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Recent developments are reviewed and some new results are presented in the study of time in
quantum mechanics and quantum electrodynamics as an observable, canonically conjugate to
energy. This paper deals with the maximal Hermitian (but nonself-adjoint) operator for time which
appears in nonrelativistic quantum mechanics and in quantum electrodynamics for systems with
continuous energy spectra and also, briefly, with the four-momentum and four-position operators,
for relativistic spin-zero particles. Two measures of averaging over time and connection between
them are analyzed. The results of the study of time as a quantum observable in the cases of the
discrete energy spectra are also presented, and in this case the quasi-self-adjoint time operator
appears. Then, the general foundations of time analysis of quantum processes (collisions and
decays) are developed on the base of time operator with the proper measures of averaging over
time. Finally, some applications of time analysis of quantum processes (concretely, tunneling
phenomena and nuclear processes) are reviewed.
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1. General Introduction

During almost ninety years (e.g., [1, 2]), it is known that time cannot be represented by
a self-adjoint operator, with the possible exception of special abstract systems (such as an
electrically charged particle in an infinite uniform electric field) and a system with the
limited from both below and above energy spectrum (to see later)). (Namely that fact
that time cannot be represented by a self-adjoint operator is known to follow from the
semiboundedness of the continuous energy spectra, which are bounded from below (usually
by the value zero). Only for an electrically charged particle in an infinite uniform electric field,
and for other very rare special systems, the continuous energy spectrum is not bounded and
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extends over the whole energy axis from −∞ to ∞.) This fact results to be in contrast with
the known sircumstance that time, as well as space, in some cases plays the role just of a
parameter, while in some other cases is a physical observable which ought to be represented
by an operator. The list of papers devoted to the problem of time in quantum mechanics is
extremely large (e.g., [3–51], and references therein). The same situation had to be faced also
in quantum electrodynamics and, more in general, in relativistic quantum field theory (e.g.,
[12–14, 47, 50, 51]).

As to quantum mechanics, the first set of known and cited articles is [3–21]. The second
set of papers on time as an observable in quantum physics [22–51] appeared from the end of
the eighties and chiefly in the nineties and more recently, stimulated mainly by the need of a
self-consistent definition for collision duration and tunneling time. It is noticeable that many
of this second set of papers appeared however to ignore the Naimark theorem from [52],
which had previously constituted an important basis for the results in [15–21]. This Naimark
theorem states [52] that the nonorthogonal spectral decomposition E(λ) of a Hermitian
operator H is of the Carleman type (which is unique for the maximal Hermitian operator),
that is, it can be approximated by a succession of the self-adjoint operators, the spectral
functions of which do weakly converge to the spectral function E(λ) of the operator H.

Namely, by exploiting that Naimark theorem, it has been shown by Olkhovsky and Recami [15–
18, 21] (more details having been added in [22–27, 32–35, 47, 50, 51]) and, independently, by Holevo
[19, 20] that, for systems with continuous energy spectra, time can be introduced as a quantum-
mechanical observable, canonically conjugate to energy. More precisely, the time operator resulted to
be maximal Hermitian, even if not self-adjoint. Then, in [23–25, 33–35, 50, 51] it was clarified that
time can be introduced also for these systems as a quantum-mechanical observable, canonically
conjugate to energy, and the time operator resulted to be quasi-self-adjoint (more precisely,
it can be chosen as an almost self-adjoint operator with practically almost any degree of the
accuracy).

We intend to justify the association of time with a quantum-physical observable, by
exploiting the properties of the maximal Hermitian operators in the case of the continuous
energy spectra, and the properties of quasi-self-adjoint operators in the case of the discrete
energy spectra.

Then, we analyze the restricted sense of the positive operator value measure (POVM)
approach, often used now (see, in particular [28–31, 36–46, 48, 49]). Finally, we do in a shorten
way review our methods of time analysis and joint time-energy analysis which had already
proved to be fruitful in tunnelling and nuclear processes.

2. Time as a Quantum Observable and General Definitions of
Mean Times and Mean Durations of Quantum Processes

2.1. On Time as an Observable in Nonrelativistic Quantum Mechanics,
for Systems with Continuous Energy Spectra

For systems with continuous energy spectra, the following simple operator, canonically
conjugate to energy, can be introduced for time

̂t = t, in the (time) t-representation, (2.1a)

̂t = −i� ∂

∂E
, in the (energy) E-representation, (2.1b)
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which is not self-adjoint, but is Hermitian, and acts on square-integrable space-time wave
packets in representation (2.1a), and on their Fourier transforms in representation (2.1b), once
the point E = 0 is eliminated (i.e., once one deals only with moving packets, i.e., excludes any
nonmoving back tails, as well as, of course, the zero flux cases). (Such a condition is enough
for operator (2.1a) and (2.1b) to be a “maximal Hermitian” (or “maximal symmetric”) operator
[15–18, 21] (see also [26, 27, 33–35, 52, 53]), according to Akhiezer & Glazman’s terminology.
Let us explicitly notice that, anyway, the physically reasonable boundary condition E/= 0 can
be dispensed with, by having recourse to bilinear operators, as it is simply shown below in
the form (2.26) and Appendix A.) It has been shown already in [15–18, 21]. The elimination
of the point E = 0 is not restrictive since the “rest” states with the zero velocity, the wave
packets with nonmoving rear tails, and the wave packets with zero flux are unobservable.

Operator (2.1b) is defined as acting on the space P of the continuous, differentiable,
square-integrable functions f(E) that satisfy the conditions

∫∞

0

∣

∣f(E)
∣

∣

2
dE <∞,

∫∞

0

∣

∣

∣

∣

∂f(E)
∂E

∣

∣

∣

∣

2

dE <∞,
∫∞

0

∣

∣f(E)
∣

∣

2
E2dE <∞, (2.2)

and the condition

f(0) = 0, (2.3)

which is a space P dense in the Hilbert space of L2 functions defined (only) over the semiaxis
0 ≤ E < ∞. Obviously, the operator (2.1a) and (2.1b) is Hermitian, that is, the relation
(

f1, ̂tf2) = ((̂tf1), f2) holds, only if all square-integrable functions f(E) in the space on which
it is defined vanish for E = 0.

Also the operator ̂t2 is Hermitian, that is, the relation
(

f1, ̂t
2f2) = ((̂tf1), (̂tf2)) =

(̂t2f1, f2) holds under the same conditions.
Operator ̂t has no Hermitian extension because otherwise one could find at least

one function f0(E) which satisfies the condition f0(0)/= 0 but that is inconsistent with the
propriety of being Hermitian. So, according to [53], ̂t is a maximal Hermitian operator
and in accordance with the results of the mathematical theory of operators it is not a self-
adjoint operator with equal deficiency indices but it has the deficiency indices (0,1). As a
consequence, operator (2.1b) does not allow a unique orthogonal identity resolution.

Essentially because of these reasons, earlier Pauli (e.g., [1, 2]) rejected the use of a
time operator; this had the result of practically stopping studies on this subject for about
forty years. However, as far back as in [54] von Neumann had claimed that considering in
quantum mechanics only self-adjoint operators could be too restrictive. To clarify this issue,
let us quote an explanatory example set forth by von Neumann himself [54]: let us consider
a particle, free to move in a spatial semiaxis (0 ≤ x < ∞) bounded by a rigid wall located
at x = 0. Consequently, the operator for the momentum x-component of the particle, which
reads

p̂x = −i� ∂

∂x
(2.4)
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is defined as acting on the space of the continuous, differentiable, square-integrable functions
f(x) that satisfy the conditions

∫∞

0

∣

∣f(x)
∣

∣

2
dx <∞,

∫∞

0

∣

∣

∣

∣

∂f(x)
∂x

∣

∣

∣

∣

2

dx <∞,
∫∞

0

∣

∣f(x)
∣

∣

2
x2 dx <∞, (2.5)

and the condition

f(0) = 0, (2.6)

which is a space dense Q in the Hilbert space of L2 functions defined (only) over the spatial
semiaxis 0 ≤ x < ∞. Therefore, operator p̂x = −i�(∂/∂x) has the same mathematical
properties as operator ̂t (2.1a) and (2.1b) and consequently it is not a self-adjoint operator
but it is only a maximal Hermitian operator. Nevertheless, it is an observable with an
obvious physical meaning. The same properties has also the radial momentum operator
p̂r = −i�(∂/∂r) + (1/r) (0 < r <∞).

By the way, one can easily demonstrate (e.g., [4, 5]) that in the case of (hypotetical)
quantum-mechanical systems with the continuous energy spectra bounded from below and from
above (Emin < E < Emax) the time operator (2.1a) and (2.1b) becomes a really self-adjoint operator
and has a discrete time spectrum, with the “the time quantum” τ = �/d where d = |Emax −
Emin|.

In order to consider time as an observable in quantum mechanics and to define the
observable mean times and durations, one needs to introduce not only the time operator, but
also, in a self-consistent way, the measure (or weight) of averaging over time. In the simple
one-dimensional (1D) and one-directional motion such measure (weight) can be obtained by
the the simple quantity:

W(x, t)dt =
j(x, t)dt

∫∞
−∞j(x, t)dt

, (2.7)

where the probabilistic interpretation of j(x, t) (namely in time) corresponds to the flux
probability density of a particle passing through point x at time t (more precisely, passing
through x during a unit time interval centered at t), when travelling in the positive x-
direction. Such a measure had not been postulated, but is just a direct consequence of the
well-known probabilistic (spatial) interpretation of ρ(x, t) and of the continuity relation

∂ρ(x, t)
∂t

+ div j(x, t) = 0 (2.8)

for particle motion in the field of any hamiltonian in the desciption of the 1D Schroedinger
equation. (The three-dimensional (3D) case is described in Appendix B.) Quantity ρ(x, t)
is the probability of finding a moving particle inside a unit space interval, centered at
point x, at time t. The probability density ρ(x, t) and the flux probability density j(x, t)
are related with the wave function Ψ(x, t) by the usual definitions ρ(x, t) = |Ψ(x, t)|2 and
j(x, t) = Re[Ψ∗(x, t)(�/iμ)∂Ψ(x, t)/∂x]. The measure (2.7) was firstly investigated in [21, 23–
27, 32–35].
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When the flux density j(x, t) changes its sign, the quantity W(x, t)dt is no longer
positive definite and it acquires a physical meaning of a probability density only during those
partial time intervals in which the flux density j(x, t) does keep its sign. Therefore, let us
introduce the two measures, by separating the positive and the negative flux-direction values
(i.e., flux signs):

W±(x, t)dt =
j±(x, t)dt

∫∞
−∞j±(x, t)dt

, (2.9)

with j±(x, t) = j(x, t)Θ(±j) where Θ(z) is the Heaviside step function. It had been made
firstly in [26, 27, 32–35]. Actually, one can rewrite the continuity relation (2.8) for those time
intervals, for which j = j+ or j = j− as follows:

∂ρ>(x, t)
∂t

= −
∂j+(x, t)
∂x

,
∂ρ<(x, t)

∂t
= −

∂j−(x, t)
∂x

, (2.10)

respectively. Relations in (2.10) can be considered as formal definitions of ∂ρ>/∂t and ∂ρ</∂t.
Integrating them over time t from −∞ to t, one obtains

ρ>(x, t) = −
∫ t

−∞

∂j+
(

x, t′
)

∂t′
dt′, ρ<(x, t) = −

∫ t

−∞

∂j−
(

x, t′
)

∂t′
dt′ (2.11)

with the initial conditions ρ>(x,−∞) = ρ<(x,−∞) = 0. Then, it is possible to introduce the
quantities

N>(x,∞; t) ≡
∫∞

x

ρ>
(

x′, t
)

dx′ =
∫ t

−∞
j+
(

x, t′
)

dt′ > 0,

N<(−∞, x; t) ≡
∫x

−∞
ρ<
(

x′, t
)

dx′ = −
∫ t

−∞
j−
(

x, t′
)

dt′ > 0,

(2.12)

which have the meaning of probabilities for the particle wave packet Ψ(x, t) to be located
at time t on the semiaxis (x,∞) and (−∞, x), respectively, as functions of the flux densities
j+(−∞, t) and j−(x, t), provided that the normalization condition

∫∞
−∞ρ(x, t)dx = 1 is fulfilled.

The right-hand parts of the last couple of equations have been obtained by integrating the
rigt-hand parts of the expressions for ρ>(x, t) and ρ<(x, t), and by adopting the boundary
conditions j+(−∞, t) = j−(−∞, t) = 0. Then, by differentiating N>(x,∞; t) and N<(−∞, x; t)
with respect to t, one obtains

∂N>(x,∞; t)
∂t

= j+(x, t) > 0,
∂N<(−∞, x; t)

∂t
= −j−(x, t) > 0. (2.13)
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Finally, from the last four equations one can easily infer that

W+(x, t)dt =
j+(x, t)dt

∫∞
−∞j+(x, t)dt

=
∂N>(x,∞; t)/∂t
N>(x,∞;∞)

,

W−(x, t)dt =
j−(x, t)dt

∫∞
−∞j−(x, t)dt

=
∂N<(−∞, x; t)/∂t
N<(−∞, x;∞)

,

(2.14)

which justify the abovementined probabilistic interpretation of W±(x, t). Let us stress
now that this approach does not assume any new physical postulate in the conventional
(Copenhagen-interpretation) nonrelativistic quantum mechanics.

Then, one can eventually define the mean value 〈t(x)〉 of the time t at which a particle
passes through position x (when travelling in only one positive x-direction), and 〈t±(x)〉 of
the time t at which a particle passes through position x, when travelling in the positive or
negative direction, respectively,

〈

t(x)
〉

=

∫∞
−∞tj(x, t)dt
∫∞
−∞j(x, t)dt

=

∫∞
0 dE(1/2)

[

G∗(x, E)̂tvG(x, E) + vG∗(x, E)̂tG(x, E)
]

∫∞
0 dE v

∣

∣G(x, E)
∣

∣

2
, (2.15)

where G(x, E) is the Fourier transform of the moving 1D wave packet

Ψ(x, t) =
∫∞

0
G(x, E) exp

(

− iEt
�

)

dE =
∫∞

0
g(E)ϕ(x, E) exp

(

− iEt
�

)

dE, (2.16)

when going on from the time representation to the energy one,

〈

t±(x)
〉

=

∫∞
−∞tj±(x, t)dt
∫∞
−∞j±(x, t)dt

, (2.17)

and also the mean durations of particle 1D transmission from xi to xf > xi and 1D particle
reflection from the region (xi,∞) into xf ≤ xi:

〈

τT
(

xi, xf
)〉

=
〈

t+
(

xf
)〉

−
〈

t+
(

xi
)〉

,

〈

τR
(

xi, xf
)〉

=
〈

t−
(

xf
)〉

−
〈

t+
(

xi
)〉

,
(2.18)

respectively. (We recall that here we are confining ourselves to systems with continuous
spectra only.) Of course, it is possible to pass in (2.17) also to integrals

∫∞
0 dE . . ., similarly

to (2.15) by using the unique Fourier (Laplace) transformations and the energy expansion of
j±(x, t) = j(x, t)θ(±j), but it is evident that they result to be rather bulky.
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If one does now generalize the expressions (2.15) and (2.17) for 〈tn〉 with a generic
value n = 2, 3, . . . , then we will be able to write down for 〈f(t)〉 with any analytic function of
time f(t), the one-to-one relation

〈

f(t)
〉

=

∫∞
−∞j(x, t)f(t)dt
∫∞
−∞j(x, t)dt

=

∫∞
0 dE(1/2)

[

G∗(x, E)f
(

̂t
)

vG(x, E) + vG∗(x, E)f
(

̂t
)

G(x, E)
]

∫∞
0 dE v

∣

∣G(x, E)
∣

∣

2

(2.19)

from the time to the energy representation. For free motion, one has G(x, E) = g(E) exp(ikx),
ϕ(x, E) = exp(ikx), and E = �

2k2/2μ = μv2/2, while the normalization condition is

∫∞

0

∣

∣G(x, E)
∣

∣

2
dE =

∫∞

0

∣

∣g(E)
∣

∣

2
dE = 1, (2.20)

and the boundary conditions are

[

dng(E)
dEn

]

E=0

=

[

dng(E)
dEn

]

E=∞
= 0, for n = 0, 1, 2, . . . . (2.21)

Conditions (2.21) imply a very rapid decrease till zero of the flux densities near the
boundaries E = 0 and E = ∞: this complies with the actual conditions of real experiments,
and therefore they does not represent any restriction of generality.

In (2.19), ̂t is defined by relation (2.1b). One should explicitly notice that relation (2.19)
does express the complete equivalence of the time and of the energy representations (with their
own appropriate averaging weights). This equivalence is a consequence of the existence of
the time operator. Actually, for the time and energy operators it holds in quantum mechanics the
same formalism as for all other pairs of canonically-conjugate observables.

