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Quantum Hall systems are a suitable theme for a case study in the general area of nanotechnology.
In particular, it is a good framework to search for universal principles relevant to nanosystem
modeling and nanosystem-specific signal processing. Recently, we have been able to construct
a partial differential equations-based model of a quantum Hall system, which consists of the
Schrödinger equation supplemented with a special-type nonlinear feedback loop. This result stems
from a novel theoretical approach, which in particular brings to the fore the notion of quantum
information. Here we undertake to modify the original model by substituting the dynamics based
on the Dirac operator. This leads to a model that consists of a system of three nonlinearly coupled
first-order elliptic equations in the plane.
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1. Quantum Entanglement of Composite Systems
and Its Associated Hamiltonian Dynamics

In this section, we give a very brief overview of the principles behind the mesoscopic loop
models as developed in [1–5]. The theme of quantum information is extremely relevant to
our approach, but it has been brought to light in explicit terms only recently; an in-depth
discussion will appear elsewhere [6, 7].

Since the measurement of Hall resistance in a quantum Hall system results in a classical
signal, it is natural to ask if any quantum information is in the process transduced to the
classical medium. Let us develop this point of view into a formal discussion. Suppose that the
electronic solid-state system and the ambient magnetic field are represented by two Hilbert
spaces; say H and ̂H, respectively. According to the principles of quantum mechanics [8], the
combined system is then represented by the tensor product space ̂H⊗H. Moreover, the states
of the composite system assume the form
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|Ψcombined〉 =
∑

m,n

A∗mn|ϕm〉 ⊗ |ψn〉 ∈ ̂H ⊗H. (1.1)

We will associate with every state as above an entanglement operator (with no intention to
imply that the composite state (1.1) is necessarily entangled in the rigorous sense of the term
[8]):

K =
∑

Amn|ϕm〉〈ψn|. (1.2)

Thus, if an electronic system is found in the state ψ ∈ H, then the electromagnetic system will
collapse into the state

Kψ ∈ ̂H. (1.3)

Let us define the density operator of system H in the usual way:

ρ = Tr
̂H(|Ψcombined〉〈Ψcombined|). (1.4)

One readily finds

ρ = K∗K. (1.5)

This lays out the vocabulary for a quantum-mechanical description of a composite system.
Next, we postulate a model relevant specifically to the quantum Hall systems. Namely, we
propose that, in the presence of a magnetic field, the dynamics of the electronic system are
derived from the energy functional of the form

Tr(Hρ) + β log det(ρ), (1.6)

where H is the “regular” Hamiltonian governing the microscopic dynamics of the electronic
subsystem. For the purposes at hand, there is no need to discuss the constant β beyond the
simple statement that it is nonzero when the magnetic field is nonvanishing. We would
like to point out that this energy functional is a special case of functionals given in the
form, say, Tr(Hρ) + βTr(f(ρ)), where f is a suitable analytic function. Indeed, log det(ρ) =
Tr(log ρ). Roughly speaking, function f describes the interaction between two subsystems of
a composite quantum system. Many different aspects of the general models of this kind are
discussed in [6, 7]. As it is shown in [4], and again here, the functional with f = log captures
the characteristic of a quantum Hall system, which justifies our special interest in it. It is
also worthwhile mentioning that −Tr(log ρ) is the von Neumann relative quantum entropy
S(I||ρ) [8].

Henceforth we assume for simplicity that H is diagonalizable in the basis consisting
of its eigenvalues:

Hψk = Ekψk. (1.7)



Advances in Mathematical Physics 3

Now, substituting the decomposition (1.5) into (1.6) yields the following Hamiltonian:

Ξ(K) = Tr(KHK∗) + β log det(K∗K). (1.8)

This in turn leads to the following system of Hamiltonian equations (see [1, 2]):

−i�K̇ = KH + βK∗−1. (1.9)

(From this point on we will set � = 1.) The corresponding eigenvalue problem assumes the
form

KH + βK∗−1 = νK. (1.10)

Equation (1.11) is a part of the proposed model of quantum Hall systems in homeostasis.
Solutions of (1.10) are found to assume the form (see [1, 2])

K =
∑

Ek<ν

(

β

ν − Ek

)1/2

|Uψk〉〈ψk|, (1.11)

where U : H→ ̂H is an arbitrary unitary transformation.

