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1. Recapitulation

This paper is based upon an old unpublished article by Fairlie and Roberts [1], which dates
back to circa 1972, on a model for amplitudes suggested by string theory, or rather the dual-
resonance model as it was then called. (The results in this paper are recorded in the Ph.D.
thesis of Roberts [2].) I was so overwhelmed by the evident truth of the famous paper of
Goddard et al. quantising the bosonic string in 26 dimensions [3], which I regard as one of
the classic papers in string theory, that I never submitted this paper for publication. However
since recently, there has appeared an article by Sommerfield and Thorn [4], the 4th section of
which is closely related to the model presented in [1], it may be an appropriate time to give
these ideas an airing. Also other recent developments have given rise to an interpretation of
maximally violating helicity (MVH ) amplitudes in Yang Mills theory in terms of topological
string amplitudes [5]; the connection between null four-vectors and Koba-Nielsen variables
which is at the heart of [1] may not be entirely coincidental. The intention was to construct
a viable amplitude for particles living in a strictly four-dimensional space-time, and with
zero mass instead of the tachyon ground state which bedevilled the bosonic string dual
resonance model. One of the features of tractable models of physical processes which has
come to be more appreciated in the intervening years is that there is frequently a mismatch
between what is tractable mathematically and what one should like to have; for example, the
potential integrability of N→∞ supersymmetric Yang Mills as against the intractability of
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QCD, or the Sine Gordon model which displays both solitons and Lorentz invariance, at the
cost of working in two dimensions. Here a feature analogous to self-dual Yang-Mills theory,
which possesses instantons in a space of even signature, is present; I have realised that the
theory presented is more mathematically compelling in a space of signature (2, 2), though a
Lorentzian interpretation is by no means ruled out. This will be discussed later in relation to
the work of Gross and Mende on high energy scattering [6]. The starting point is the famous
Koba-Nielsen formula, which gives an elegant expression for theN point tree amplitude for
N particles with incoming momenta pμi for the ground state of open strings [7],

A(s, t)t =
∫∞

−∞

N∏
1

dzk
dVabc

θ(zi − zi+1)
∏
j>i

(zi − zj)−2α
′pi·pj , (1.1)

dVabc =
dzadzbdzc

(zb − za)(zc − za)(za − zc) . (1.2)

(This integration measure is introduced as a consequence of conformal invariance; to account
for the property that the real axis along which the integration is performed is invariant under
transformations of the Möbius group, provided that α′(pμi )

2
= −1.) This means invariance

under the mapping:

z′ �−→ az + b
cz + d

, ad − bc = 1. (1.3)

It has been shown that this formula arises as a contribution to string scattering from a simply
connected world sheet, thanks to the properties of conformal invariance. Another way of
writing (1.1) is as an exponential:

∫∞

∞
exp

(∑
i<j

− 2α′pi·pj log(zi − zj)
)

dzk
dVabc

. (1.4)

The exponent in the integrand may be interpreted as the (Euclidean) contribution to the
action where the momenta enter the upper half-plane at designated points zk which are then
integrated over to give the contribution to the path integral for the amplitude arising from a
simply connected world sheet. One of the chief deficiencies in (1.1) is the tachyon condition,
namely, that pμi is light like. This requirement follows from the invariance under mappings
which preserve the upper-half complex plane. The radical idea behind [1] was to give the
formula for the amplitude a different interpretation; do not integrate, but instead determine
the coordinates zi by minimising the integrand; this is tantamount, in the second version to
use the method of steepest descents. The equations to be satisfied are, setting α′ = 1,

∑
j

pi·pj
(zi − zj) = 0. (1.5)
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These equations may be seen to be satisfied, provided that we are in a 4-dimensional space
with signature (2, 2)with null four-momenta pμj , and the coordinates zj (here on the real line)
are given by

zj =
p0j + p

1
j

p2j − p3j
=
p2j + p

3
j

p0j − p1j
;

(
p0j
)2

+
(
p3j
)2 − (

p1j
)2 − (

p2j
)2

= 0. (1.6)

This works because

(
zi − zj

)
=
pi·pj + p0i p1j − p1i p0j + p3i p2j − p2i p3j(

p2i − p3i
)(
p0j − p1j

) ,

(
zi − zj

)
=

−pi·pj + p0i p1j − p1i p0j − p3i p2j − p2i p3j(
p0i − p1i

)(
p2j − p3j

) .