For quasimonochromatic particles, when |g(E)|2 ≈ Kδ(E − E), K being a constant,
quantity j(x, t) goes into ρ(x, t) and (2.19) goes into the more simple relation

〈

f(t)
〉

≡
∫∞
−∞j(x, t)f(t)dt
∫∞
−∞j(x, t)dt

≈
∫∞
−∞ρ(x, t)f(t)dt
∫∞
−∞ρ(x, t)dt

≈
∫∞

0 dEG
∗(x, E)f

(

̂t
)

G(x, E)
∫∞

0 dE
∣

∣G(x, E)
∣

∣

2
, (2.22)

because of the relations j(x, t)vρ(x, t) ≈ vρ(x, t).
Now, one can see that two canonically conjugate operators, the time operator (2.1a),

(2.1b), and (2.26) and the energy operator

̂E =

⎧

⎪

⎨

⎪

⎩

E in the energy (E)-representation,

i�
∂

∂t
in the time (t)-representation,

(2.23)

satisfy the typical commutation relation

[

̂E, ̂t
]

= i�. (2.24)
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Although up to now according to the Stone theorem [55] the relation (2.24) has been
interpreted as holding only for the pair of the self-adjoint canonically conjugate operators, in
both representations, and it was not directly generalized for maximal Hermitian operators, the
difficulty of such direct generalization has in fact been by-passed by introducing ̂t with the
help of the single-valued Fourier (Laplace) transformation from the t-axis (−∞ < t < ∞) to
the E-semiaxis (0 < E <∞) and by utilizing the peculiar mathematical properties of maximal
symmetric operators (as in [19–21, 23–25, 33–35, 50, 51]), described in detail, for example, in
[52, 53].

Actually, from (2.24) the uncertainty relation

ΔEΔt ≥ �

2
(2.25)

(where the standard deviations are Δa = �Da, quantity Da being the variance Da =
〈a2〉 − 〈a〉2; and a = E, t, while 〈· · · 〉 denotes an average over t by the measures W(x, t)dt
or W±(x, t)dt in the t-representation or an average over E similar to the right-hand part
of (2.19) in the E-representation) was derived by the simple generalizing of the similar
procedures which are standard in the case of self-adjoint canonically conjugate quantities (see
[17–21, 23–25, 33–35, 50, 51]). Moreover, relation (2.24) satisfies the Dirac “correspondence
principle,” since the classical Poisson brackets {q0, p0}, with q0 = t and p0 = −E, are equal
to unity [56]. In [21] (see also [23–25]) it was also shown that the differences between the
mean times at which a wave packet passes through a pair of points obey the Ehrenfest
correspondence principle; in other words, in [21, 23–25] the Ehrenfest theorem was suitably
generalized.

After what precedes, one can state that, for systems with continuous energy spectra,
the mathematical properties of the maximal Hermitian operators (described, in particular, in
[49, 53]), like ̂t in (2.1a), (2.1b), and (2.26) are sufficient for considering them as quantum
observables: namely, the uniqueness of the “spectral decomposition” (also called spectral
function) for operators ̂t, as well as for ̂tn (n > 1) guarantees (although such an expansion
is not orthogonal) the equivalence of the mean values of any analytic functions of time,
evaluated either in the t- or in the E-representations. In other words, the existence of this
expansion is equivalent to a completeness relation for the (formal) eigenfunctions of ̂tn (n >
1), corresponding with any accuracy to real eigenvalues of the continuous spectrum; such
eigenfunctions belonging to the space of the square-integrable functions of the energy E with
the boundary conditions (2.2)-(2.3).

From this point of view, there is no practical difference between self-adjoint and maximal
Hermitian operators for systems with continuous energy spectra. Let us underline that the
mathematica, properties of ̂tn (n > 1) are quite enough for considering time asa quantum-
mechanical observable (like for energy, momentum, spatial coordinates, . . .) without having to
introduce any new physical postulates.

Now let us analyse the so-called positive-operator-value-measure (POVM) approach,
often used in the second set of papers on time in quantum physics (e.g., in [28–31, 36–
46, 48, 49]). This approach, in general, is well known in the various approaches to the
quantum theory of measurements approximately from the sixties and had been applied in
the simplest form for the time-operator problem in the case of the free motion already in
[57]. Then, in [28–31, 36–46, 48, 49] (often with certain simplifications and abbreviations) it
was affirmed that the generalized decomposition of unity (or POV measures) is reproduced
from any self-adjoint extension of the time operator into the space of the extended Hilbert
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space (usually, with negative values of energy E in the left semiaxis) citing the Naimark’s
dilation theorem from [58]. However, it was realized factually only for the simple cases
like the particle free motion. As to our approach, it is based on another Naimark’s theorem
(from [52]), cited above, and without any extension of the physical Hilbert space of usual
wave functions (wave packets) with the subsequent return projection to the previous space
of wave functions, and, moreover, it had been published in [12–18, 21] (and independently
in the papers of Holevo [19, 20], with the same principal idea) much earlier than [28–31, 36–
46, 48, 49]. Being based on the earlier published remarkable Naimark theorem [52], it is much
more direct, simple and general, and at the same time mathematically not less rigorous than POVM
approach.

Let us note that it was introduced by Olkhovsky and Recami in [12–14] one more form
of the time operator

̂t =
(

− i�
2

)
↔
∂
∂E

(2.26)

(the so-called bilinear form), where the meaning of the sign ↔ is clear from the following
definition: (f, ̂tg) = (f, (−i�/2)(∂/∂E)g) + ((−i�/2)(∂/∂E)f, g). For this form the direct
elimination of the point E = 0 is not necessary because it is eliminated automatically in (f, ̂tf)
and in

∫∞
−∞ tj(x, t)dt by such bilinearity. And such an elimination of the point E = 0 is not only

more simple but also more physical than an elimination made in [28–31, 36–46, 48, 49], and it
had been published (in [12–14]) much more earlier.

2.2. On the Momentum Representation of the Time Operator

In [19, 20], it had been demonstrated by Holevo that in the continuous spectrum case, instead
of the energy (E-) representation, with 0 < E <∞, in (2.1a), (2.1b), (2.26), (2.2), (2.3), and (2.7)
one can also use the momentum (k-) representation, with the advantage that −∞ < k <∞:

Ψ(x, t) =
∫∞

−∞
dkg(k)ϕ(x, k) exp

(

− iEt
�

)

, (2.27)

with E = �
2k2/2m, k /= 0. In such a case the time operator (2.1a), (2.1b), and (2.26) (acting

on momentum eigenvector, defined on −∞ < k < ∞, is already formally self-adjoint, with the
boundary conditions

[

dng(k)
dkn

]

k=−∞
=

[

dng(k)
dkn

]

k=∞
= 0, n = 0, 1, 2, . . . , (2.28)

except for the fact that we have excluded point k = 0; an exclusion which has now
only the physical meaning of nonobserving the rest (motionless) state), being inessential
mathematically (this had been considered in [19, 20, 50, 51]). In fact, it is one more argument
in favor of that time is an observable in the same degree as any other quantity to which a
self-adjoint operator corresponds.
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Let us now compare choice (2.27) with choice (2.16); namely let us rewrite (2.27) as
follows:

Ψ(x, t) =
∫∞

0
dE(E)−1/2g

(

(2mE)1/2

�

)

ϕ

(

x,
(2mE)1/2

�

)

exp
(

− iEt
�

)

+
∫∞

0
dE(E)−1/2g

(

− (2mE)1/2

�

)

ϕ

(

x,− (2mE)
1/2

�

)

exp
(

− iEt
�

)

.

(2.29)

If we now introduce the weight

g̃(E) =

(

m

2E�2

)1/4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

g

(

(2mE)1/2

�

)

g

(

− (2mE)1/2

�

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2.30)

as a “two-dimensional” vector, then

∫∞

−∞

∣

∣Ψ(x, t)
∣

∣

2
dx =

∫∞

0
dE

∣

∣g̃(E)
∣

∣

2
<∞, (2.31)

the norm being

g̃(E) = g∗(E) · g(E) > 0. (2.32)

If the wave packet (2.27) is one directional and g(k) ≡ g(k)Θ(k), then the integral
∫∞
−∞dk

goes on to the integral
∫∞

0 dk and the two-dimensional vector goes on to a scalar quantity. In
such a case, the boundary conditions (2.2) and (2.3) can be replaced by relations of the same
form, provided that the replacement E → k is performed.

2.3. The Second Measure of Time Averaging
(in the Cases of Particle Dwelling in Spatial Regions)

One can easily see that the weight

dP(x, t) ≡ Z(x, t)dx =

∣

∣Ψ(x, t)
∣

∣

2
dx

∫∞
−∞

∣

∣Ψ(x, t)
∣

∣

2
dx

(2.33)

can be considered as the meaning of the probability for a particle to be localized, or to sojourn,
or to dwell in the spatial region (x, x + dx) at the moment t, independently from the motion
processes. As a consequence, the quantity

P
(

xi, xf , t
)

=

∫xf
x1

∣

∣Ψ(x, t)
∣

∣

2
dx

∫∞
−∞

∣

∣Ψ(x, t)
∣

∣

2
dx

(2.34)
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will have the meaning of the probability of particle dwelling in the spatial range
(

x1, x2) at
the instant t. Taking into account the equality

∫∞

−∞
j(x, t)dt =

∫∞

−∞

∣

∣Ψ(x, t)
∣

∣

2
dx, (2.35)

which evidently follows from the 1D continuity relation (2.8), the mean dwell time can be
presented in the following form:

〈

τdw
(

xi, xf
)〉

=

∫∞
−∞dt

∫xf
xi

∣

∣Ψ(x, t)
∣

∣

2
dx

∫∞
−∞jin

(

xi, t
)

dt
(2.36a)

with the flux density jin for the initial “dwelling” free motion through point xi. The expression
(2.36a) can be rewritten in the following equivalent form

〈

τdw
(

xi, xf
)〉

=

[∫∞
−∞tj

(

xf , t
)

dt −
∫∞
−∞tj

(

xi, t
)

dt
]

∫∞
−∞jin

(

xi, t
)

dt
, (2.36b)

taking into account the continuity relation (2.8) for the total flux density j(x, t) in the interval
(

xi, xf) at time t (the details of the derivation one can see in [22, 47]).
Thus, in correspondence with two measures above, (2.7), (2.9), (2.36a), and (2.36b),

when integrating on time, we get different two kinds of time distributions (mean values,
variances, etc.) being with different physical meanings (referring to the particle moving,
passing, transferring, traversing, transmitting, etc. in the case of the measures (2.7) and (2.9)
and of particle staying, dwelling, living, sojourning, etc. in the case of the measure (2.36a)
and (2.36b), resp.).

2.4. Extension of the Notion of Time as a Quantum-Physical Observable
Quantity to Quantum Electrodynamics

The formal mathematical analogy between the stationary and time-dependent Schroedinger
equation for nonrelativistic particles and the stationary and time-dependent Helmholtz
equation for electromagnetic wave propagation was studied in [59–62]. In the time-
dependent case, these equations are no longer mathematically equivalent, since the former
is first-order in the time derivative whereas the latter is second order. However, here we will
deal with the comparison of their solutions, considering not only the formal mathematical
analogy between them but also such similarity of the probabilistic interpretation of the wave
function for a particle and of an electromagnetic wave packet (being according to [63, 64]
the “wave function for a single photon”) which is sufficient for the identical definition of
mean time instants and durations (and distribution variances, etc.) of propagation, collision,
tunnelling, processes for particles and photons.
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In the first quantization for the 1D case, the single-photon wave function can be
probabilistically described by the wave packet (see, e.g., [63, 64])

	A
(

	r, t
)

=
∫

k0

d3k

k0
	χ
(	k

)

ϕ
(	k, 	r

)

exp
(

− ik0t
)

, (2.37)

where, as usual, 	A(	r, t) is the electromagnetic vector potential, and 	r = {x, y, z}, 	k =
{kx, ky, kz}, k0 ≡ ω/c = ε/�c, k ≡ |	k| = k0, where the gauge condition div 	A = 0 is assumed.

The axis x has been chosen as the propagation direction, 	χ(	k) =
∑z

i=y χi(	k)	ei(	k); with

	ei	ej = δij , xi, xj ≡ y, z, χi(	k) is the probability amplitude for the photon to have momentum
	k and polarization 	ej along xj , and it is ϕ(	k, 	r) = exp(ikxx) in the case of plane waves, while
ϕ(	k, 	r) is a linear combination of evanescent (decreasing) and antievanescent (increasing)
waves in the case of “photon barriers” (various band-gap filters, or even undersized segments
of waveguides for microwaves, frustrated-total-internal-reflection regions for light, etc.).
Although it is not possible to localize a photon in the direction of its polarization, nevertheless
for 1D propagations, it is possible to use the space-time probabilistic interpretation of (2.37)
and define the following probability density:

ρem(x, t)dx =
S0 dx
∫

S0 dx
, S0 =

∫∫

s0 dy dz (2.38)

(s0 = [	E∗ 	E + 	H∗ 	H]/4π being the energy density, the electromagnetic field being 	H = rot 	A,
	E = −(1/c)∂ 	A/∂t) of a photon to be found (localized) in the spatial intervall (x, x + dx) along axis
x at the moment t, and the flux probability density

jem(x, t)dt =
Sx(x, t)dt
∫

Sx(x, t)dt
, Sx(x, t) =

∫∫

sx dy dz (2.39)

(with sx = cRe[	E∗ 	H]x/8π being the energy flux density, 	H = rot 	A) of a photon to pass
through the point (plane) x in the time interval (t, t + dt), quite similarly to the probabilistic
quantities for particles. The justification and convenience of such definitions is evident, every
time that there is a coincidence of the wave packet group velocity and the velocity of the
energy transport which was established for electromagnetic waves [65–67]. Hence, (1) in a
certain sense, for the time analysis along the motion direction, the wave packet (2.24) is quite
similar to a wave packet for nonrelativistic particles and (2) similarly to the conventional
nonrelativistic quantum mechanics, one can define the mean time of photon (electromagnetic
wave packet) passing through point x:

〈

t(x)
〉

=
∫∞

−∞
tJem,x dt =

∫∞
−∞tSx(x, t)dt
∫∞
−∞Sx(x, t)dt

, (2.40)

where the form (2.1b) of time operator is valid also for photons with natural boundary
conditions χi(0) = χi(∞) = 0 in the energy representation

(

ε = �ck0), quite similarly to
(2.1b)–(2.3) for nonrelativistic particles in the energy representation.
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The energy density s0 and energy flux density sx satisfy the relevant continuity
equation

∂s0

∂t
+
∂sx
∂x

= 0, (2.41)

which is Lorentz-invariant for the spatially 1D propagation [32–35, 47, 50, 51]. As a
consequence, it is self-evident that also in this case of photons we can use the same
energy representation of the time operator as for particles in nonrelativistic quantum
mechanics, and hence verify the equivalence of calculations of 〈t(x)〉, Dt(x) and so on,
in the both time and energy representations. Then, the same interpretation one can use
for the propagation of electromagnetic wave packets (photons) in media and waveguides
when collisions, reflections, and tunnelling can take place. Then, one can introduce the
same form of the time operator as for particles in nonrelativistic quantum mechanics and
hence verify the equivalence of calculations of mean values, variances, and so on, for time
durations of photon motions, interactions and so on, with the measure (2.7)–(2.9), in the
both time and energy representations [32–35, 47, 50, 51]. It is also possible to introduce the
second measure in time averaging, quite similarly to (2.36a) and (2.36b). In other words,
in the cases of 1D photon propagations time is a quantum-physical observable also in quantum
electrodynamics.

In the case of fluxes which change their signs with time we introduce quantities
Jem,x,± = Jem,xΘ(±Jem,x) with the same physical meaning as for particles. Therefore,
expressions for mean values and variances of distributions of propagation, tunnelling,
transmission, penetration, and reflection durations can be obtained in the same way as in
the case of nonrelativistic quantum mechanics for particles (with the substitution of J by
Jem).

2.5. Time as an Observable and Time-Energy Uncertainty Relation for
Quantum-Mechanical Systems with Discrete Energy Spectra

For systems with discrete energy spectra it is natural (following [23–25, 50, 51]) to introduce
wave packets of the form

ψ(x, t) =
...
∑

n=0

gnϕn(x) exp
[

−
i
(

εn − ε0
)

t

�

]

, (2.42)

(where ϕn(x) are orthogonal and normalized wave functions of system bound states which
satisfy ̂Hϕn(x) = εnϕn(x), ̂H being the system Hamiltonian,

∑...
n=0 |gn|

2 = 1, here we factually
omitted a nonsignificant phase factor exp

(

− iε0t/�) as being general for all terms of the
sum

∑...
n=0) for describing the evolution of systems in the regions of the purely discrete

spectrum. Without limiting the generality, we choose moment t = 0 as an initial time
instant.

Firstly, we will consider those systems, whose energy levels are spaced with distances
for which the maximal common divisor is factually existing. Examples of such systems are
harmonic oscillator, particle in a rigid box, and spherical spinning top. For these systems the wave
packet (2.42) is a periodic function of time with the period (Poincaré cycle time) T = 2π�/D, D
being the maximal common divisor of distances between system energy level.
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̂t(t)

T/2

−T/2 T/2
−T 0 T

t

−T/2

Figure 1: The periodical saw-tooth function for time operator for the case of (2.42).