2. The Mesoscopic-Loop Model Based on the Dirac-Type Equations

The model we are about to present deals with two types of particles, which will be called
electrons and holes. Both of them will have the same effective mass m∗ = 1 and charge e = 1.
It seems appropriate to emphasize that, of course, the notion of effective mass depends on the
model. All analyses will be performed in a two-dimensional plane. Recall that the Hodge star
∗ in two dimensions is a linear operation on differential forms determined by the relations
∗dx = dy, ∗dy = −dx, ∗1 = dx ∧ dy, and ∗(dx ∧ dy) = 1. The exterior derivative d defines
the coderivative δ = −∗d∗. Let the vector potential A be given in local coordinates as A =
A1dx +A2dy. In particular, δA = −(A1,x +A2,y), while

B(x, y) = ∗dA = A2,x −A1,y (2.1)

is the magnetic flux density. The corresponding Schrödinger operator SA acts on a wave
function ψ as follows:

2SAψ = −
(

∂2
x + ∂

2
y

)

ψ + 2i
(

A1∂xψ +A2∂yψ
)

+
(

A2
1 +A

2
2
)

ψ − i(δA)ψ. (2.2)

(The factor of 2 in front of SA stems from the fact that in the adopted units the kinetic energy
is multiplied by a factor of �

2/2m∗ = 1/2.) The Schrödinger operator can be successfully used
in a construction of mesoscopic loop models [5]. In this paper, we will consider a modification
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based on a Dirac-type factorization of the Schrödinger operator. To this end, we use the two-
dimensional Dirac operator [9] with its parameters set at m = 0 and c = 1. Namely, let

HA =

[

0 D∗

D 0

]

, (2.3)

where

D = −i∂x −A1 + ∂y − iA2 (2.4)

so that

D∗ = −i∂x −A1 − ∂y + iA2. (2.5)

A direct calculation shows that

H2
A =

[

D∗D 0

0 DD∗

]

=

[

2SA − B 0

0 2SA + B

]

, (2.6)

where B = B(x, y) is determined by A via (2.1). Observe the difference of signs at the
magnetic flux density term. This necessitates the interpretation of the two wave functions
defining the state vector

∣

∣

∣

∣

ψ1

ψ2

〉

(2.7)

as representing particles with opposite pseudospins. At this point, we venture to describe a
quantum Hall system in a manner discussed in the previous section, which brings the notion
of entanglement to the fore. Namely, we consider the following system of equations:

HA

∣

∣

∣

∣

ψ1

ψ2

〉

= E
∣

∣

∣

∣

ψ1

ψ2

〉

,

∗dA(x, y) =
∣

∣

∣

∣

K

∣

∣

∣

∣

ψ1

ψ2

〉

(x, y)
∣

∣

∣

∣

2

,

(2.8)

which involves a coupling realized via the entanglement transform K. Note that this forces
an appropriate normalization of K so as to guarantee the correct charge to flux ratio.
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3. Quantization of Hall Resistance

Note that if | ψ1

ψ2
〉 is a solution of (2.8), then in particular it is an eigenfunction of HA. We now

request that K be a stationary solution as in (1.11) with U = I, where

∣

∣ψk
〉

=
∣

∣

∣

∣

ψk,1

ψk,2

〉

(3.1)

are the eigenvectors of the Dirac Hamiltonian HA. In general, properties of the model
depend on the choice of U. The case U = I is interpreted as corresponding to the phase-
correlated regime; see [1] for a more detailed discussion of this point. Next, assume ν > E.
Without loss of generality, we may also assume that | ψ1

ψ2
〉 is on the list of mutually orthogonal

eigenfunctions defining K via (1.11). (This can always be arranged even if E has multiplicity
greater than 1.) Thus, we have

