno-
mials: β = N and n = 1, 2, . . . ,N with N a positive integer), the factorizations implied by
Proposition 2.3, and the properties implied by Corollary 2.4, become applicable with μ = −1.
These are new findings. And Proposition 2.7 becomes as well applicable, entailing (new
finding) the Diophantine factorization

pn(x;α, n − 1) =
n∏

m=1

(x −m + 1). (3.142)

And Corollary 2.8 entails even more general properties, such as (new findings)

pn(� − 1;α,m − 1) = 0, � = 1, . . . , m, m = 1, . . . , n. (3.143)

Likewise for

ν = 2n hence β = 2n and moreover α =
1
2

(3.144)
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(which is also incompatible with the definition of the standard Krawtchouk polynomials:
β = N and n = 1, 2, . . . ,N with N a positive integer), Proposition 2.9 becomes applicable,
entailing (new finding) the Diophantine factorization

pn(x;−2n,−1) =
n∏

m=1

(x − 2m + 1). (3.145)

3.10. Jacobi

In this section (most results of which were already reported in [5]), we focus on the monic
Jacobi polynomials pn(x;α, β) (see [9]),

pn(x;α, β) ≡ pn
(
x;η

)
, (3.146a)

defined by the three-term recursion relations (3.1) with

an

(
η
)
=

(α + β)(α − β)
(2n + α + β)(2n + α + β + 2)

, (3.146b)

bn
(
η
)

= − 4n(n + α)(n + β)(n + α + β)

(2n + α + β − 1)(2n + α + β + 1)(2n + α + β)2
. (3.146c)

The standard version of these polynomials reads (see [9])

P
(α,β)
n (x) =

(n + α + β + 1)n
2nn!

pn(x;α, β). (3.147a)

Let us recall that for the Jacobi polynomials there holds the symmetry relation

pn(−x; β, α) = pn(x;α, β). (3.147b)

We now identify the parameter ν as follows:

α = −ν. (3.148)

With this assignment one can set, consistently with our previous treatment,

A
(ν)
n = − n(ν + β)

2n − ν + β
, ω(ν) = 1, (3.149)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Jacobi polynomials (3.146):

p
(ν)
n (x) = pn(x;−ν, β). (3.150)
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Hence, with this identification, Proposition 2.1 becomes applicable, entailing (well-known
result) that these normalized Jacobi polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = − 2n(n + β)

(2n − ν + β)(2n − ν + β + 1)
. (3.151)

It is, moreover, plain that with the assignment

ν = n, hence α = −n, (3.152)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = 0. These seem new findings. As for the additional findings
entailed by Corollary 2.5, they are reported in Section 3.10.1. And Proposition 2.7 becomes
as well applicable, entailing (well-known result) the Diophantine factorization

pn(x;−n, β) = (x − 1)n. (3.153)

And Corollary 2.8 entails even more general properties, such as the fact that the m Jacobi
polynomials pn(x;−m, β), m = 1, . . . , n, feature x = 1 as a zero of order m.

3.10.1. Factorizations

The following (not new) relations among Jacobi polynomials are implied by Proposition 2.3
with Corollary 2.5 (and see (3.153), of which the following formula is a generalization, just as
(1.1c) is a generalization of (1.1a)):

pn(x;−m, β) = pn−m(x;m, β)pm(x;−m, β) = (x − 1)mpn−m(x;m, β), m = 0, 1, . . . , n. (3.154)

3.11. Laguerre

In this section (most results of which were already reported in [5]), we focus on the monic
Laguerre polynomials pn(x;α) (see [9]),

pn(x;α) ≡ pn
(
x;η

)
, (3.155a)

defined by the three-term recursion relations (3.1) with

an

(
η
)
= −(2n + 1 + α), bn

(
η
)
= −n(n + α). (3.155b)

The standard version of these polynomials reads (see [9])

L
(α)
n (x) =

(−1)n
n!

pn(x;α). (3.156)
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We now identify the parameter ν as follows:

α = −ν. (3.157)

With this assignment, one can set, consistently with our previous treatment,

A
(ν)
n = −n(n − ν), ω(ν) = 0, (3.158)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with the normalized Laguerre polynomials (3.155):

p
(ν)
n (x) = pn(x;−ν). (3.159)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (well-known
result) that the normalized Laguerre polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = n. (3.160)

It is, moreover, plain that with the assignment

ν = n, hence α = −n, (3.161)

the factorizations implied by Proposition 2.3, and the properties implied by Corollary 2.4,
become applicable with μ = 0. These seem new findings. As for the additional findings
entailed by Corollary 2.5, they are reported in Section 3.11.1. And Proposition 2.7 becomes
as well applicable, entailing (well-known result) the formula (see (1.1a))

pn(x;−n) = xn. (3.162)

And Corollary 2.8 entails even more general properties, such as the fact that the m Laguerre
polynomials pn(x;−m), m = 1, . . . , n, feature x = 0 as a zero of order m, see (1.1c) or,
equivalently, the next formula.