In the t-representation the relevant energy operator ̂H is a self-adjoint operator
acting in the space of periodical functions whereas the function tψ(t) does not belong to
the same space. In the space of periodical functions the time operator ̂t, even in the eigen
representation, has to be also a periodical function of time t. This situation is quite similar to
the case of angular momentum (e.g., [68, 69]). Utilizing the example and result from [54], let
us choose, instead of t, a periodical function

̂t = t − T
∞
∑

n=o
Θ
(

t − [2n + 1]T
2

)

+ T
∞
∑

n=0

Θ
(

− t − [2n + 1]T
2

)

, (2.43)

which is the so-called saw-function of t (see Figure 1).
This choice is convenient because the periodical function of time operator (2.43) is

linear function (one-directional) within each Poincaré interval, that is, time conserves its
flowing and its usual meaning of an order parameter for the system evolution.

The commutation relation of the self-adjoint energy and time operators acquires in this
case (discrete energies and periodical functions) the form

[ ̂E, ̂t] = i�

{

1 − T
∞
∑

n=0

δ
(

t − [2n + 1]T
)

}

. (2.44)

Let us recall (see, e.g., [70, 71]) that a generalized form of uncertainty relation holds

(ΔA)2 · (ΔB)2 ≥ �
2[〈N〉

]2 (2.45)

for two self-adjoint operators ̂A and ̂B, canonically conjugate each to other by the commutator

[

̂A, ̂B
]

= i�̂N, (2.46)
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̂N being a third self-adjoint operator. One can easily obtain

(ΔE)2 · (Δt)2 ≥ �
2

⎡

⎣1 −
T
∣

∣ψ(T/2 + γ)
∣

∣

2

∫+T/2
−T/2

∣

∣ψ(t)
∣

∣

2
dt

⎤

⎦ , (2.47)

where the parameter γ (with an arbitrary value between −T/2 and +T/2 ) is introduced for
the univocality of calculating the integral on right part of (2.47) over dt in the limits from
−T/2 to +T/2, just similarly to the procedure introduced in [68] (see also [70, 71]).

From (2.47) it follows that when ΔE → 0 (i.e., when |gn| → δnn′) the right part of
(2.47) tends to zero since |ψ(t)|2 tends to a constant. In this case, the distribution of time
instants of wave packet passing through point x in the limits of one Poincaré cycle becomes
uniform. When ΔE  D and |ψ(T + γ)|2 � T

∫T/2
−T/2|ψ(t)|

2dt, the periodicity condition may be
inessential for Δt� T , that is, (2.47) passes to uncertainty relation (2.11), which is just the same
one as for systems with continuous spectra.

In principle, one can obtain the expression for the time operator (2.43) also in energy
representation. If one will calculate the mean value 〈t(x)〉 of instants of particle passing
through point x, then after a series of bulky transformations he will obtain the following
expression:

̂t =
i�

2

∑

n;>n
(−1)Nn−Nn′

↔
Δn′

Δn′εn
(2.48)

in the energy representation, where Nn =
(

εn − ε0)/D; the bilinear operation, denominated

by
↔
Δn, signifies

A∗n
↔
Δn′An = A∗nΔn′An −AnΔn′A

∗
n, Δn′An = An′ −An,

〈

t(x)
〉

=
∑∞

n=0 g
∗
nϕ
∗
n(x)̂tgnϕn(x)

∑∞
n=0

∣

∣gnϕn(x)
∣

∣

2
.

(2.49)

(Of course, one has to average over the flux density, but for the simplicity in this case it is
possible to make averaging over |Ψ(x, t)|2.) Operator (2.43) for two levels (n = 0, 1) acquires
the more simple form

̂t =
−i�
2

↔
Δ
Δε

, (2.50)

and when D = ε1 − ε0 → 0, the expression (2.50) passes to the differential form

̂t =
−i�
2

↔
∂
∂ε
, (2.51)

which coincides with (A.1) from Appendix A, that is, it is equivalemt to operator (2.1b) for
the continuous energy spectra.
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In general cases, for excited states of nuclei, atoms, and molecules, level distances in
discrete spectra have not strictly defined the maximal common divisor and hence, they have not the
strictly defined time of the Poincaré cycle. Also there is no strictly defined passage from the
discrete part of the spectrum to the continuous part. Nevertheless, even for those systems
one can introduce an approximate description (and with any desired degree of the accuracy
within the chosen maximal limit of the level width, let us say, γlim) by quasicycles with
quasiperiodical evolution and for sufficiently long intervals of time the motion inside such
systems (however, less than �/γlim) one can consider as a periodical motion also with any
desired accuracy. For them one can choose (define) a time of the Poincare’ cycle with any
desired accuracy, including in one cycle as many quasicycles as it is necessary for demanded
accuracy. Then, with the same accuracy the quasi-self-adjoint time operator (2.43) or (2.48) can
be introduced and all time characteristics can be defined.

In the degenerate case when at-the-state (2.42) the sum
∑∞

n=0 contains only one term
(

gn → δnn′), the evolution is absent and the time of the Poincare’ cycle is equal formally to
infinity.

If a system has both (continuous and discrete) regions of the energy spectrum, one
can easily use the forms (2.1a), (2.1b), and (2.26) for the continuous energy spectrum and the
forms (2.43) and (2.48) for the discrete energy spectrum.

3. Applications for Tunneling Phenomena

3.1. Introduction

The developments of the study of tunneling processes in nuclear physics (α-radioactivity,
nuclear subbarrier fission, fusion, proton radioactivity and so on), then in various other
fields of physics and especially the advent of high-speed electronic (and now microwave and
optical) devices, based on tunnelling processes, generated an interest in the tunnelling time
analysis and stimulated the publication of not only a lot of theoretical studies but already a lot
of theoretical reviews on tunneling times (e.g., [72–80], apart from [26, 27, 32–35, 47]). And
during many years, there had not been not only the consensus in the theoretical definition
of the tunneling time for particles, but also there had been some declarations about the
incompatibility of some approaches both quantitavely and in the physical interpretation.
Among the reasons of such situation there had been the following ones:

(i) the problem of defining the tunneling time is closely connected with general
fundamental problems of time as a quantum-physical observable and the general
definition of quantum-collision durations, and the acquaintance with the principal
solution of these problems had not got a wide prevalence yet till 2000–2004 (e.g.,
[47, 81]);

(ii) the motion of particles inside a potential barrier is a quantum phenomenon without
any direct classical limit (namely for particles);

(iii) there are essential physical and mathematical differences in initial, boundary, and
external conditions of various definition schemes.

Following [47, 80], we arrange the majority of approaches into several groups which
are based on (1) the time-dependent wave packet description; (2) averaging over an
introduced set of kinematic paths, distribution of which is supposed to describe the particle
motion inside a barrier; (3) introducing a new degree of freedom, constituting a physical
clock for measurements of tunnelling times. Separately, by one’s self, the dwell time stands.
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The last has ab initio the presumptive meaning of the time that the incident flux has to be
turned on, to provide the accumulated particle storage in the barrier [22, 80].

The first group contains the so-called phase times, firstly mentioned in [82, 83] and
applied to tunnelling in [84, 85], the times of the motion of wave packet spatial centroids,
earlier considered for general quantum collisions in [12–14, 86, 87] and applied to tunnelling
in [88, 89], and finally the Olkhovsky-Recami (O-R) method [26, 27, 32–35, 47, 90] of
averaging over unidirectional fluxes, basing on the representation of time as a quantum-
mechanical observable and on the generalization of the definitions, introduced in [21, 23–
25, 91] for atomic and nuclear collisions. The second group contains methods, utilizing
the Feynman path integrals [92–98], the Wigner distribution paths [99–102], and the Bohm
approach [103]. The approaches with the Larmor clock [104–107] and the oscillatory barrier
[108, 109] pertain to the third group.

Certainly, the basic self-consistent definition of tunnelling durations (mean values,
variances of distributions, etc.) has to be elaborated quite similarly to the definitions of
other physical quantities (distances, energies, momenta, etc.) on the base of utilizing all
necessary properties of time as a quantum-physical observable (time operator, canonically
conjugated to energy operator; the equivalency of the averaged quantities in time and energy
representations with adequate measures, or weights, of averaging). For such definition,
the description of solutions of the time-dependent Schroedinger equation by moving wave
packets, which are typical in quantum collision theory (e.g., [110]), is quite natural for
utilizing. Then one can expect that in the framework of the conventional quantum mechanics
every known definition of tunnelling times can be shown, after appropriate analysis, to
be (at least in the asymptotic region, used for typical boundary conditions in quantum
collision theory) either a particular case of the general definition or an equivalent one or the
definition which is valid not for tunnelling but for some accompanying process, different
from tunnelling.

Here such a definition with the necessary formalism is presented (Section 3.2) and
a brief comparison with various approaches is given (Sections 3.3–3.5), basing on the O-R
formalism. In Section 3.6 the Hartman and Fletcher effect, with its generalization and its
violations, is described. The tunneling through a double barrier is described in Section 3.7.
The particle tunneling through three-dimensional barriers is presented in Section 3.8. The
quaternion description of tunneling phenomena is mentioned in Section 3.9.

3.2. The O-R Formalism of Defining Tunnelling Durations, Based on
Utilizing Properties of Time as a Quantum-Mechanical Observable

We confine ourselves to the simplest case of particles moving only along the x-direction, and
consider a time-independent barrier in the interval (0, a);—see Figure 1, in which a larger
interval

(

xi, xf), containing the barrier region, is also indicated.
As it is well known, in the case of a rectangular potential barrier of the height V0, the

stationary wave function for a particle with mass m and energy E < V0 has the usual form
(e.g., [26, 27, 32, 47, 72–81, 90] and a lot of other papers):

ψ(k, x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp(ikx) +AR exp(−ikx), x ≤ 0 (region I),

α exp(−χx) + β exp(χx), 0 ≤ x ≤ a (region II),

AT exp(ikx), x ≥ a (region II),

(3.1)
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where k = (2mE)1/2/�, χ = [2m
(

V0 − E)]1/2
/�, AR, α, β and AT are the amplitudes of the

reflected, evanescent, antievanescent and transmitted waves, respectively.
Inside a barrier here we have not usual propagating waves but a superposition of

an evanescent (decreasing) and antievanescent (growing) waves with an imaginary wave
number iχ. Just for this reason, for particle tunnelling (with subbarrier energies) through a
barrier any direct classical limit does not really exist. However, one can see the direct classical
limit for waves (more strictly, for time-dependent wave packet tunnelling, considered later).
And we can remind real evanescent and antievanescent waves inside the layers with lesser
refraction numbers between the layers with larger refraction numbers in the cases of the
frustrated total internal reflection, well known in classical optics and in classical acoustics.

Following the definition of collision durations, put forth firstly in [21, 23–25, 91] and
afterwards generalized in [26, 27, 32–35, 47] (see also [81]), we can eventually define the
mean values of the time at which a particle passes through position x, travelling in the
positive or negative direction of the x-axis, and the variances of the distributions of these
times, respectively, as

〈t±(x)〉 =
∫∞
−∞tj±(x, t)dt
∫∞
−∞j±(x, t)dt

,

Dt±(x) =
∫∞

−∞
t2j±(x, t)dt,

(3.2)

j±(x, t) being the positive or negative values, respectively, of the probability flux density
j(x, t) = Re[(i�/m)Ψ(x, t)∂Ψ∗(x, t)/∂x] for an evolving time-dependent normalized wave
packet Ψ(x, t). We recall here the equivalence of canonically conjugated time and energy
representations, with appropriate measures of averaging, in the following sense: 〈· · · 〉t =
〈· · · 〉E (index t is omitted in all expressions for 〈· · · 〉t for the sake of the simplicity). This
equivalence is a consequence of the unique time-operator existence.

For transmissions from region I to region III we have

〈

τT
(

xi, xf
)〉

=
〈

t+
(

xf
)〉

−
〈

t+
(

xi
)〉

, (3.3)

DτT
(

xi, xf
)

= Dt+
(

xf
)

+Dt+
(

xi
)

, (3.4)

with −∞ < xi ≤ 0 and a ≤ xf <∞. For a pure tunnelling process one has

〈

τtun(0, a)
〉

=
〈

t+(a)
〉

−
〈

t+(0)
〉

,

Dτtun(0, a) = Dt+(a) +Dt+(0).
(3.5)

Similar expression we have for the penetration (into the barrier region II) temporal quantities
〈τpen(xi, xf)〉 and Dτpen(xi, xf) with 0 < xf < a. For reflections in any point xf < a one has

〈

τR
(

xi, xf
)〉

=
〈

t−
(

xf
)〉

−
〈

t+
(

xi
)〉

,

DτR
(

xi, xf) = Dt−
(

xf
)

+Dt+
(

xi
)

.
(3.6)
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We stress that these definitions hold within the framework of conventional quantum
mechanics, without introducing any new physical postulate.

In the asymptotic cases, when |xi|  a,

〈

τas
T

(

xi, xf
)〉

=
〈

t
(

xf
)〉

T
−
〈

t
(

xi
)〉

in, (3.7)
〈

τas
T

(

xi, xf
)〉

=
〈

τT
(

xi, xf
)〉

+
〈

t+
(

xi
)〉

−
〈

t
(

xi
)〉

in, (3.8)

where 〈· · · 〉T and 〈· · · 〉in denote averagings over the fluxes corresponding to ψT =
AT exp(ikx) and ψin = exp(ikx), respectively.

For initial wave packets

Ψin(x, t) =
∫∞

0
G
(

k − k
)

exp
(

ikx − iEt
�

)

dk, (3.9)

(where E = �
2k2/2m,

∫∞
0 |G(k − k)|

2
dE = 1, G(0) = G(∞) = 0, k > 0) with sufficiently small

energy (momentum) spreads when

∫∞

0
vn

∣

∣GAT

∣

∣

2
dE ∼=

∫∞

0
vn|G|2dE, n = 0, 1, v =

�k

m
, (3.10)

we get

〈

τas
T

(

xi, xf
)〉 ∼=

〈

τPh
T

(

xi, xf
)〉

E
, (3.11)

where

〈· · · 〉E =

∫∞
0 dEv

∣

∣G(k − k)
∣

∣

2
· · ·

∫∞
0 dEv

∣

∣G(k − k)
∣

∣

2
,

τPh
T

(

xi, xf
)

=
(

1
v

)

(

xf − xi
)

+
�d(argAT

)

dE

(3.12)

are the phase transmission time obtained by the stationary-phase approximation. At the same
approximation and with a small contribution of Dt+(xi) into the variance DτT (xi, xf) (that
can be realized for sufficiently large energy spreads, i.e., short wave packets) we get

DτT
(

xi, xf
)

=
�

2〈(d
∣

∣AT

∣

∣/dE
)2〉

E
〈∣

∣AT

∣

∣

2〉

E

. (3.13)

For the opposite case of very small energy spreads (quasimonochromatic particles) it follows
that, instead of the expression (3.13), the general expression (3.4) becomes just the item of
Dt+(xi) plus DτT (xi, xf) which is born by the barrier influence and formally is described by
(3.13).
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At the quasimonochromatric limit |G|2 → δ(E − E), E being �
2k

2
/2m, we get

for 〈τas
T (xi, xf )〉 ∼= 〈τPh

T (xi, xj)〉E strictly the ordinary phase time, without averaging. For
a rectangular barrier with height V0 and χa  1 (where χ = [2m(V0 − E)]1/2/�), the
expressions (3.11) and (3.13), for xi = 0, xf = a and am/�k  Dt+(xi), pass into the known
expressions

τPh
tun =

2
vχ

(3.14)

(coincident with the phase time [26, 27, 47, 83]), and

(

DτPh
tun

)1/2
=
ak

vχ
(3.15)

(coincident with one of the Larmor times [104–107] and the Buettiker-Landauer time [108]
and also with the imaginary part of the complex time in the Feynman path-integration
approach: see later Section 3.5), respectively.