K

∣

∣

∣

∣

ψ1

ψ2

〉

= c
∣

∣

∣

∣

ψ1

ψ2

〉

(3.2)

for a constant c. Consequently,

∣

∣

∣

∣

K

∣

∣

∣

∣

ψ1

ψ2

〉

(x, y)
∣

∣

∣

∣

2

∼ |ψ1|2 + |ψ2|2. (3.3)

This implies that the last equation of (2.8) is equivalent to the statement

∂xA2 − ∂yA1 = RH

(

|ψ1|2 + |ψ2|2
)

. (3.4)

Note that RH is the ratio of the total flux to the total charge counted between the two types of
particles. In particular, due to quantization of flux and charge, RH is a rational number when
expressed in appropriate units. We will demonstrate that in a symmetric realization of this
model the Hall resistance is equal to 2RH . We conduct the analysis in a rectangular-domain
setting with the assumption that the wave functions are periodic in x, both with the same
period; that is,

ψ1 = exp(ikx)χ1(y),

ψ2 = exp(ikx)χ2(y).
(3.5)

By substituting to (2.8), we readily obtain

χ′1 = −(k −A1)χ1 + Eχ2,

χ′2 = (k −A1)χ2 − Eχ1.
(3.6)
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Furthermore, let us assume A2 = 0, A1 = A1(y), and A1(0) = 0. Let us also introduce an
auxiliary variable w = k −A1. In such a case, (2.8) is equivalent to the system

w′ = RH(χ2
1 + χ

2
2), w(0) = k,

χ′1 = −wχ1 + Eχ2,

χ′2 = wχ2 − Eχ1.

(3.7)

By differentiation, we readily obtain

χ′′1 =
(

− E2 +w2 −w′
)

χ1,

χ′′2 =
(

− E2 +w2 +w′
)

χ2.
(3.8)

These are 1D stationary Schrödinger equations with energy E2/2. Note that χ1 is affected by
potential (w2 − w′)/2, while χ2 is affected by potential (w2 + w′)/2. Both quantities result
from the presence of the magnetic field, and thus they represent the Hall effect. There are
two potential functions, differing by the sign of the correction term w′, because two types of
carriers are involved in the charge transport. Note that

w(y) = k + RH

∫y

0

(

χ2
1

(

y′
)

+ χ2
2
(

y′
))

dy′. (3.9)

We calculate the current next. Recall that

j = Re
{

ψ∗1(i ·dψ1 + ψ1A)
}

+ Re
{

ψ∗2(i ·dψ2 + ψ2A)
}

. (3.10)

A direct calculation shows that the two 1 -forms amount to

Re
{

ψ∗l (i ·dψl + ψlA)
}

= −χ2
l (y)w(y)dx, l = 1, 2. (3.11)

In summary,

j = − 1
RH

w′(y)w(y)dx =
1
RH
∗dw

2

2
. (3.12)

(We remind the reader that ∗ denotes the Hodge star.) Observe that the current flows along
the x-axis. Since both types of carriers contribute to the current, the total Hall potential is the
sum of the two separate potentials pointed out above, that is,

VH =
w2 +w′

2
+
w2 −w′

2
= w2. (3.13)
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It follows that

j =
1

2RH
∗dVH. (3.14)

By integration, we then obtain that the Hall resistance is 2RH . We remark that this is twice the
value obtained in the Schrödinger-type model (cf. [4, 5]). Recall that RH has been introduced
as the ratio of the number of quanta of the magnetic field to the number of quanta of electric
charge e = 1 of both types of particles. If particles of type, say, ψ2 were not accounted for in
the calculation of the filling factor, then there would be a discrepancy between the inverse
filling factor and the quantity RH .

It is interesting to ask when the electrons and holes are engaged as charge carriers in
equal numbers. Let us position the edges of the plate symmetrically about the x-axis, that is,
y ∈ [−b, b]. Note that the number of carriers of each type is proportional to

∫b

−b
χ2
l

(

y′
)

dy′, l = 1, 2. (3.15)

Now assume χ2(0) = χ1(0), and consider the last two equations of (3.7). In such a case, one
can find a solution satisfying the condition χ2(y) = χ1(−y). For this solution, particles of each
type occur in equal numbers.