(1.7)

The second equation is obtained by using the alternative expression of (zi, zj). By subtracting
and rationalising, we have

(
p2i − p3i

)(
p0j − p1j

) − (
p0i − p1i

)(
p2j − p3j

)
=

2pi·pj(
zi − zj

) . (1.8)

Summing over all particle positions zj except zj = zi and invoking the conservation of
momentum,

∑
p
μ

j = 0, we see that (1.5) is satisfied. If instead of the real line, the integration
in (1.1) is performed over the boundary of the unit disc, the points on the boundary where
the momenta enter may be parametrised by

zj =
p0j + ip

3
j

p1j + ip
2
j

=
p1j − ip2j
p0j − p3j

;
(
p0j
)2

+
(
p3j
)2 − (

p1j
)2 − (

p2j
)2

= 0. (1.9)

There is a Möbius transformation (1.3)which connects the two representations, for the plane
and the disc,

zdisc =
i + zplane
i − zplane . (1.10)

Indeed complex Möbius transformations on zi are equivalent to SU(2, 2) transformations
on pμi .
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2. Alternative Approach

Consider a two-dimensional surface embedded in a four-dimensional space and take as
parametric representation of the surface the four-vectors Xμ(σ, τ)where σ and τ are intrinsic
coordinates on the surface with metric:

ds2 = Edσ2 + 2Fdσdτ +Gdτ2, (2.1)

where

E =
(
∂Xμ

∂σ

)2

, F =
(
∂Xμ

∂σ

)(
∂Xμ

∂τ

)
, G =

(
∂Xμ

∂τ

)2

(2.2)

(see [1]). The Nambu-Goto Lagrangian describing the dynamics of the field Xμ(σ, τ) is a
measure of the area of the world sheet and is the reparameterisation invariant form

L = α′
∫∫√

EG − F2 dσ dτ. (2.3)

On the other hand, it is well known that there exists a transformation to a coordinate system
of so-called isometric coordinates in which the Lagrangian takes the simple quadratic form

L′ =
∫∫((

∂Xμ

∂σ

)2

+
(
∂Xμ

∂τ

)2)
dσ dτ, (2.4)

which is invariant only under the subset of reparameterisations of the variables (σ, τ) which
are conformal, that is, those transformations which satisfy the Cauchy-Riemann equations. It
is well known that in the coordinate system where σ and τ are isometric parameters defined
by E = G; F = 0. In this frame, the Euler equation minimising (2.3) becomes linear and is just

∇2Xμ = 0. (2.5)

The conditions for an isometric coordinate system may be written in the following form due
to Weierstrass

(
∂ζμ

∂z

)2

= E −G + 2iF = 0, (2.6)

where Xμ is the real part of ζμ in view of the fact that (2.5) is satisfied provided that ζ is an
analytic function of z = σ + iτ . The Weierstrass’ condition shows that conformal mappings
of coordinate systems preserve the isometric property. We can make a link with the Virasoro
conditions for closed strings [8, 9] by noting that this is in fact the gauge condition of the
model; writing

(
∂ζμ

∂z

)2

=
∞∑
−∞
Lnz

n = 0. (2.7)
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This is too stringent to demand as an operator equation. Instead, we require that the matrix
elements of (2.7) should vanish for all z, that is,

〈
ψ†|Ln|ψ

〉
= 0, ∀n ≥ 0. (2.8)

This is satisfied provided that Ln = L†
n = 0. These conditions are the familiar Virasoro

conditions for closed strings with zero mass ground states. A typical solution of (2.5) with
a finite number of singularities is given by