For real weight amplitude G(k − k), when 〈t(0)〉in = 0, from (3.8) we obtain

〈

τtun(0, a)
〉

=
〈

τPh
tun

〉

−
〈

t+(0)
〉

. (3.16)

By the way, if the measurement conditions are such that only the positive-momentum
components of wave packets are registrated, that is, Λ+Ψ(xi, t) = Ψin(xi, t), Λ+ being the
projector onto positive-momentum states, then for any xi from (−∞, 0) and xf from (a,∞)

〈

τT
(

xi, xf
)〉

+ =
〈

τPh
T

(

xi, xf
)〉

E
, (3.17)

〈

τtun(0, a)
〉

+ =
〈

τPh
tun

〉

E, (3.18)

because 〈t(0)〉+ = 〈t(0)〉in.
In the particular case of quasimonochromatic electromagnetic wave packets, using

the stationary-phase method under the same boundary and measurememt conditions as
considered for particles, we obtain the identical expression for the phase tunnelling time

τPh
tun,em =

2
c
χem for χem a 1. (3.19)

From (3.19), we can see that when χema > 2 the effective tunnelling velocity

veff
tun =

a

τPh
tun,em

(3.20)

is more than c, that is, superluminal. This result agrees with the results of the microwave-
tunnelling measurements presented in [111–113] (see also [114] where moreover, the
effective tunnelling velocity was identified with the group velocity of the final wave packet
corresponding to a single photon).
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3.3. Analysis of the Mean Dwell Time in the Light of
the Olkhovsky-Recami Formalism

In Section 2, it was analyzed the meaning of two forms of the expression for the mean dwell
time (2.36a) and (2.36b) from Section 2. Taking into account that the total flux j

(

xi, t) =
jin(xi, t) + jR(xi, t) + jint(xi, t) and j(xf , t) = jT (xf , t) with jin, jR and jT corresponding to
the wave packets Ψin(xi, t), ΨR(xi, t) and ΨT (xf , t), constructed from the stationary wave
functions ψin, ψR = AR exp(−ikx) and ψT , respectively, and also

jint(x, t) = Re

{

(

i�

m

)[Ψin(x, t)∂Ψ∗R(x, t)
∂x

+
ΨR(x, t)∂Ψ∗in(x, t)

∂x

]

}

,

∫∞

−∞
jint

(

xi, t
)

dt = 0.

(3.21)

One obtains from (2.36a) and (2.36b) of Section 2,

〈

τDw(xi, xf
)〉

= 〈T〉E
〈

τT
(

xi, xf
)〉

+
〈

R
(

xi
)〉

E

〈

τR
(

xi, xf
)〉

, (3.22)

with 〈T〉E = 〈|AT |2v〉E/〈v〉E, 〈R(xi)〉E = 〈R〉E + 〈r(xi)〉, 〈R〉E = 〈|AR|2v〉E/〈v〉E, 〈T〉E +
〈R〉E = 1, and

〈

r(x)
〉

=

∫∞
−∞

[

J+(x, t) − Jin(x, t)
]

dt
∫∞
−∞Jin(x, t)dt

. (3.23)

One can see that 〈r(x)〉 is negative and tends to 0 when x tends to −∞.
When Ψin(xi, t) and ΨR(xi, t) are sufficiently well separated in time, so that 〈r(xi)〉 = 0,

it follows from (3.22) that the simple weighted average rule

〈

τDw(xi, xf
)〉

= 〈T〉E
〈

τT
(

xi, xf
)〉

+ 〈R〉E
〈

τR
(

xi, xi
)〉

(3.24)

is valid. For a rectangular barrier with χa  1 and quasimonochromatic particles, the
expressions (3.22) and (3.24) with xi = 0 and xf = a pass to the known expressions

〈

τDw(xi, xf
)〉

=
〈

�k

χV0

〉

E

, (3.25)

(taking account of the interference term 〈r(xi)〉)

〈

τDw(xi, xf
)〉

=
〈

2
χv

〉

E

(3.26)

(when the interference term 〈r(xi)〉 is equal to 0).
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Figure 2: Schematic view of particle scattering and tunneling through a potential barrier.
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Figure 3: Orientations of spin amd magnetic field for the case of the “Larmor clock”.

When AR = 0, that is, a barrier is transparent, the mean dwell time (3.22) is
automatically equal to

〈

τDw(xi, xf
)〉

=
〈

τT
(

xi, xf
)〉

. (3.27)

It is not clear how to define directly the variance of the dwell-time distribution. The
approach, proposed in [115], is rather sophisticated, withan artificial abrupt switching on
the initial wave packet. It is possible to define the variance of the dwell-time distribution
indirectly, in particular, by means of relation (3.22), with the help of the variances of the
transmission-time and reflection-time distributions, or by means of relation (2.36a) from
Section 2, with the help of the variances of the positions x1 and x2.

3.4. Analysis of the Larmor and Buettiker-Landauer Clocks

One can often realize that the introducing of additional degrees of freedom as “clocks” does
in a certain degree distort the true values of the tunnelling time. The Larmor clock uses
the phenomenon of changing the spin orientation (the Larmor precession or spin-flip) in
a weak homogeneous magnetic field covered the barrier region. If initially the particle spin
is polarized in the x direction, after tunnelling the spin develops small y and z components
(see Figure 3).

The Larmor times τLa
y,T and τLa

z,T are defined by the ratio of the spin-rotation angles
around axes z and y (in turn defined by the developed y- and z-spin components, resp.) to
the precession (rotation) frequency.

As to τLa
z,T , in the reality it is not a precession but a jump to position “spin-up” or

“spin-down” (spin-flip) accompanied by the Zeeman energy-level splitting [79, 104, 105].
Due to the Zeeman splitting, the component of the spin, that is parallel to the magnetic
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field, corresponds to a higher tunnelling energy and hence tunnels preferentially, and namely
therefore one can realize that this time is connected with the energy dependence of |AT | and
coincides with the expression (3.15) (of course, at the same approximations when (3.15) is
valid).

For an opaque rectangular barrier with χa 1 the expressions

〈

τLa
y,tun

〉

=
〈

τDw(xi, xf
)〉

=
〈

�k

χV0

〉

E

, (3.28)

〈

τLa
z,tun

〉

=
〈

ma

�χ

〉

E

(3.29)

(for mean Larmor times) had been obtained in [79, 101–103].
In [26, 27, 32, 116], it was noted that, if the magnetic field region is infinite, the

expression (3.28) passes into the expression (3.14) for the phase tunnelling time, after
averaging over the small energy spread of the wave packet.

The work of the Buttiker-Landauer clock is connected withthe modulation cycle
(absorption or emission of modulation quanta) caused by the oscillating part of a barrier,
during tunneling. Also in this case one can realize that the coincidence of the Buttiker-
Landauer time with (3.15) is connected withthe energy dependence of |AT | for the same
reasons as for 〈τLa

z,tun〉.

3.5. Analysis of the Mean Tunnelling Times, Defined by
Averaging over Kinematic Paths

The Feynman path-integral approach to quantum mechanics was applied in [92–98] to study
and calculate the mean tunnelling time averaged over all possible paths, that have the same
beginning and end, with the complex weight factor exp[iS(x(t))/�], where S is the action
associated with the path x(t). Namely, such weighting of tunnelling times implies their
distribution with a real and an imaginary component [79]. In [92], the real and imaginary
parts of the obtained complex tunnelling time were found to be equal to 〈τLa

y,tun〉 and 〈τLa
z,tun〉,

respectively.
An interesting development of this approach, the instanton version, is presented in

[97, 98]. The instanton-bounce path is a stationary point of the Euclidean action. The latter
is obtained by the analytic continuation to imaginary time in the Feynman-path integrals
containing the factor exp(iS/�). This path obeys a classical equation of motion in the potential
barrier with the sign reversed. In [97, 98], the instanton bounces were considered as real
physical processes. The bounce duration was calculated in real time and was found to be in
good agreement with the one evaluated by the phase-time method. The temporal density of
bounces was estimated in imaginary time and the obtained result coincided with (3.13) for
the square root of the distribution variance at the limit of the phase-time approximation. Here
one can see a manifestation of the virtual equivalence of the Schroedinger representation and
the Feynman path-integral approach to quantum mechanics.

Another definition of the tunnelling time is connected with the Wigner distribution
paths [99–102]. The basic idea of this approach, finally formulated by Muga, Brouard, and
Sala, is that the distribution of the tunnelling times in the dynamical evolution of wave
packets through barriers can be well approximated by a classical ensemble of particles with
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a certain distribution function, namely the Wigner function f(x, p), so that the flux at position
x can be separated into positive and negative components:

J(x) = J+(x) + J−(x), (3.30)

with J+(x) =
∫∞

0 (p/m)f(x, p)dp and J− = J − J+. Then formally the same expressions (3.3),
(3.5), and (3.6) for the transmission, tunneling, and penetration durations and so on, as in the
O-R formalism, were obtained with the substitution of J± instead of our J±. The dwell time
decomposition in this approach takes the form

〈

τDw(xi, xf
)〉

= 〈T〉E
〈

τT
(

xi, xf
)〉

+
〈

RM

(

xi
)〉

E

〈

τR
(

xi, xf
)〉

, (3.31)

with RM(x) =
∫∞

0 |J
−(x, t)|dt. Asymptotically, RM(x) tends to 〈R〉E and (3.31) takes formally

the known form (3.24).
One more alternative is the stochastic method for wave packets [108]. It also leads to

real times but its numerical implementation is not trivial [109].
In [110], the Bohm approach to quantum mechanics was used to choose a set of

classical paths which do not cross. The Bohm formulation can provide, on the one hand,
a strict equivalent to the Schroedinger equation, and on the other hand, a base for the
nonstandard interpretation of quantum mechanics [79]. The obtained in [110] expression
for the mean dwell time is not only positive definite but gives the unambiguous distinction
between particles that are transmitted or reflected:

τDw
(

xi, xf
)

=
∫∞

0
dt

∫x2

x1

∣

∣Ψ(x, t)
∣

∣

2
dx = TτT

(

xi, xf
)

+ RτR
(

xi, xf
)

, (3.32)

with

τT
(

xi, xf
)

=
∫∞

0
dt

∫x2

x1

∣

∣Ψ(x, t)
∣

∣

2Θ
(

x − xc
)

dx/T,

τR
(

xi, xf
)

=
∫∞

0
dt

∫x2

x1

∣

∣Ψ(x, t)
∣

∣

2Θ
(

xc − x
)

dx/R,

(3.33)

where T and R are here the mean transmission and reflection probability, respectively, the
bifurcation line xc = xc(t), separating transmitted and reflected trajectories, is defined by
relation

T =
∫∞

−∞

∣

∣Ψ(x, t)
∣

∣

2Θ
(

x − xc
)

dx. (3.34)

Factually, in addition to the difference in the temporal integration in this and our formalisms
(
∫∞

0 dt and
∫∞
−∞dt, resp.), sometimes essential, this approach gives one more alternative—in

separating the flux by the line xc:

J(x, t) =
[

J(x, t)
]

T + [J(x, t)]R, (3.35)
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with

[

J(x, t)
]

T = J(x, t)Θ
(

x − xc(t)
)

,
[

J(x, t)
]

R = J(x, t)Θ
(

xc(t) − x
)

.
(3.36)

3.6. On the Hartman and Fletcher Effect, Its Generalization and Its Violations

Firstly the Hartman and Fletcher effect (HFE) was revealed and studied in [84, 85] within
the stationary-phase method for a 1D motion of quasimonochromatic nonrelativistic particles
tunnelling through potential barriers. It consists in the absence of the dependence of the phase
tunnelling time

τPh
tun =

�d
(

argAT + ka
)

dE
, (3.37)

(which is the mean tunnelling time 〈τtun〉 within the stationary-phase method when it is
possible to neglect the interference between incident and reflected waves out of a barrier
[26, 27, 32], AT and E = �

2k2/(2m) being the transmission amplitude and the particle
kinetic energy, resp.) on the barrier width a for sufficiently large a. In particular, for a
rectangular potential barrier AT = 4ikχ[(k2 − χ2)D− + 2ikχD+]

−1 exp[−(κ + iχ)a], D± =
1 ± exp(−2χa), χ = [2m(V0 − E)]1/2/�, V0 being the barrier height, and τPh

tun → 2/(υχ)
when χa 1 (υ = �k/m is the particle velocity before entering into a barrier).

Now we will test the validity of HFE for all other known theoretical expressions for
mean tunnelling times. If we firstly take from the mean dwell time 〈τDw

tun 〉, the mean Larmor
time 〈τLy,tun〉 and the real part of the complex tunnelling time obtained by averaging over
the Feynman paths Re τFtun, which are equal �k/(χV0) for quasimonochromatic particles and
opaque rectangular barriers, we immediately easily see that also in these cases there is no
dependence on the barrier width and consequently HFE is valid.

The validity of HFE for the mean tunnelling time within the O-R approach, is directly
seen from the expression

〈

τtun
〉

=
〈

t+(a)
〉

−
〈

t+(0)
〉

=
〈

τPh
tun

〉

E −
〈

t+(0)
〉

, (3.38)

(where 〈· · · 〉E denotes averaging over the initial wave-packet energy spread and

〈

t±(x)
〉

=

∫∞
−∞tj ± (x, t)dt
∫∞
−∞j ± (x, t)dt

with j ± (x, t) = Θ(±j)j(x, t), (3.39)

j(x, t) being the probability flux density for a wave packet moving along axis x through a
barrier located in the interval (0, a) and it was confirmed in [26, 27, 32–35, 47] by numerous
calculations for gaussian electron wave packets with narrow momentum spreads (see also
Section 3.6).
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Figure 4: The dependences of 〈τtun(0, a)〉, 〈τPh
tun〉 and 〈t+(0)〉 from a.

As to the other Larmor time τLz,tun, from Sections 4.2 and 3.4 it follows that

τLz,tun = �

[
〈

(d
∣

∣AT

∣

∣/dE)2〉

〈∣

∣AT

∣

∣

2〉

]1/2

, (3.40)

the Bttiker-Landauer time τB−Ltun [111–113], and the imaginary part of the complex tunnelling time
Im τFtun [92], obtained within the Feynman approach, which are equal to (3.39), they become
equal to am/(�χ), that is, proportional to the barrier width a, in the opaque rectangular
barrier limit (as one can see from (3.15) and (3.29)). These times are not mean times but mean-
square fluctuations in the tunnelling-time distribution because they are equal to [Ddynτtun]

1/2

where Ddynτtun is the dynamical tunneling-time variance caused by the barrier influence only
and defined by the equation Ddynτtun = Dτtun −Dt+(0) with Dτtun = 〈τ2

tun〉 − 〈τtun〉2, 〈τ2
tun〉 =

〈[t+(a) − 〈t+(0)〉]2〉 +Dt+(0) (it was shown in [26, 27, 33–35]). Hence, they are not connected
with the peak (or group) velocities of tunnelling particles but with the relevant tunneling
velocity distribution over the barrier region.

In Figure 4 the dependences of the values of 〈τtun(0, a)〉 from a are presented for
electronic wave packets and rectangular barriers with the same parameters as in [47] (V0 =
10 eV; mean electron energies E = 2.5, 5, 7.5 eV with Δk = 0.02 A−1 (curves 1a, 2a, and 3a,
resp.); energy E = 5 eV with k = 0.04 A−1 and 0.06 A−1 (curves 4a and 5a, resp.)). The
curves 〈τPh

tun〉 corresponding to different energies and Δk merge practically into one curve
6. Since the dependence of 〈τPh

tun〉 from a is very weak, the dependence of 〈τtun(0, a)〉 from a is
defined mainly by the dependence of 〈t+(0)〉 from a (curves 1b–5b, correspondent to 1a–5a,
resp.).
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All these calculations manifest the negative values of 〈t+(0)〉. Such “acausal” advance
can be interpreted as a result of the superposition and interference of incoming and reflected
waves. The reflected-wave packet extinguishes the back edge of the incoming-wave packet,
and the larger is the barrier width, the larger is the part of the back edge of the incoming-
wave packet which is extinguished by the superimposing reflected-wave packet, -up to
the saturation when the contribution of the reflected wave packet becomes almost constant
and independent from a. Since all 〈t+(0)〉 are negative, the values of 〈τtun(0, a)〉 are always
positive and, moreover, larger than 〈τPh

tun〉, in accordance with (3.16).
All presented here results are obtained for transparent media (without absorption

and dissipation). As it was theoretically demonstrated in [114] in nonrelativistic quantum
mechanics, HFE vanishes for barriers with absorption. As it follows from [114], if one describes
the absorption by adding the imaginary term −iV1 (V1 > 0) to V0, then for small absorptions,
when V1 � V0 and V1m

1/2vχa/[2(V0 − E)]3/2 � 2, HFE does not vanish and remains
practically valid. This was confirmed experimentally for electromagnetic (microwave)
tunnelling in [115].

Now we will consider wave packets with large momentum spreads and with the initial
condition of the wave-packet center motion from the distant point x = x0 (with |x0|  a) at
the instant t = 0 in order to analyze the influence of rather strong wave-packet time spreading
before the entering into the barrier [117].

First, we will formulate explicitly initial conditions which take into account the
irreversibility of the wave packet spreading. Further, we will propose a particularly
convenient form of the O-R tunnelling time which allows the control of the accuracy in
numerical calculations. Finally, we will present and explain the strong decrease shown by
the tunneling time as the momentum spread increases, in such condition that we can say that
the the Hartman and Fletcher effect is violated. We analyze the case of the 1D tunnelling of
particles along the x axis through a rectangular potential barrier with height V0, localized in
the interval [0, a]. The chosen here stationary wave function for a particle with mass m and
energy E < V0 has the usual form (3.1). The time dependent wave packet ψ(x, t) is formed
with wave functions (3.1):

Ψ(x, t) =
∫∞

0
g0(k)ψ(k, x) exp

(

− iEt
�

)

dk, (3.41)

with the weight amplitude

g(k) = g0(k) exp
[

− i
(

k − k0
)

x0
]

= C exp
{

−
[

(

k − k0
)

2Δk

]2

− i
(

k − k0
)

x0

}

, (3.42)

C = [(2π)3/2Δk]−1/2 being the normalization coefficient. Here, since in calculations the only
subbarrier part of the wave packet was considered, integrating over k in (3.42) had to be
made at the limits from 0 to (2mV0)

1/2/� [117].
The initial wave function turns out to be

Ψin(x, t) ∼= C0s
−1/2
in exp

{

−
[

x −
(

x0 + νt
)]2

2sin
+
ik0x − iE0t

�

}

, (3.43)
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whose center transits from point x = x0 at the instant t = 0, moves along axis x from the left
to the right with the velocity v and in the absence of barrier crosses the point x = 0 at the
instant t0 = −x0/v.