4. The Elliptic System in the Plane

In Section 3, we demonstrated that Hall resistance is quantized under certain symmetry
assumptions which reduce the problem to a system of ordinary differential equations. We
emphasize that Hall potentials and Hall resistance can be defined and discussed in the
general two-dimensional setting [5]. In fact, the two-dimensional, that is, partial differential
equations (PDEs), setting cannot be avoided if we want to study the effect of lattice potential
and so forth. We will now briefly discuss the ramifications of the PDE problem. Consider
(2.8) jointly with the assumptions about K put forth in the previous section. In this case, it is
equivalent to the following system of first-order partial differential equations:

∂yψ1 = i∂xψ1 + (A1 + iA2)ψ1 + Eψ2,

∂yψ2 = −i∂xψ2 − (A1 − iA2)ψ2 − Eψ1,

∂yA1 = ∂xA2 − RH(|ψ1|2 + |ψ2|2).

(4.1)

A direct calculation shows that if a triplet (ψ1, ψ2, A) is a solution of the system, then so is
(eiϕψ1, e

iϕψ2, A + dϕ) for an arbitrary real function ϕ = ϕ(x, y). Function ϕ represents gauge
freedom and therefore carries no physical information. In particular, only the relative phase of
the pair (ψ1, ψ2) is physically meaningful. Next, observe that while system (4.1) is not elliptic
by itself, it will become strictly elliptic when amended with the gauge-fixing equation

∂yA2 = −∂xA1. (4.2)



8 Advances in Mathematical Physics

−4

−2

0

2

4

0

1

2

−2
0

2

R(Ψ1)

(a)

−3

−2

−1

0

1

2

0

1

2

−2
0

2

R(Ψ2)

(b)

0

2

4

6

8

10

12

0

1

2

−2
0

2

Flux density

(c)

Figure 1: A numerical solution of (4.1) with E = 5 (in units adopted throughout the paper), RH = 3/5, and
A2 ≡ 0. The initial values ψ2(x, 0) = 0.3 exp(ix) + 0.2∗ exp(2ix), ψ1(x, 0) = −0.9ψ2(x, 0), and A1(x, 0) = 0 are
prescribed on the edge facing front right.

Consider a system that consists of (4.1) and (4.2). Note that the nonlinear terms in (4.1)
are (real) analytic functions of the dependent variables. Therefore, the classical Cauchy-
Kovalevskaya theorem [10] guarantees local existence of solutions of the initial value
problem when the boundary conditions are also analytic. The initial value problem may help
gain some insight into the nature of the system; an example of a solution obtained numerically
with a finite difference method is displayed in Figure 1. Since the boundary value problems
spring to mind in this context, one should emphasize that in view of ellipticity, the natural
setting is that of the Riemann-Hilbert-type problem [11]. However, we wish to signal briefly
that the boundary value problem is not the only type of approach appropriate for the study of
the mesoscopic-loop model; there is a promising complementary approach. Namely, setting
A = A1+iA2, we can represent (4.1)-(4.2) as a system of three nonlinearly coupled ∂-equations:

∂ψ1 =
i

2
(Aψ1 + Eψ2),

∂ψ2 = − i
2
(Aψ2 + Eψ1),

∂A = − i
2
RH(|ψ1|2 + |ψ2|2).

(4.3)

This suggests the relevance of a variety of complex methods [12], but this theme will not be
discussed in the present paper.

5. Closing Comments

The Dirac equation is undergoing a renaissance in condensed matter physics due to
its relevance to the unusual two-dimensional crystal called graphene (see, e.g., [13]). I
emphasize that in this paper we have not addressed any of the issues related to that stream of
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research. Rather, we have used the Dirac equation as an analytic alternative to the Schrödiner
equation. It helped us find an almost equivalent reformulation of the nonrelativistic model.
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