3.11.1. Factorizations

The following (not new) relations among Laguerre polynomials are implied by Proposition 2.3
with Corollary 2.5 (and see (3.162), of which the following formula—already reported above,
see (1.1c)—is a generalization):

pn(x;−m) = pn−m(x;m)pm(x;−m) = xmpn−m(x;m), m = 0, 1, . . . , n. (3.163)
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3.12. Modified Charlier

In this subsection, we introduce and treat a modified version of the standard (monic)Charlier
polynomials. The standard (monic) Charlier polynomials pn(x;α) (see [9]),

pn(x;α, λ) ≡ pn
(
x;η

)
, (3.164a)

are defined by the three-term recursion relations (3.1)with

an

(
η
)
= −n − α, bn

(
η
)
= −nα. (3.164b)

The standard version of these polynomials reads (see [9])

Cn(x;α) = (−α)−npn(x;α). (3.165)

However, we have not found any assignment of the parameters α in terms of ν
allowing the application of our machinery. To nevertheless proceed, we introduce the class
of (monic) “modified Charlier” polynomials pn(x;α, β, γ) characterized by the three-term
recursion relation (3.1) with

an

(
η
)
= −γ(n + α) + β, bn

(
η
)
= −γ2nα, (3.166)

that obviously reduce to the monic Charlier polynomials for β = 0, γ = 1. Assigning instead

β = −ν, γ = −1, (3.167)

one can set, consistently with our previous treatment,

A
(ν)
n =

1
2
n(n − 1 − 2ν + 2α), ω(ν) = ν, (3.168)

implying, via (2.2), (2.3), that the polynomials p(ν)n (x) defined by the three-term recurrence
relations (2.1) coincide with these (monic) modified Charlier polynomials:

p
(ν)
n (x) = pn(x;α,−ν,−1). (3.169)

Hence, with this identification, Proposition 2.1 becomes applicable, entailing (new finding)
that these (monic)modified Charlier polynomials satisfy the second recursion relation (2.4a)
with

g
(ν)
n = −n. (3.170)

There does not seem to be any interesting results for the zeros of these polynomials.
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4. Outlook

Other classes of orthogonal polynomials to which our machinery is applicable, partly
overlapping with those reported in this paper, have been identified by finding explicit classes
of coefficients a

(ν)
n and b

(ν)
n (defining these classes of orthogonal polynomials via the three-

term recursion relations (2.1)) that do satisfy the nonlinear relations entailing the validity of
the various propositions reported above. Hence, for these classes of orthogonal polynomials
analogous results to those reported above hold, namely an additional three-term recursion
relation involving shifts in the parameter ν, and possibly as well factorizations identifying
Diophantine zeros. These findings will be reported, hopefully soon, in a subsequent paper,
where we also elucidate and exploit the connection about the machinery reported above
and the wealth of known results on discrete integrable systems [18]. Other developments
connected with the machinery reported above are as well under investigation, including
inter alia other types of additional recursion relations satisfied by the classes of orthogonal
polynomials defined by the three-term recursion relations (2.1) (for appropriate choices of
the coefficients a(ν)

n and b
(ν)
n ) and the investigation of other properties of such polynomials—

possibly including the identification of ODEs satisfied by them.

Appendix

A. A proof

In this Appendix, for completeness, we provide a proof of the factorization (2.11)with (2.12)
(see Proposition 2.3) although this proof is actually quite analogous to that provided (for the
special case with μ = 0) in [5, Section 4]. We proceed by induction, assuming that (2.11) holds
up to n, and then showing that it holds for n + 1. Indeed, by using it in the right-hand side of
the relation (2.1a) with ν = m, we get

p
(m+μ)
n+1 (x) =

[(
x + a

(m+μ)
n

)
p̃
(−m)
n−m (x) + b

(m+μ)
n p̃

(−m)
n−1−m(x)

]
p
(m+μ)
m (x), m = 0, 1, . . . , n − 1, (A.1)

and clearly by using the recursion relation (2.12a) the square bracket in the right-hand side
of this equation can be replaced by p̃

(−m)
n+1−m(x), yielding

p
(m+μ)
n+1 (x) = p̃

(−m)
n+1−m(x)p

(m+μ)
m (x), m = 0, 1, . . . , n + 1. (A.2)

Note that for m = n + 1, this formula is an identity, since p̃
(−m)
0 (x) = 1, see (2.12b); likewise,

this formula clearly also holds form = n, provided that (2.9) holds, see (2.1a)withm = n and
(2.12c).

But this is just the formula (2.11)with n replaced by n + 1. Q. E. D.

Remark A.1. The hypothesis (2.9) has been used above, in this proof of Proposition 2.3, only
to prove the validity of the final formula, (A.2), form = n. Hence one might wonder whether
this hypothesis, (2.9), was redundant, since the validity of the final formula (A.2) for m = n
seems to be implied by (A.1)with (2.12c) and (2.12b), without the need to invoke (2.9). But in
fact, by settingm = n in the basic recurrence relation (2.1a), it is clear that (2.12c) and (2.12b)
only hold provided (2.9) also holds.
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