The flux density j(x, t) = Re[(i�/2m)Ψ(x, t)∂Ψ∗(x, t)/∂x], as usually in the O-R
method, has been considered as a function of the arrival times at point x, so that the mean
time instant for particles passing through point x = a (the mean time of the particle exit from
the barrier), has been chosen as

〈

t(a)
〉

=

∫∞
0 tj(a, t)dt
∫∞

0 j(a, t)dt
, (3.44)

while the mean time instant for particle passing through point x = 0 (the mean time of the
particle entrance into the barrier) is defined by relation

〈

t+(0)
〉

=

∫∞
0 tj+(0, t)dt
∫∞

0 j+(0, t)dt
, (3.45)

where j+(0, t) represents the positive values of the flux density j(0, t), corresponding,
therefore, to particles moving through point x = 0 from left to right (entering the barrier),
and the integrals have been limited to positive times only, due to initial condition (3.43).

The tunnelling time τ is then defined as τ = 〈t(a)〉 − 〈t+(0)〉.
The flux density j(a, t) contains the wave function

Ψ(a, t) =
∫∞

0
g(k)ψT (ka) exp

(

− iEt
�

)

dk, (3.46)

where ψT (k, a) is the value of the stationary wave function (3.1) at point x = a, corresponding
to the transmitted wave. Using the usual expression for the amplitude of the transmitted
wave, we can ψT (k, a) represent in the form

ψT (k, a) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2ikχ
D<

, E < V0,

2iikq
D>

, E > V0,

(3.47)

where q = [2m
(

E − V0)]
1/2
/�,

D< =
(

k2 − χ2)sinh(χa) + 2ikχ cosh(χa),

D> =
(

k2 + q2) sin(qa) + 2ikq cos(qa).
(3.48)

The normalization integral in (3.45),

Na =
∫∞

0
j(a, t)dt (3.49)
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can be evaluated using (3.42), (3.46), and (3.47):

Na =
�

m
Re

{∫∞

0
dkg(k)ψT (k, a)

∫∞

0
dk′k′g

(

k′
)

ψT
(

k′, a
)

∫∞

0
exp

[

− i �

2m
(

k2 − k′2
)

t

]

dt

}

.

(3.50)

If x0 is chosen sufficiently far from the left of the barrier, the contribution of j(a, t) in the
integral (3.49) from t ≤ 0 is negligible small. In this case, the lower integration limit over t in
(3.50) can be taken as −∞. Then the integration over time gives 2π(m/�k)δ(k − k′) and the
integral (3.50) can be cast in the form

Na = 2π
∫∞

0
g2

0(k)
∣

∣ψT (k, a)
∣

∣

2
dk, (3.51)

where

∣

∣ψT (k, a)
∣

∣

2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

4k2χ2

4k2χ2 + V 2
0 sinh2(χa)

, E < V0,

4k2q2

4k2q2 + V 2
0 sin2(qa)

, E > V0.

(3.52)

Now we evaluate the integral

Ia =
∫∞

0
tj(a, t)dt. (3.53)

Using (3.50) and (3.51), we can write

Ia =
�

m
Re

{∫∞

0
dkg(k)ψT (k, a)

∫∞

0
dk′g

(

k′
)

ψT
(

k′, a
)

∫∞

0
k′t exp

[

− i �

2m
(

k2 − k′2
)

t

]

dt

}

,

(3.54)

which can be set in the form

Ia = 2π
m

�

∫∞

0
g2

0(k)
1
k

{

ψ1(k, a)ψ ′2(k, a) − ψ2(k, a)ψ ′2(k, a) − x0
∣

∣ψ(k, a)
∣

∣

2}
dk, (3.55)

where ψ1(k, a) ≡ ReψT (k, a), ψ2(k, a) ≡ ImψT (k, a). After differentiating (3.47) over k, one
can see the following:

ψ1ψ
′
2 − ψ ′1ψ2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−8k2χ

[

k2(k2 − χ2)χa − V 2
0 cosh(χa)sinh(χa)

]

[

4k2χ2 + V 2
0 sinh2(χa)

]2
, E < V0,

8k2q

[

k2(k2 + q2)qa − V 2
0 cos(qa) sin(qa)

]

[

4k2q2 + V 2
0 sin2(qa)

]2
, E > V0.

(3.56)
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Figure 5: The tunneling time τ as a function of the barrier depth a, for different values of Δk: (a) Δk =
0.01 Å, (b) Δk = 0.05 Å, and (c) Δk = 0.1 Å.

From (3.51) and (3.56) it follows that, with an appropriate choice of x0, the mean instant
〈t(a)〉 can be defined by the simple relation

〈

t(a)
〉

=
m

�

∫∞

0
g2

0
1
k

[

ψ1ψ
′
2 − ψ2ψ

′
1 − x0

∣

∣ψT
∣

∣

2]
dk/

∫∞

0
g2

0

∣

∣ψT
∣

∣

2
dk. (3.57)

As regards the calculation of τ0, the wave function entering the flux density j(0, t) is

ψ(0, t) =
∫∞

0
g(k)

[

1 +AR(k)
]

exp
(

− iEt
�

)

dk, (3.58)

where

AR(k) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

V0 sinh(χa)
D<

, E < V0,

V0 sin(qa)
D>

, E > V0.

(3.59)

Since for calculating 〈t+(0)〉 we consider only the positive values of j(0, t), the integrals I+ =
∫∞
−∞tj+(0, t)dt and N+ =

∫∞
−∞j+(0, t)dt in (3.45) can be obtained only numerically.

Figure 5 shows the results of the calculations of the tunnelling time τ as a function of
the width a of the barrier, for electrons with energy E0 = 5 eV through the rectangular barrier
of potential with height 10 eV and x0 = −6/Δk. We can see the manifestation of the HFE for
Δk = 0.01 Å−1 (curve (a)), with the asymptotic behavior of the tunneling time approaching
the constant value with increasing a. Curves (b) and (c) show, on the contrary, the strong
decrease presented by the tunneling times when the wave packets are characterized by larger
momentum spread Δk = 0.05 Å−1 and Δk = 0.1 Å−1. For Δk = 0.1 Å−1 the tunneling time is
even negative. The violation of the HFE is strongly evident.
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Figure 6: Qualitative description of the time shift between peaks tf , t′f , and t′′
f
, and t0, t

′
0, and t′′0 for the

probability density ρ(x = a, t) and ρ(x = 0, t) of a wave packet.

This effect can be explained with the following reasons [117]: the time spread of the
Gaussian wave packet (3.43) is described by the relation

Δt ∼= Δ0t

{

1 +

[

(Δv)2m

2�

]2

t2
}1/2

, (3.60)

where Δ0t ∼ �/ΔE, Δv = �Δk/m. The value of Δt strongly increases in time t for
large velocity spread Δv. So, the center of the initial wave packet during wave-packet
approaching the barrier and increasing time t will appear even farther due to the essentially
stronger increase of Δt with time t (proportional to Δk for large t) than the decrease of |x0|,
proportional to 1/Δk. For the center of the transmitted wave packet in point x = a such
delay has to be considerably smaller because the value τ is smaller than the limited value τph

(τph being the phase tunnelling time) due to the advance caused by the difference between
j+(0, t) and jin(0, t), jin being Re[(i�/2m)Ψin(∂Ψ∗in/∂x)] (see, in particular, [26, 27]). So, one
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can expect that the time interval between the transit of the center of the wave packet through
the entrance and the exit of the barrier has to be smaller than in the case of the validity of the
HFE, that is, for sufficiently large velocity spreads Δv becoming even negative.

Figure 2 shows qualitatively the behavior of the time shift of the outgoing wave packet
with respect to the ingoing wave packet with different momentum spread Δk. t0, t′0, t

′′
0

represent the time instants when the wave packet peak passes through the initial point x = 0
of the barrier. tf , t′f , and t′′f represent the transit time through the final point x = a of the
barrier.

In any case a point of the wave packet preparation has to be located at some finite
distance from the barrier and therefore the wave packet center arrives to the barrier during a
finite time interval. A wave packet is spreading during its motion and its width does always
remain a finite one.

In conclusion, the O-R definition with strictly formulated initial conditions can be
especially useful for investigations of the particle tunnelling accompanied by the quantum
dissipation. A strong decrease of tunneling times, much more strong than in the case of
the validity of the HFE, for wave packets with the large momentum spread can be easily
explained by the sufficiently rapid spreading of such wave packets during the initial motion
before the entrance into the barrier and also inside the barrier.

Some authors (see, e.g., [118–121]) have extended the study of particle tunneling
phenomena to a completely relativistic case, using the Dirac equation. All these papers
indicate the apparent superluminal tunneling through opaque barriers, showing a behavior
similar to that of the HFE.

However, the complete review of the Dirac relativistic tunneling has to include the
so-called Klein paradox when the reflection coefficient is greater than 1 and when the
transmission coefficient has nonvanishing values (see, e.g., the papers [122–126]). Its origin
is now usually described as the electropositron pair production for large potential step but it
is not possible to develop a simple relationship between the time-dependent pair production
process with a finite lifetime and the time-independent transmission coefficient in general. The
problem of the Klein paradox and the Klein tunneling has to be studied in a self-consistent
way and reviewed separately in another paper.

3.7. Tunneling through a Double Barrier

In this section, we confine ourselves by the approximation of not taking into account
the multiple internal reflections between two separated barriers. Some words on such
considering will be said at the end of Appendix F (before the subdivision, the case of photon
tunneling).

Phase Time of Nonresonant Tunneling through Two Opaque Barriers

Now let us consider the stationary solution for 1D tunneling of a particle with mass m and
kinetic energy E = �

2k2/2m = mv2/2, through two equal rectangular barriers with height
V0 (V0 > E) and width a, the quantity l being the distance between them see Figure 7. The
stationary Schroedinger equation is

−�
2

2
∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x), (3.61)
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Figure 7: Tunneling through two successive potential berriers.

where V (x) = 0 outside the barriers and V (x) = V0 inside the potential barriers. In various
regions I (x ≤ 0), II (0 ≤ x ≤ a), III (a ≤ x ≤ l + a), IV (l + a ≤ x ≤ l + 2a), and V (x ≥ l + 2a),
the solutions of (3.61) are the following:

ψI = eikx +A1Re
−ikx,

ψII = α1e
−χx + β1e

χx,

ψIII = A1T
[

eikx +A2Re
−ikx],

ψIV = A1T
[

α2e
−χ(x−l−a) + β2e

χ(x−l−a)],

ψV = ATe
ikx, AT ≡ A1TA2T,

(3.62)

where χ = [2m(V0 − E)]1/2/�, and quantities A1R, A2R, A1T, A2T, α1, α2, β1, and β2 are the
reflection amplitudes, the transmission amplitudes, and the coefficients of the “evanescent”
(decreasing) and “antievanescent” (increasing) waves for barriers 1 and 2, respectively. These
8 quantities can be easily obtained from 8 matching (continuity) conditions for the functions
ψI,II,III,IV,V and their derivatives dψI,II,III,IV,V/dx at points x = 0, a, l + a, l + 2a. The obtained
expressions for them for opaque barriers, when χa → ∞, are

A1R −→
ik + χ
ik − χ, A1T −→ e−χae−ik(l+a)A,

α1 −→
2ik
ik − χ, β1 −→ e−2χa(k − iχ)sin kl

χ
A,

A2R −→ e2ik(l+a) ik + χ
ik − χ, A2T −→ e2ik(l+a) −4ikχ

(ik − χ)2
,

α2 −→ eik(l+a)
2ik
ik − χ, β2 −→ eik(l+a)−2χa−2ik(ik + χ)

(ik − χ)2
,

(3.63)

where

A =
2kχ

2kχ cos kl +
(

χ2 − k2
)

sin kl
. (3.64)

From (3.63) one can derive that the phase tunneling time is

τPh
tun = �

∂ arg
[

ATe
ik(l+2a)]

∂E
−→ 2

vχ
, (3.65)
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which is precisely the same as for one barrier and does not depend not only on the width a of
the opaque barrier, but also on the distance l between two opaque barriers. This result is a
striking generalization of the HFE, firstly obtained in [127]. It is important to stress that this
result holds, however, for nonresonant tunneling, that is, for energies far from the resonances.

Esposito in [128] has generalized this result for the tunneling through an arbitrary
number of finite rectangular opaque barriers and it has been shown that the total tunneling
phase time depends neither on the barrier thickness nor on the interbarrier separation. It has
been also shown the independence of the phase transit time (for nonresonant tunneling).

Now, we will consider the cases of the resonances (between two barriers) and the
influence of not very far resonances.

The Resonant Tunneling

If one takes two arbitrary (not necessarily opaque) barriers (cf. Figure 7), the amplitude of
the transmitted wave in this case is defined by the formula [88, 129]

AT (k) =
exp(−2ika)

D(k)
, (3.66)

where

D(k) = cosh2(χa) +
1
4

sinh2(χa)
[

σ2 cos(2kl) − δ2]

+ i sinh(χa)
[

δ cosh(χa) +
1
4
σ2sinh(χa) sin(2kl)

]

,

(3.67)

δ = (χ2 − k2)/kχ, and σ = (k2 + χ2)/kχ. The dimensionless constants δ and σ are connected
by the relation

σ2 = δ2 + 4. (3.68)

A resonance is characterized by the condition [88, 120]

∣

∣AT (k)
∣

∣

2 = 1, (3.69)

that is, the double barrier becomes totally transparent (without any reflections).
It is easy to see (cf. (3.67), and also [88, 129]) that the values of the wave number k for

which condition (3.69) is satisfied can be found from the equation

cot(kl) = −1
2
δ tan(χa). (3.70)

We can show that from (3.70) it is possible to find out also the values of parameters a, m, and
V0, at the resonance. Indeed, from (3.67) and (3.70) it follows that at a resonance it is

∣

∣D(k)
∣

∣

2 = 1. (3.71)
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On introducing the functions

u = cosh2(χa) − 1
4
δ2 sinh2(χa),

v = δ cosh(χa)sinh(χa),

w =
1
4
σ2 sinh2(χa)

(3.72)

and using (3.68), one can infer that these functions are connected by the relation

u2 + v2 = (1 +w)2. (3.73)

Then, by using functions (3.72), the denominator of (3.67) can be written in the following
form:

D = u +w cos(2kl) + i[v +w sin(2kl)]. (3.74)

It follows from (3.74) and (3.73) that

|D|2 = 1 + 2w
[

1 +w + u cos(2kl) + v sin(2kl)
]

, (3.75)

and condition (3.71) gets transformed into

1 +w + u cos(2kl) + v sin(2kl) = 0. (3.76)

Taking (3.68) into account, we can write the term 1 +w of (3.76) in the following form:

1 +w = cosh2(χa) +
1
4
δ2sinh2(χa), (3.77)

and this (last) equation can be easily transformed, afterwards, into (3.70). There are no other
solutions to (3.76). Hence, (3.70), as well as (3.69) or (3.71) is a general resonance condition.
In the region of a resonance, if we limit ourselves to the first two terms of the expansion of
(3.67) into a series of powers of E − Er (quantity Er being the resonance value of energy E),
we obtain

D(k) = Dr + Cr

(

E − Er
)

, (3.78)

where Dr = D(kr), kr =
√

2mEr/�,

Cr =
m

�2k
D′r , (3.79)
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and the index prime defines the derivative with respect to k. We can rewrite (3.78) in the
following form:

D(k) = Cr

(

E − Er +DrC
∗
r

∣

∣Cr

∣

∣

2

)

. (3.80)

It follows from (3.70) that at the resonance it is

cos
(

2krl
)

= − ur
(

1 +wr

) ,

sin
(

2krl
)

= − vr
(

1 +wr

) ,
(3.81)

where ur , vr and wr are the values at E = Er of the functions u, v, and w, respectively. On
inserting (3.81) into (3.74), we obtain

D
(

kr
)

=

(

ur + ivr
)

(

1 +wr

) . (3.82)

Differentiating (3.74) with respect to k, and inserting the result into (3.81), we get

D′
(

kr
)

=

[

u′r −
(

urw
′
r − 2lvrwr

)

(

1 +wr

)

]

+ i

[

v′r −
(

vrw
′
r − 2lurwr

)

(

1 +wr

)

]

. (3.83)

Then, on using (3.73), (3.79), (3.82), (3.83), and relation

uu′ + vv′ = (1 +w)w′, (3.84)

which follows from (3.73), one finds that at the resonance

DrC
∗
r = i

m

�2kr

[

u′rvr − urv′r
1 +wr

+ 2lwr

]

, (3.85)

where (by having recourse to (3.73), (3.79), (3.83), and (3.84))

∣

∣Cr

∣

∣

2 =

(

m

�2kr

)2[
(

u′r
)2 +

(

v′r
)2 −

(

w′r
)2 + 4l

u′rvr − urv′r
1 +wr

wr + 4l2w2
r

]

. (3.86)

From (3.73) and (3.84) one gets

u′2 + v′2 −w′2 =

(

u′2 + v′2
)2

(1 +w)2
, (3.87)
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while, from (3.86) and (3.87), one obtains

∣

∣Cr

∣

∣

2 =

(

m

�2kr

)2(
u′rvr − urv′r

1 +wr
+ 2lwr

)

. (3.88)

By differentiating the functions (3.72) with respect to k, one can see that

u′rvr − urv′r =
1
χr

(

1 +wr

)

[

χrkra + 2χrlwr + σ2
r cosh(χra)sinh(χra)

] , (3.89)

where χr, δr , and σr are the values of χ, δ, and σ at E = Er . On inserting (3.89) into (3.85)
and (3.88), we can then rewrite (3.80) in the noteworthy form

D(k) = Cr(E − Er + iβ), (3.90)

where

β =
�

2krχr
m

[

χrkra + 2χrlwr + σ2
r cosh(χra)sinh(χra)

]−1
, (3.91)

so that (3.80), (3.85), (3.88), and (3.90) yield

∣

∣Cr

∣

∣

2 =
1
β2
. (3.92)

Finally, by inserting (3.90) into (3.66) and taking account of (3.92), we obtain that near a
resonance it holds in general

∣

∣AT (k)
∣

∣

2 =
β2

(

E − Er
)2 + β2

. (3.93)

which corresponds to nothing but a Breit and Wigner formula. In other words, one verifies
that the Breit-Wigner’s formula has a general validity for our (1D) tunneling near a resonance.