ζμ =
i=n∑
i=1

p
μ

i log(z − zi). (2.9)

By applying the Weierstrass condition, we have

∑
i,j

pi·pj
(z − zi)(z − zj) =

∑
i,j

pi·pj
(

1
(z − zi)(zj − zi) −

1
(z − zj)(zj − zi)

)
= 0. (2.10)

This has to be true for all z, which evidently requires that
∑

i,jpi·pj = 0 and, with conservation
of four-momentum, also requires the same conditions

∑
j(pi·pj/(zi − zj)) = 0 as before. In the

case of the four-point function, the solution of these conditions (1.5)may be readily solved in
terms of the cross-ratio λ to give

λ =
(zi − z2)(z3 − z4)
(z1 − z3)(z4 − z2) =

p1·p2
p1·p3 =

s

t
, (2.11)

where

s =
(
p
μ

1 + p
μ

2

)2
, t =

(
p
μ

1 + p
μ

3

)2
, u =

(
p
μ

1 + p
μ

4

)2
, s + t + u = 0. (2.12)

This result, in terms of the cross-ratio, is independent of the metric, so also works in a Lorentz
metric with signature (3, 1). The resulting amplitude A(s, t, u) with s + t + u = 0 may be
evaluated to give

A(s, t, u) = (−s)−α′s(−t)−α′t(−u)α′u. (2.13)

As s→∞ at fixed t A(s, t, u)→ t−α
′ss−α

′t, that is, it exhibits Regge asymptotic behaviour. The
subject of asymptotic behaviour of high energy string amplitudes was examined to all orders
sometime afterwards by Gross andMende [6]who found the same connection (2.11) between
the cross-ratio and the Mandelstam variables.

3. Lorentz Signature

As has been remarked, the minimisation condition in the case of the four-point function may
be solved in terms of cross-ratios. This suggests that the conditions may be solved directly
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in terms of the variables zj whatever the metric is . This is indeed the case; for real four-
momenta, the solution may be expressed as

zj =
p0j + p

3
j

p1j − ip2j
=
pij + ip

2
j

p0j − p3j
,

(
p0j
)2 − (

p1j
)2 − (

p2j
)2 − (

p3j
)2

= 0. (3.1)

The difference is that in the case of signature (2, 2), the four-momenta may be parametrised
as p0j = r cosh(θj), p

1
j = r sinh(θj), p

2
j = r cosh(φj), p

3
j = r sinh(φj), which imply that

zj = exp
(
θj + φj

)
, (3.2)

so the variables lie on the real line. Alternatively, a trigonometric parameterisation may be
employed, in which case zj = exp(iθj + iφj). However in the case of signature (1, 3), the
parameterisation is mixed; p0j = r cosh(θj), p3j = r sinh(θj), p1j = r cos(φj), p2j = r sinh(φj),
which imply that zj = i exp(θj + iφj), so there is no obvious integration contour for (1.1).

4. Minimal Surface Interpretation

Further insight may be gained by a parameterisation of minimal surfaces embedded in four-
dimensional Euclidean space, originally due to Eisenhart [10], but rediscovered by Shaw [11]
and quoted in [1, 12]. It is given by

X0 = Re
(
f(z) − zf ′(z) + g(z)′

)
,

X3 = Im
(
f(z) − zf ′(z) − g(z)′),

X1 = Re
(
g(z) − zg ′(z) + f(z)′

)
,

X2 = Im
(
zg ′(z) − g(z) + f(z)′),

(4.1)

where a prime denotes the derivative with respect to the argument. Suppose we seek a
parameterisation where Xμ + aμ is the real part of ζμ =

∑
ip
μ

i Gi(z), and aμ is an arbitrary
origin. Then, thanks to the linearity of the above equations, we can split f(z) and g(z) into
sums of independent components, that is, f(z) =

∑
fi(z), g(z) =

∑
gi(z), and deduce, up to

shifts of origin,

(
p0i + ip

3
i

)
Gi(z) = 2

(
fi(z) − zf ′

i(z) + g
′
i(z)

)
,

(
p1i − ip2i

)
Gi(z) = 2

(
gi(z) − zg ′

i(z) + f
′
i(z)

)
,

(
p1i + ip

2
i

)
Gi(z) = 2

(
gi(z) − g ′

i(z) + f
′
i(z)

)∗
,

(
p0i − ip3i

)
Gi(z) = 2

(
fi(z) − zf ′

i(z) + zg
′(z)

)∗
.