Let us start from the first two parts of relation (3.65), that is, concretely from the

τPh
tun =

�d arg
{

AT exp
[

ik(2a + l)
]}

dE
. (3.94)

By using (3.66) and (3.76), we can rewrite it in the following form:

τPh
tun =

m

�k

[

l −
(

D1D
′
2 −D2D

′
1

)

|D|2

]

, (3.95)
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where

D1 = u +w cos(2kl), D2 = v +w sin(2kl) (3.96)

(the index prime denoting again the derivative with respect to k). On inserting (3.96) into
(3.95) and using (3.73), we get in general for the total tunneling phase time the remarkable
formula:

τPh
tun =

m

�k

P

|D|2
, (3.97)

where

P = (1 + 2w)l + u′v − uv′ +
(

u′w − uw′
)

sin(2kl) +
(

vw′ − v′w
)

cos(2kl). (3.98)

It should be noticed that (3.97) holds in general for any (resonant and/or nonresonant) tunneling
time through two barriers. From (3.97), (3.98), (3.71), and (3.85), it follows that that the
tunneling phase time at a resonance τPh

tun,r is given by the following expression:

τPh
tun,r =

m

�kχ

[

σ2cosh(χa)sinh(χa) + δka + (1 + 2w)χl
]

. (3.99)

It follows from (3.65) and (3.66) that

τPh
tun = �d arg

[

exp(ikl)/D
]

/dE. (3.100)

Inserting (3.90) into (3.100), we get

τPh
tun = �

d

dE
arg

[

1
Cr

exp(ikl)
E − Er + iβ

]

, (3.101)

so that, near a resonance, the behavior of the tunneling phase time in terms of the energy is
represented by the interesting following formula:

τPh
tun
∼=
m

�k
l + � =

β
(

E − Er
)2 + β2

(3.102)

holding for any resonant tunneling through the two barriers. The first term represents the
time associated with the particle free flight over the distance l between the two barriers; while
the second term is the time delay caused by the quasibound state assumed by the particle in
such an intermediate region.

Esposito in [128] has shown that for the arbitrary number of finite rectangular opaque
barriers the resonant energy does not depend on the number of barriers.
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The Dependence of the Tunneling Phase Time on the Width of the Setup,
Far from the Resonances

When releasing the above condition, we have found in this paper a more complicate
expression, given by formulae (3.65), (3.66), and (3.75) above. Anyway, from (3.75) and (3.72)
it follows that, for opaque barriers, when χa 1, it holds

|D|2 ≈ 1
32
σ2 exp(4χa)

[

1
4
σ2 +

(

1 − 1
4
δ2
)

cos(2kl) + δ sin(2kl)
]

. (3.103)

Differentiating the functions u, v, and w with respect to k, one can see that

u′v − uv′ = 1
χ
(1 +w)

[

σ2cosh(χa)sinh(χa) + δka
]

,

u′w − uw′ = 2
χ

[

δ(u +w) +
1
4
σ2cosh(χa)sinh(χa)

]

,

vw′ − v′w =
1
χ
w
[(

4 − δ2)cosh(χa)sinh(χa) − δka
]

.

(3.104)

Therefore, from (3.72), (3.98), (3.103), and (3.104), we get that, still for χa 1,

P ≈ 1
16
σ2 exp(4χa)

[

σ2

4
+

(

1 +
δ2

4

)

cos(2kl) + δ sin(2kl)

]

+
1
8
σ2l exp(2χa) (3.105)

and far from the resonances,

τPh
tun ≈

2m
�kχ

+ 4
m

�k
l exp(−2χa)

[

σ2

4
+

(

1 +
δ2

4

)

cos(2kl) + δ sin(2kl)

]−1

, (3.106)

Namely, when χa increases, the second term in (3.106) decreases as exp(−2χa); while, at the
limit when χa → ∞, (3.106) goes into the right-hand side of (3.65).

Of course, our result (3.106) does not hold only for particles but—as well-known
(see Section 2.4 and [59–62])—also for photons. This can explain the results explaining the
experimental fact that τPh

tun has been actually observed to increase (very slowly, almost linearly,
and probably with very small oscillations) on l, which was recently found by Longhi et al.
[130] and by Nimtz [131].

We would like now to underline that, in quantum experiments, the tunneling-time of
a nonrelativistic particle is expected to be practically measurable for large χa values only
(but not too large, of course, to avoid that the tunneled particles are too few). Therefore, in
order to be able to reproduce theoretically any experimental results, it seems to be necessary
studying the behavior of the transmission coefficient for large χa. Indeed, from (3.1) and
(3.38) it follows that

∣

∣AT

∣

∣

2 ≈ 32
1
σ2

exp(−4χa)
[

1
4
σ2 +

(

1 − 1
4
δ2
)

cos(2kl) + δ sin(2kl)
]−1

, (3.107)



40 Advances in Mathematical Physics

which shows that, with increasing χa, the transmission coefficient square |AT (k)|2 decreases
as exp(−4χa), that is, even more quickly than the second term in the right-hand side
of (3.106). Consequently, from the experimental point of view, practically no tunneling can
take place for those values of χa which make negligible the mentioned second term in (3.106).
Moreover, for the values of χa for which the tunneling probability is experimentally
significant, the second term in the right-hand side of (3.106), which is slowly exponentially
decreasing with χa, results to depend very weakly on the distance l between the barriers:
more precisely, it will depend almost linearly (but very slightly) on l, with even slighter
oscillations.

Some Words on Other Papers on Tunneling through a Double Barrier

In addition to [127, 129], in [132, 133] there are studies of the numerical and asymptotic
analytical expressions of the wave packets travelled through a double-barrier potential (also
not taking into account the multiple internal reflections between two separated barriers). In
particular, in [132] the resonant and nonresonant dynamics of a Gaussian quantum wave
packet tunneling through a double-barrier system has been analyzed as a function of the
initial spectrum characteristics and of the potential parameters. The behavior of the tunneling
time shows that there are situations where the Hartman effect occurs, while, when the
resonances are dominant, the tunneling time can become very large and the HFE does not
take place [133].

The authors of [134] have studied the relativistic quantum mechanical problem of a
Dirac relativistic tunneling through two successive barriers, and have shown that in the limit
of opaque barriers the generalized HFE also occurs. However, their results for the phase and
dwell times show an almost linear increasing with the separation between the barriers and
tend to saturate only when the barriers become extremely opaque.

3.8. Particle Tunneling through Three-Dimensional Barriers

Introduction

The particle tunneling through a three-dimensional (3D) barrier has been usually studied
in a simplified way (in the framework of the WKB approximation and with using only the
elementary time-dependent description) in applications for some concrete tasks such as α-
decay (see, e.g., [135–140]). Here, we intend to study the nonrelativistic particle tunneling
through a 3D potential barrier with a spherical symmetry without WKB approximation,
following [141, 142]. We will consider, in the central part of the system, also the presence
of a spherical well. We will refer to the various regions in this way: region (I), with r > R2,
represents the external region of null potential, region (II), delimited by R1 and R2, is the
barrier region, and the internal region (III), with r < R1, is the well. We will describe the
impact of the particles with this potential as a sequence of two successive processes: in the first
stage we think to an ingoing wave packet impinging from outside on the barrier, producing a
reflected wave in the external region (I), tunneling through the barrier, and finally penetrating
in the well where it is represented by an ingoing mode. In the second phase, we will
consider the presence of an outgoing wave from the well (III), which, after a reflection
against the internal side of the barrier, tunnels through the barrier and produces, finally,
an outgoing mode in the external region (I). The scheme of these processes is sketched in
Figure 8.
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R1

R2

Figure 8: Schematic description of the impact process.

Multiple reflections inside the barrier can also develop, but, on account of the fact that
this phenomenon is more sophisticated and usually present at a low level, we will neglect it
in this first approach, considering them only afterwards. The present analysis is a first step
for the self-consistent time-dependent study of the emission of protons or alpha-particles
from a spherical compound nucleus, or of the photon emission from a glass–air spherical
system.

3.8.1. Model Picture

(i) Impact from Outside

We will start by considering an initial wave packet, defined in the outer region (I) by means
of a superposition of ingoing spherical waves, and moving from outside towards the barrier
region (II) where the potential has value V1:

rΨ(1)
0 (r, t) =

∫V1

0
dE g(E)e−ikr−iEt/�,

(

R2 ≤ r <∞
)

, (3.108)

where k and E = �
2k2/2m are the wave number and the kinetic energy, respectively.

A section of the potential along the r-axis is shown in Figure 9.
When the wave encounters the barrier, it is partially reflected with wave function:

rΨ(1)
R (r, t) =

∫V1

0
dE g(E)A(ex)

R e−ikr−iEt/�,
(

R2 ≤ r <∞
)

. (3.109)

At the same time, the wave packet tunnels through the barrier in region (II), where it is
represented by the following function:

rΨ(1)
II (r, t) =

∫V1

0
dE g(E)

(

α1e
−χr + β1e

χr)e−iEt/�,
(

R1 ≤ r < R2
)

, (3.110)
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Figure 9: Schematic description of the impact of the wave with the barrier from outside.

where χ =
√

2m
(

V1 − E)/�2. After the tunnelling through the barrier, the wave penetrates
inside the well and in region (III) we can write

rΨ(1)
T (r, t) =

∫V1

0
dE g(E)A(in)

T e−iKr−iEt/�,
(

0 < r < R1
)

, (3.111)

where K =
√

2m
(

E + V0)/�2 is the wave number inside the well.
In general, we can say that the wave packet is described by the expression

rΨ(1)
J (r, t) =

∫V1

0
dE g(E)Φ(1)

J (k, r)e−iEt/�, (3.112)

where the index J is I, II, III, 0, T or R depending on the particular mode considered, Φ(1)
J

being the stationary wave functions:

Φ(1)
I = e−ikr +A(ex)

R eikr , R2 ≤ r <∞,

Φ(1)
II = α1e

−χr + β1e
χr , R1 ≤ r ≤ R2,

Φ(1)
III = A(in)

T e−iKr , 0 < r ≤ R2.

(3.113)

Furthermore, g(E) is a normalized amplitude weight factor such as

∫V1

0
dE

∣

∣g(E)
∣

∣

2 =N, N <∞. (3.114)
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We normalize (3.1) by the following condition:

4π
∫∞

R2

r2 dr
∣

∣Ψ(1)
0 (r, t)

∣

∣

2
= 1, (3.115)

which is strictly possible only in the limit V1 going to infinity. For the sake of simplicity
we neglect the contribution of the energy above the barrier, considering only cases where
E < V1.

All the previous formulas are written in the case of orbital momentum l = 0, and
the extension of this theory to the general case with l > 0 can be obtained by replacing the
terms exp(±ikr) and exp(±iKr) with the spherical Hanckel function of the first and second
kinds.

In addition, we have that Aex
R , α1, β1, and A(in)

T are, respectively, the external reflection
amplitude factor, the evanescent and antievanescent wave amplitude factors during the first
tunnelling and the internal transmission amplitude factor. Their analytical expression can be
found by imposing the continuity condition for both the stationary wave functions and their
first derivatives at the points r = R2 and r = R1, finding for the external reflection coefficient
the expression:

Aex
R = −e−2ikR2aex

R , aex
R =

(χ + ik)(iK + χ) + e−2χ(R2−R1)(χ − ik)(iK − χ)
(χ − ik)(iK − χ) + e−2χ(R2−R1)(χ + ik)(iK + χ)

, (3.116)

which, in the limit χ(R2 − R1) tending to infinity, becomes −e−2ikR2((χ + ik)/(χ − ik)).
For the internal transmission coefficient we get

Ain
T = e−ikR2+iκR1ain

T , ain
T =

4ikχe−χ(R2−R1)

(χ − ik)(iK − χ) + e−2χ(R2−R1)(χ + ik)(iK + χ)
(3.117)

that, in the same limit as before, tends to 0.
The calculation of the probability fluxes can be used for controlling if the quantities

(3.116) and (3.117) satisfy the conservation law.

The fluxes j(1)I , j
(1)
II , and j

(1)
III in the three regions I, II, and III are in general defined as

j
(1)
n =

i�

2m

(

rΨ(1)
n

d

dr

(

rΨ(1)∗
n

)

− rΨ(1)∗
n

d

dr

(

rΨ(1)
n

)

)

, n = I, II, III. (3.118)

One can use the approximation

∫∞

0
j
(1)
n (r, t)dt ≈

∫∞

−∞
j
(1)
n (r, t)dt. (3.119)
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For quasimonochromatic wave packet centred around the value E = 〈E〉, that is, when the
factor |g(E)|2 is a delta function δ(E − 〈E〉), with 〈E〉 in the open interval

(

0, V1), one obtains

∫∞
−∞j

(1)
R (r, t)dt

∫∞
−∞j

(1)
0 (r, t)dt

≈
∣

∣A
(ex)
R

(

〈E〉
)∣

∣

2
,

∫∞
−∞j

(1)
II (r, t)dt

∫∞
−∞j

(1)
0 (r, t)dt

≈
∣

∣α1
(

〈E〉
)

e−χ(〈E〉)r + β1
(

〈E〉
)

eχ(〈E〉)r
∣

∣

2
,

∫∞
−∞j

(1)
III (r, t)dt

∫∞
−∞j

(1)
0 (r, t)dt

≈
K
(

〈E〉
)

k
(

〈E〉
)

∣

∣A
(in)
T

(

〈E〉
)∣

∣

2
.

(3.120)

Hence, from the conservation law for the probability fluxes

∫∞

−∞
j
(1)
0 (r, t)dt =

∫∞

−∞
j
(1)
R (r, t)dt +

∫∞

−∞
j
(1)
T (r, t)dt (3.121)

one obtains

∣

∣A
(ex)
R

(

〈E〉
)∣

∣

2
+
K
(

〈E〉
)

k
(

〈E〉
)

∣

∣A
(in)
T

(

〈E〉
)∣

∣

2
= 1, (3.122)

that for V0 = 0 becomes

∣

∣A
(ex)
R

(

〈E〉
)∣

∣

2
+
∣

∣A
(in)
T

(

〈E〉
)∣

∣

2
= 1. (3.123)

The transmission probability through the barrier from outwards is represented by the last of
expressions (3.120).

The phase times τph(in)
T and τ

ph(ex)
R can be defined as the evident generalization of the

following 1D definitions:

τ
ph(in)
T = �

∂
(

arg
(

A
(in)
T (E)e−ikR1

))

∂E
− −R1

v
= �

∂
(

arg
(

a
(in)
T (E)

)

∂E
,

τ
ph(ex)
R = �

∂
(

arg
(

A
(ex)
R (E)e−iκR2

))

∂E
− −R2

v
= �

∂
(

arg
(

a
(ex)
R (E)

)

∂E
,

(3.124)

where v = �k/m. The quantities τph(ex)
R and τph(ex)

R , in the limit χ
(

R2−R1) approaching infinity,
go to 2/vχ and 0, respectively.

So, we can see from the previous expressions, for analogy with the same 1D quantities,
the manifestation of the HFE effect and also the absence of dependence on the geometrical
characteristics of the barriers R1 and R2.
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Figure 10: Schematic view of the second phase of the scattering process, the emission from inside.