(4.2)
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If one postulates, using the same relations as obtained before, then

zi =
p0i + ip

3
i

p1i − ip2i
=
p1i + ip

2
i

p0i − ip3i
. (4.3)

These equations possess basic solutions of the form

2fi(z) =
(a − b) ln(z + 1)(z + 1)

2(z1 + 1)
+
(a + b) ln(z − 1)(z − 1)

2(z1 − 1)
+
(z1a + b) ln(z − z1)(z − z1)

(1 − z21)
− a,

2gi(z) =
(b − a) ln(z + 1)(z + 1)

2(z1 + 1)
+
(a + b) ln(z − 1)(z − 1)

2(z1 − 1)
+
(z1b + a) ln(z − z1)(z − z1)

(1 − z21)
− b,

Gi = c(−1 + ln(z − z1)),
(4.4)

where a = (p0i +ip
3
i )c and b = z1(p1i −ip2i )c, and c is a real parameter. If the real parameterisation

(1.8) is employed, then the zi lie on the real axis

Xμ =
∑

ip
μ

i log(z − zi) =
∑

πp
μ

i Θ(z − zi) for z on the real axis. (4.5)

As z moves from +∞ to −∞, Xμ jumps by πpμi at the point zi, so the skew polygon formed
by the partial sums of momenta (closed on account of momentum conservation) is mapped
into intervals on the real line.

5. Conclusion

The principal message of this paper is to draw attention to the link between the Cartesian
components of real null four-momenta in four-dimensional flat space and complex variables
on a simply connected world sheet, associated with a minimal surface, or a form of string
evolution. The set of four momenta are also required to sum to zero, that is, momentum
is conserved in the system. Various aspects leading to this identification are explored. The
minimisation of the Koba-Nielsen integrand, the consequence of the Weierstrass condition
upon a linear combination of elementary solutions to the free equations of motion, to
guarantee a minimal surface solution, and the direct determination of this class of minimal
surface solution from the Eisenhart parameterisation are all shown to entail the same
identification of a complex variable in terms of the components of a null four-momentum.
In a space of even signature (2, 2); in one representation, the complex variables lie on the real
line; in another on a circle; in the case of odd signature (Lorentz metric), there is no specific
curve on which the variables lie. SL(2, C) transformations of the complex variable implement
homogeneous Lorentz transformations upon the momentum.

In our original paper, as is standard practice, the optimistic anticipation of further
development of these ideas was raised, but it must be admitted that neither author has
been able to add anything substantially new in the intervening 35 years! However, as T.S.
Eliot has said, “A poem may have meanings which are hidden from its author.” It may be
that the further examination of solutions to the four-dimensional minimal surface equations
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originally proposed by Eisenhart will be fruitful. The ideas of this paper seem rooted in four
dimensions; the parameterisation of classical string solutions proposed in [12, 13] based upon
the division algebras may contain the clue to extend the connection between momenta and
world sheet coordinates to 10 dimensions. The recent paper of Sommerfield and Thorn [4]
extends their ideas to AdS space-time, and the picture of world sheets bounded by a closed
polygon of null lines which is presented therein and is also contained in [14] is essentially
the same as that in Section 4 of the present paper. In addition, the treatment of high energy
string amplitudes by Gross and Mende [6] extends some aspects of this analysis to multiply
connected world sheets.

In this spirit, this revised and rewritten version of [1] is offered in the hope that some
deeper connection between momentum space and the world sheet will be discovered.
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