(ii) Emission from the Barrier

Now we will study the evolution of a wave coming out from the central core of the system,
with a wave function given by

rΨ(in)(r, t) =
∫V1

0
dEG(E)eiKr−iEt/�,

(

0 ≤ r ≤ R1
)

(3.125)

constructed from the overlapping stationary solutions propagating in the positive r-direction
from the well region. In Figure 10, the scheme of the various waves is presented.

When the wave impinges the barrier from inside, a reflected wave is formed, whose
wave function is

rΨ(2)
R (r, t) =

∫V1

0
dEG(E)A(in)

R e−iKr−iEt/�,
(

0 ≤ r ≤ R1
)

. (3.126)

Afterwards, in the region (II) of the barrier a system of evanescent and antievanescent waves
develops

rΨ(2)
II (r, t) =

∫V1

0
dEG(E)

(

α2e
−χr + β2e

χr)e−iEt/�,
(

R1 ≤ r ≤ R2
)

, (3.127)

while in the outer region a propagating wave will exist

rΨ(2)
I (r, t) =

∫V1

0
dEG(E)A(ex)

T eikr−iEt/�,
(

R2 ≤ r <∞
)

. (3.128)

As in the previous case we have that G(E) is a normalized amplitude weight factor, and
A

(in)
R , α2, β2, and A

(ex)
T are the internal reflection, the evanescent and antievanescent and the
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external transmission amplitude factors, respectively. With calculations similar to that of the
first part we obtain the explicit expressions of the amplitude factors as follows:

Ain
R = −e−2ikR1ain

R , ain
R =

(χ + iK)(ik − χ) + e2χ(R1−R2)(χ − iK)(ik + χ)
(χ − iK)(ik − χ) + e2χ(R1−R2)(χ + iK)(ik + χ)

, (3.129)

Aex
T = e−ikR2+iKR1aex

T , aex
T =

4iKχe−χ(R2−R1)

(χ − iK)(ik − χ) + e−2χ(R2−R1)(χ + iK)(ik + χ)
. (3.130)

Also in this case we can demonstrate the conservation of the current fluxes

∣

∣A
(in)
R

(

〈E〉
)∣

∣

2
+
k
(

〈E〉
)

K
(

〈E〉
)

∣

∣A
(ex)
T

(

〈E〉
)∣

∣

2
= 1, (3.131)

and we can introduce the phase times:

τ
ph(ex)
T = �

∂
(

arg
(

A
(ex)
T (E)e−ikR1

))

∂E
− −R1

v
= �

∂
(

arg
(

a
(ex)
T (E)

)

∂E
,

τ
ph(in)
R = �

∂
(

arg
(

A
(in)
R (E)e−iκR2

))

∂E
− −R1

v
= �

∂
(

arg
(

a
(in)
R (E)

)

∂E
,

(3.132)

with v = �k/m. The quantities τph(ex)
T and τ

ph(in)
R , in the limit χ

(

R2 −R1) approaching infinity,
go to (1/v + 1/V )/χ (with V = �K/m) and 0, respectively.

(iii) Scattering Matrix

Finally, we will connect the two mechanisms of scattering described above in one single
scattering event (see Figure 11), introducing the matrix of scattering S and considering the
multiple reflections inside the potential well.

For this purpose we describe the stationary wave functions in the various regions as
follows:

ΨI(k, r) = e−ikr − Seikr ,

ΨII(k, r) = αe−χr + βeχr,

ΨIII(k, r) = A
(

e−iKr − eiLr
)

.

(3.133)

We can now find S, α, β, and A by connecting the various expression of the wave function
and its derivative in r = R1 and r = R2.
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Figure 11: Schematic view of the whole scattering process.

Imposing the continuity conditions we have

S = e−2ikR2

(

K cosKR1 + χ sinKR1
)

(χ + ik) + e2χ(R1−R2)
(

K cosKR1 − χ sinKR1
)

(χ − ik)
(

K cosKR1 + χ sinKR1
)

(χ − ik) + e2χ(R1−R2)
(

K cosKR1 − χ sinKR1
)

(χ + ik)
,

(3.134)

A = e−2ikR2
2ikχe2χ(R1−R2)

(

K cosKR1 + χ sinKR1
)

(χ + ik) + e2χ(R1−R2)
(

K cosKR1 − χ sinKR1
)

(χ + ik)
.

(3.135)

One can easily see that |S| = 1, and that

A =
A

(in)
T

1 +Ain
R

, (3.136)

S = −A(ex)
R − iAA(ex)

T = −A(ex)
R +

A
(ex)
T A

(in)
T

1 +A(in)
R

. (3.137)

The physical meaning if the term 1/(1 + Ain
R ) is directly connected to the presence of an

infinite sequence of multiple internal reflections that can be described by the stationary wave
functions

A
(in)
T

(

1 −A(in)
R +

(

A
(in)
R

)2 −
(

A
(in)
R

)3 + · · ·
)

e−ikr =
A

(in)
T

1 +A(in)
T

e−ikr ,

A
(in)
T

(

1 −A(in)
R +

(

A
(in)
R

)2 −
(

A
(in)
R

)3 + · · ·
)

eikr =
A

(in)
T

1 +A(in)
T

eikr

(3.138)

for the ingoing and the outgoing waves, respectively.
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The scattering phase time τph
sc = �(∂ argSeikR2/∂E)−(−R2/v) that in the limit χ

(

R2−R1)
approaching infinity goes to 2/vχ. So in this limit, the scattering phase time coincides with

τ
ph(ex)
R .

Resonances

In all the previous analysis we have disregarded the possibility that resonances develop
during tunneling and scattering. To take into account the insurgence of resonances we rewrite
the scattering matrix S in the following form:

S = α
A1χ + ikA2

A1χ − ikA2
, (3.139)

where, from the comparison with (3.134), we set: α = e−2ikR2 , A1 = B1 + e−2χ(R2−R1)B2, A2 =
B1 − e−2χ(R2−R1)B2, B1 = K cos(KR1) + χ sin(KR1), B2 = Kcos(KR1) − χ sin(KR1).

In the region of a resonance, we can develop S into a series of powers of
(

E − Er), Er
being the eigenvalue of the energy for the resonance, considered as a solution of the
transcendental equation A1(Er) = 0, and then we obtain the following:

S = α

(

∂
(

A1χ
)

/∂E
)

E=Er

(

E − Er
)

+ i
(

kA2
)

E=Er
(

∂
(

A1χ
)

/∂E
)

E=Er

(

E − Er
)

− i
(

kA2
)

E=Er

, (3.140)

that shows better its resonant character if written in the form

S = α
E − Er − iΓ/2
E − Er + iΓ/2

, (3.141)

with

Γ
2
=

−k
(

Er
)

A2
(

Er
)

χ
(

Er
)(

∂A1/∂E
)

E=Er

=
2k

(

Er
)

e−2χ(Er)(R2−R1)B2
(

Er
)

χ
(

Er
)(

∂A1/∂E
)

E=Er

. (3.142)

If χ
(

R2 − R1) is very large, we can neglect all the terms containing the negative exponential
factor and write finally

Γ
2
= 2k

(

Er
)

e−2χ(Er)(R2−R1)F
(

Er
)

, (3.143)

with

F
(

Er
)

=
�K

(

Er
)

χ
(

Er
)
√

m/2
((

1/
√

V0 + Er
)(

1 + χ
(

Er
)

R1
)

+
(

1/
√

V1 − Er
)(

1 +K
(

Er
)

R1
))
.

(3.144)
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Figure 12: Schematic stationary description of a scattering in the presence of a coulomb barrier (l = 0).

The Case of a Rectangular Well with a Coulomb Barrier

In this case we can initiate from a simple Coulomb barrier

V =
Z1Z2e

2

r
, (3.145)

(Z1e and Z2e are the charges of the daughter nucleus and the emitted particle, resp.) instead
of a rectangular potential barrier. Instead of the functions h

(1,2)
l (kr) we have to use the

coulomb functions Gl(k, η, r) ± iFl(k, η, r) in the field of the coulomb barrier with

F0(k, η, r) −→ sin(kr − η ln 2kr + σ), r −→ ∞

G0(k, η, r) −→ cos(kr − η ln 2kr + σ), r −→ ∞
(3.146)

(where η = Z1Z2e
2m/�

2k is the Sommerfeld parameter, σ = arg Γ(1 + iη)).
In this case, taking also l = 0, we obtain

S =

[

G0
(

k, η, R1
)

− iF0
(

k, η, R1
)]

K cosKR1 −
[

G′0
(

k, η, R1
)

− iF ′0
(

k, η, R1
)]

k sinKR1
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

K cosKR1 −
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k sinKR1
,

(3.147)

(one can easily see that here |S| = 1 too)

A =

[

2ieikR2k
]

[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
(

1 − e2iKR1
)

+
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK
(

1 + e2iKR1
)

(3.148)

for the scattering (see Figure 12). Here, F ′0 and G′0 signify the derivatives of F0 and G0 with
respect to kR1, respectively.
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Figure 13: Schematic description of the impact of a wave packet with a Coulomb barrier from outside.

Similarly, in this case we also obtain

Aex
R =

−
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK −
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK +
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
(3.149)

Ain
T =

2ikeiKR1

[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK +
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
, (3.150)

for the impact from outside (see Figure 13), and

Ain
R = e2iKR1

[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK −
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)]

iK +
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
, (3.151)

Aex
T = eiKR1

2iK
[

G0
(

k, η, R1
)

+ iF0
(

k, η, R1
)

iK +
[

G′0
(

k, η, R1
)

+ iF ′0
(

k, η, R1
)]

k
(3.152)

for the emission from the barrier (see Figure 14). In the derivation of (3.147), (3.148), (3.150),
and (3.152) we had used the known relation F0G

′
0 −G0F

′
0 = 1 for the wronskian.

It is easy to be convinced that relations (3.122), (3.131), (3.136), and (3.137) are also
valid for a coulomb barrier. We can also repeat the same reasonings on the physical meaning
of the term 1/(1 +Ain

R ) which has been made in connection with the formula (3.137).
For very small k when k → 0 (more precisely, when 2η  kR1),

G0 −→ 2
(

ρ

π

)1/2

I0
(

2(2πρ)1/2) exp(πη), with I0
(

2(2πρ)1/2) −→ 1,

G′0 −→ −2
(

2η
π

)1/2

K0
(

2(2πρ)1/2) exp(πη), with K0
(

2(2πρ)1/2) −→ ln

(

1

γ(2πρ)1/2

)

,

F0 −→ (πρ)1/2I1
(

2(2πρ)1/2) exp(−πη), with I1
(

2(2πρ)1/2) −→ (2πρ)1/2,

F ′0 −→ (2πη)1/2I0
(

2(2πρ)1/2) exp(−πη),
(3.153)
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Figure 14: Schematic view of the emission from inside through a coulomb barrier.

γ ≈ 1.781 . . . being the Euler constant, and if (2k2/K2η/ρ)[ln γ−1(2πρ)−1/2] � 1, the
transmission (penetration) probability from outside through the Coulomb barrier into the
internal rectangular potential well |Ain

T |
2 becomes

∣

∣Ain
T

∣

∣

2 −→
(

πk

K2R1

)

exp(−2πη) (3.154)

which contains the same exponential factor exp(−2πη) as the known quasiclassical
(WKB) approximation, containing nevertheless the other pre-exponential factor. It is quite
understandable because the quasiclassical approximation is not applicable near the point R1

where there is an abrupt potential change and one cannot use the approximate notion of the
turning point.

3.9. An Odd Description of Tunneling Phenomena

For the sake of the completeness, it is possible to mention the quaternion description of
tunneling phenomena. In [143–145], the new quaternion description of tunneling phenomena
has initiated (the quaternion description of quantum mechanics one can see, e.g., in [146]).
The authors show a noteful difference between the complex and quaternionic formulations
of tunneling phenomena which could be matter of further theoretical discussions and could
represent the starting point for a possible experimental investigation.

4. Applications for Nuclear Reactions and Decays

4.1. Narrow Resonance → Exponential Decay

Let us firstly explain how a typical isolated Lorentzian (Breit-Wigner) resonance, in the cross-
section of a quantum collision or nuclear reaction α → β, is connected with an exponential
law of the decay function of the correspondent compound or radioactive nucleus (somewhat
generalizing the similar derivation from [147] and mainly following [148]). We represent the
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reaction amplitude fαβ(E) as

fαβ(E) =
Cαβ

E − Er + iΓ/2
, (4.1)

whereCαβ is a constant or a smooth function of the final-particle kinetic energy E in the region
(Er − Γ/2, Er + Γ/2), Er and Γ being the resonance energy and width, respectively.

The final-particle wave packet in the 1D radial asymptotic limit is described by

Ψβ

(

rβ, t
)

= r−1
β

∫∞

0
dE g(E)fαβ(E) exp

[

ikrβ −
iEt

�

]

, (4.2)

where g(E) is a smooth weight amplitude with an energy spread ΔE (usually ΔE � Er), mβ

and rβ are the final-particle mass and radial coordinate, respectively, and k =
√

2mβE/�. For
short-ranged interactions (including also screened Coulomb potentials), it can be rewritten
as

Ψβ

(

zβ, t
)

=
∫∞

0
dE g(E)Tαβ(E) exp

[

ikzβ −
iEt

�

]

, (4.3)

with Tαβ(E) = Nβ(E)fαβ(E), Tαβ(E) is the T -matrix elements connected with the S-matrix
elements by known relation Tαβ = δαβ − Sαβ, Nαβ(E) is an unessential smooth function of
E, zβ is the axis along the direction of the final-particle emission imposed by the registration
geometry, zβ ≥ Rβ, Rβ is the interaction radius in the final channel. In the simplest case one
can fix zβ = Rβ and

Ψβ

(

zβ, t
)

=
∫∞

0
dE g(E)˜Tαβ(E) exp

[

− iEt
�

]

, (4.4)

where ˜Tαβ(E) = Tαβ exp(ikRβ) is a smooth function of E: in accordance with the analytical
S-matrix theory, Tαβ(E) contains the factor exp

(

− ikRβ) and consequently this factor is being
cancelled by exp

(

ikRβ) in ˜Tαβ(E). For condition

Γ� ΔE � Er, (4.5)

one can rewrite (4.4) in the following simplified form:

Ψβ

(

Rβ, t
)

= A
∫∞

0
dE

exp[−iEt/�]
E − Er + iΓ/2

, (4.6)
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where A is a constant. In the approximation (4.5) and Γ = constant one obtain

Ψβ

(

Rβ, t
)

=

⎧

⎪

⎨

⎪

⎩

B exp
[

− iErt

� − (Γ/2�)t

]

, for t > 0,

0, for t < 0,
(4.7)

(moving the lower integration limit in (4.15) from 0 to −∞ and utilizing the residue theorem).
Here B is a constant and more precisely there must be t− tin (with tin = �(∂ arg g/∂E)) instead
of t. The form (4.7) is valid also with slight modifications in the cases when Γ ∼ E1/2 or Γ is a
linear function of E (see, e.g., [149]).

The evolution of the particle β passing through position zβ during the unitary
time interval, centered at t, is described by the probability flux density jβ(zβ, t) =
Re[Ψβ(zβ, t)(i�/2m)∂Ψ∗β(zβ, t)/∂zβ] with the adequate normalization

∫∞
−∞jβ(zβ, t)dt = 1. The

emission probability (per a time unit) in the vicinity of the compound nucleus (near zβ = Rβ)

I(t) =
jβ
(

Rβ, t
)

∫∞
−∞dtjβ

(

Rβ, t
) (4.8)

is equal to

I(t) =
(

Γ
�

)

exp
(

− Γt
�

)

. (4.9)

(On the presence of the violations of (4.9) for very small t and for very large t (see, in
particular, in [57]).) In obtaining (4.9) we took into account that

lim
zβ→Rβ

(

− i�

mβ

)

Tαβ∂
[

exp(ikzβ)
]

∂zβ = v ˜Tαβ (4.10)

(v = �k/mβ). If Ψβ

(

Rβ, t) has a form (4.7), the Fourier transform of Ψβ is equal to

∫∞

0
dtΨβ

(

Rβ, t
)

exp
(

− iEt
�

)

= B
∫∞

0
dt exp

[

− i
(

E − Er
)

t/� − Γt/2�
]

=
iB

E − Er + iΓ/2
,

(4.11)

which is proportional to the amplitude from (4.1).
For zβ > Rβ one can rewrite (4.3) in a following way:

Ψβ

(

zβ, t
)

=
∫∞

0
dk

G(k)D(k)
(

k − k0
)(

k + k0
) exp

(

ikzβ −
iEt

�

)

, (4.12)
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with

G(k) = g

(

�
2k2

2mβ

)

(

dE

dk

)

,

D(k) =
(2mβ

�2

)

Nβ(E)Cαβ,

k0 =
(

1√
2

)

(√

√

k4
r + γ2 + k2

r − i
√

√

k4
r + γ2 − k2

r

)

,

kr =

√

2mβEr

�
,

γ =
Γmβ

�2
.

(4.13)

Since G(k) and D(k) are smooth functions of k

Ψβ

(

zβ, t
) ∼=

∫∞

−∞
dk

G(k)D(k)
(

k − k0
)(

k + k0
) exp

(

ikzβ −
iEt

�

)

, (4.14)

under the condition (4.5), then, introducing in (4.14) a new variable

y =

√

i�t

2mβ

(

k −
mβzβ

�t

)

, (4.15)

and performing the transformations quite similar to those which were used in [30–32], it is
possible to obtain

Ψβ

(

Rβ, t
)

=

⎧

⎪

⎨

⎪

⎩

0, for zβ > vrt,

const · exp
[

ikrzβ −
iErt

�
−
(

Γ
2�

)(

t − zβ
vr

)]

, for zβ ≤ vrt,
(4.16)

with vr = �k/mβ. The wave function (4.16) can be applied for macroscopic distances zβ, near
a detector which registers particles β.

Let us remember that an exponential law (4.9) and also the asymptotic (4.16) are valid
only under conditions (4.5), that is, when all energies (or continuum states) around Er are
completely populated in the large region with the width ΔE  Γ. If, on the contrary,

ΔE � Γ. (4.17)

The emission probability is nonexponential and does essentially depend on ΔE and the form
of g(E). If one will take the Lorentzian form also for g(E), that is,

g
(

E′
)

=
g0

E′ − E + iΓ/2
, (4.18)
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with g0 = const or smooth inside ΔE under conditions (4.5) and (4.17), instead of (4.7) the
expression

Ψβ

(

Rβ, t
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, for zβ > vr
(

t − t0in
)

;

const
E−Er+iΓ/2

·exp

[

ikrzβ−
iErt

�
−
(

ΔE
2�

)

(

t − zβ
vr−t0in

)]

, for zβ ≤ vr
(

t − t0in
)

(4.19)

(with v = �k/mβ and t0in = �(∂ arg g0/∂E)) will be obtained. The cross-section σαβ, which is
proportional to

σαβ ∼
∫∞

tmin

dtjβ
(

zβ, t
)

, (4.20)

where tmin = zβ/v + t0in, (tmin,∞) being the operative registration time interval of detector,
after integrating in (4.20) acquires the Breit-Wigner form

σαβ =
∣

∣fαβ
∣

∣

2 =
const

(

E − Er
)2 + Γ2/4

. (4.21)

4.2. The Real Possibility of the Phenomenon of the Delay-Advance
in Proton Scattering by Nuclei

Near an isolated resonance the proton-nucleus (or nucleus-nucleus) scattering amplitude
F(E, θ) is

F(E, θ) = f(E, θ) + fl,res(E, θ), (4.22)

with

f(E, θ) = fcoul(E, θ) + (2ik)−1
∑

λ/= l

(2λ + 1)Pλ(cos θ) exp
(

2iηλ
)[

exp(2iδbλ
)

− 1
]

,

fl,res(E, θ) = (2ik)−1(2λ + 1)Pλ(cos θ) exp
(

2iηλ
)

[

exp
(

2iδbl
)E − Eres − iΓ/2
E − Eres + iΓ/2

− 1

] (4.23)

is the Coulomb scattering amplitude, δbl and ηl being the background nuclear l-scattering
phase-shift and the Coulomb l-scattering phase shift, respectively, k is the wave number, θ is
the scattering angle in the c.m.s. Rewriting (4.22) in the form

F(E, θ) =

[

A
(

E − Eres
)

+ iBΓ
2

]

(

E − Eres + iΓ
2

)−1

(4.24)
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where

A = f(E, θ) + (k)−1(2l + 1)Pl(cos θ) exp
(

2iηl + iδbl
)

sin δbl ,

B = f(E, θ) + (ik)−1(2l + 1)Pl(cos θ) exp
(

2iηl + iδbl
)

cos δbl ,
(4.25)

we obtain (as it was firstly made in [150]) the following expression for the quasimonochro-
matic total scattering duration τ(E, θ):

τ(E, θ) =
2R
v

+
�∂ argF
∂E

≡ 2R
v

+ Δτ(E, θ), (4.26)

where v = �k/μ is the projectile velocity and R is the interaction radius,

Δτ(E, θ) =
(

�Γ
2

)[

(

E − Eres
)2 +

Γ2

4

]−1

−
(

�Reα
2

)[(

E − Eres − Imα

2

)2

+
(Reα)2

4

]−1

(4.27)

is the time delay, α = ΓB/A. When 0 < Re(B/A) < 1 and |Imα/2| � Eres, near E = Eres the
time delay Δτ can become negative, that is, an advance can appear instead of a delay.

Because of the existing Coulomb barrier, there is a certain indefiniteness in the choice
of the exact value of the physical interaction radius R; it lies between the minimal value,
determined by the equality of the energy E and the Coulomb barrier at the point of the exit of
the final charged particle from the barrier, and the maximal value, determined by the practical
vanishing of the external tail of the (screened) Coulomb barrier or by the evident causality
condition (τ ≥ 0) in the case of negative values of Δτ .

The time analysis of proton scattering by nuclei 12C and 14N at the range of isolated
resonances distorted by the nonresonant background, with the help of the experimental
study of the interference in the accompanied bremsstrahlung, had resulted in [151, 152] the
revealing of the real possibility of such delay-advance phenomenon.

4.3. The Phenomenon of Time Resonances (Explosions)

Sometimes, in the cases of the dense and strongly overlapper resonances in high-energy
nuclear reactions, when ΔE  Γ, D (ΔE, Γ, andD being the experimental energy resolution,
mean reasonance width and mean distance between resonances, resp., for any contributed
resonant spin, parity and total moment quantum numbers), it is possible to approximate the
reaction amplitude fαβ(E) by the form

fαβ(E) = Cn
αβ exp

(

− Eτn
2�

+
iEtn

�

)

, (4.28)

where τn and tn are constants (with the time dimension), τn and tn determine the exponential
dependence on energy for the correspondent cross-section and the linear dependence on
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Figure 15: Lc(t) (curve 1) and I(t) (curve 2).

energy for the amplitude phase, respectively, Cn
αβ is a constant or a very smooth function

(inside ΔE) of the final-particle energy E, then the correspondent cross-section and the
emission probability under the condition

ΔE � 2�

τn
(4.29)

will be

σαβ =
∣

∣fαβ
∣

∣

2 = const · exp
(

− Eτn
�

)

, (4.30)

I(t) =
(

τn
2π

)

1
(

t − tn
)2 + τ4

n/4
, (4.31)

respectively, (the detailed physical and mathematical justification of the form like (4.28) see,
e.g., in [148]). The evolution of compound-nucleus surviving (at instant t during the life and decay
after the formation) can be described by the following function:

Lc(t) = 1 −
∫ t

(0)
dt I(t). (4.32)

From (4.31)-(4.32), one can deduce the strongly nonexponential form of Lc(t) and I(t), like
depicted in Figure 15.

When fαβ has a more general form like

fαβ(E) =
v
∑

n=1

Cn
αβ exp

(

− Eτn
2�

+
iEtn

�

)

, (4.33)

with several terms (v = 2, 3, . . .), the cross-section σαβ = |fαβ|2 contains not only exponentially
decreasing terms but also oscillating terms with factors cos[E(tn−tn′)/�] and sin[E(tn−tn′)/�].
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Figure 16: Inclusive process p + 12C → 7Be (2.1 GeV protons).

In the case of two terms (v = 2) in (4.33) formula (4.30) can be rewritten as

σαβ =
∣

∣f1
αβ

∣

∣

2
exp

(

− Eτ1

�

)

+
∣

∣f2
αβ

∣

∣

2
exp

(

− Eτ2

�

)

+ 2Re

{

f1
αβf

2
αβ ∗ exp

[

iE
(

t1 − t2
)

�
−
E
(

τ1 + τ2
)

2�

]}

,

(4.34)

where the terms with ΔE are neglected if the conditions ΔEtn � Eτn and ΔEτn � Etn are
supposed.

In particular, for inclusive energy spectra of the kth final fragment we will use the
following expression:

σinc,k
(

Ek
)

=
2
∑

n=1

∣

∣

∣

∣

∣

Cn exp

[(

itn − τn
2

)

Ek
�

]∣

∣

∣

∣

∣

2

=
2
∑

n=1

∣

∣Cn

∣

∣

2 exp

(

− Ekτn
�

)

+ 2ReC∗1C2 exp

{[

i
(

t2 − t1
)

−
(

τ1 + τ2
)

2

]

Ek
�

}

.

(4.35)
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In Figure 16, an example of the calculated inclusive energy spectra σinc,k(Ek), in arbitrary
units and in semilogarithmic scale, is presented in comparison with the experimental data
(see from [148]).

Appendices

A. On the Bilinear Time Operator

One can rewrite the linear operator (2.1b) into the form of the bilinear operator

̂t =
(

− i�
2

)
↔
∂
∂E

(A.1)

with (f, ̂tg) ≡ (f, (−i�/2)(∂/∂E)g) + ((−i�/2)(∂/∂E)f, g) and without changing the form
(2.1a). Such bilinear form of the time operator had been firstly introduced in [12–14]. By
adopting expression (A.1) for the time operator, the point E = 0 happens to be automatically
emiminated both in (f, ̂tf) and in the transformation of the integral

∫∞
−∞tj(x, t)dt over time

into the integral over energy.

B. The Measure of Averaging over Time in the 3D Case

In the 3D case of the Schroedinger equation, the continuity equation (2.8) in Section 2 has to
be rewritten as

∂ρ
(

	r, t
)

∂t
+ div j

(

	r, t
)

= 0 (B.1)

(see, e.g., [153, 154]), 	r being the radius vector of a particle moving in the extential potential
or the radius vector for the relative motion of two interacting particles, 	r = {x, y, z} in
Cartesian coordinates or 	r = {r, θ, ϕ} in spherical coordinates. Within the framework of the
quantum collision theory the motion direction is often described by any Cartesian axis (let us
say, x, with fixed values of y, z) or by variable radial coordinate r, with fixed values of angular
coordinates θ, ϕ. The term div j(	r, t) acquires the form ∂jx(	r, t)/∂x or (1/r2)∂[r2jr(	r, t)]/∂r,
respectively.

Then, (2.7) from Section 2 has to be substituted by

Wx

(

	r, t
)

dt =
jx
(

	r, t
)

dt
∫∞
−∞jx

(

	r, t
)

dt
(B.2)

or

Wr

(

	r, t
)

dt =
jr
(

	r, t
)

dt
∫∞
−∞jr

(

	r, t
)

dt
, (B.3)

where the probabilistic interpretations of jx(	r, t) and jr(	r, t) in time are the same as the
probabilistic interpretation, contained in Section 2 for the 1D flux j(x, t), as (one can be
convinced in this by the evident generalization).
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When the flux density jx(	r, t) (or jr(	r, t)) changes its sign, the quantity Wx(	r, t) (or
Wr(	r, t)) is no longer positive definite and it acquires a physical meaning of a probability
density only during those partial time-intervals in which the flux density jx(	r, t) (or jr(	r, t))
does keep its sign. Therefore, it is possible, quite similarly asW±(x, t) in Section 2, to introduce
the two measures, by separating the positive and the negative flux-direction values (i.e., flux
signs):

Wx,±
(

	r, t
)

dt =
jx,±

(

	r, t
)

dt
∫∞
−∞jx,±

(

	r, t
)

dt
, (B.4)

Wr,±
(

	r, t
)

dt =
jr,±

(

	r, t
)

dt
∫∞
−∞jr,±

(

	r, t
)

dt
, (B.5)

with jx,±(x, t) = jx(x, t)θ(±jx) and jr,±(x, t) = jr(x, t)θ(±jr), respectively.

C. Approximate Eigenvalues and Approximate Orthonormalized
Eigenfunctions of the Time Operator

Following [4, 5] (see also [21, 23–25, 50, 51]), one can specify the following approximate
eigenvalues and eigenfunctions of the operator ̂t in (2.1a), (2.1b), and (2.26) and simultane-
ously of the operator ̂t2:

̂tϕ
δ,η
t (E) ≈ tϕδ,ηt (E),

̂t2φ
δ,η
t (E) ≈ t2φδ,ηt (E),

(C.1)

where

ϕ
δ,η
t (E) = C exp

(

iEt

�

)

fδ(E)gη(E), (C.2)

C is an arbitrary constant, t is the continuous real eigenvalue of the operator ̂t,

fδ(E) = 2
sin δE/�

E/�
,

̂E =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3
(

E

η

)2

− 2
(

E

η

)3

for 0 ≤ E ≤ η,

1, for η ≤ E,

(C.3)

δ is a positive parameter that describes the width of the wave packet formed from the
functions exp(iEt/�); the sequence of functions gη(E) has the limit as η → 0 which is equal
to the generalized function Θ(E); Θ(E) is equal to 1 for E > 0 and to 0 for E ≤ 0. As is readily
seen by direct calculation of the left-hand side of (C.1), the functions ϕδ,ηt (E) approximate
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the eigenfunctions of the operartors ̂t and ̂t2 the more accurately, and are the more nearly
orthogonal for different t, the better the relations

δ

t
�

(

δη

�

)1/2

� 1,

(

δ

t

)2

�
(

δη

�

)3/2
(C.4)

hold as δ → 0 and η → 0 and under the fulfilment of the condition (B.4), the variance

Dt =
〈

ϕ
δ,η
t (E)

∣

∣̂t2
∣

∣ϕ
δ,η
t (E)

〉

−
∣

∣

〈

ϕ
δ,η
t (E)|̂t|ϕδ,ηt (E)

〉∣

∣

2
(C.5)

in the state ϕδ,ηt (E) tends to 0. The constant C can be chosen to make the norm ‖ϕδ,ηt (E)‖ equal
to 1.

It is curious that the function (C.2) differs from simple wave packets of the form

ϕδt (E) = C exp
(

iEt

�

)

fδ(E), (C.6)

which are typical for “eigendifferentials” in the continuous spectrum of linear self-adjoint
operators [54], only for the presence of the factor gη(E) → Θ(E).

D. The Duality of Time and Energy Operators

As it is known, in quantum theory there is a correspondence between energy E and two
operators—operator, i�(∂/∂t) in the t-representation and Hamiltonian operator ̂H(p̂x, x̂, . . .).
The duality of these operators is well seen from the Schroedinger equation ̂HΨ = i�(∂Ψ/∂t).
The similar duality has to take place for time in quantum theory: besides the general
form (2.1a), (2.1b), and (2.26) which is valid for any physical system (in the region of
continuous energy spectrum) one can express the time operator in terms of the coordinate
and momentum operators using the commutation relation between Hamiltonian operator
and time one. So, if one will make the substitution

̂E −→ ̂H
(

p̂x, x̂, . . .
)

,

̂t −→ ̂T
(

p̂x, x̂, . . .
)

,
(D.1)

then he will obtain

[

̂H, ̂T
]

= i�, (D.2)

which is similar to (2.24). The commutation relation (D.2) can be used for finding ̂T(p̂x, x̂, . . .)
for any concrete physical system with known ̂H(p̂x, x̂, . . .) (see, e.g., [11]). Choosing the
coordinate representation or momentum one for ̂H(p̂x, x̂, . . .) and ̂T(p̂x, x̂, . . .), one does not
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change the formal expression for Hamiltonian ̂H(p̂x, x̂, . . .) but does change the sign in the formal
expression for time operator ̂T(p̂x, x̂, . . .). It can be easily seen for a free particle:

̂H =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

p̂2
x

2μ
, p̂x = −i� ∂

∂x
in the coordinate representation,

p2
x

2μ
in the momentum representation,

(D.3)

̂T =
μ

2
[

p̂−1
x x + xp̂−1

x

]

, p̂−1
x =

i

�

∫

dx · · · in the coordinate representation, (D.4a)

̂T =
−μ
2
[

p−1
x x̂ + x̂p−1

x

]

, x̂ = i�
∂

∂px
in the momentum representation (D.4b)

(in the symmetrized form). By the way, formula (D.4b) is equivalent to −i�(∂/∂E) (since
E = p2

x/2μ) and therefore is also a maximal Hermitian operator.
For plane-wave state exp(ikx) in both representations (D.4a) and (D.4b) we obtain the

same result:

̂T exp(ikx) =
x

v
exp(ikx), (D.5)

x/v being the time of a free motion with the velocity v over the distance x.

E. On Four-Position Operators in Quantum Field Theory

E.1. The Klein-Gordon Case: Three-Position Operators

The usual position operators, being Hermitian and, moreover, self-adjoint, are known to
possess real eigen-values: that is, they yield a point-like localization. It is possible [49] to split
operator x̂ into two bilinear parts as follows:

x̂ = i∇p ≡
(

i

2

)

↔
∇p +

(

i

2

)

↔
∇

(+)

p , (E.1)

where Ψ∗
↔
∇pΦ ≡ Ψ∗∇pΦ − Φ∇pΨ∗ and Ψ∗

↔
∇

(+)

p Φ ≡ Ψ∗∇pΦ + Φ∇pΨ∗, and where we always
referred to a suitable space of wave packets (see, e.g., [12–14, 155–161]). Its Hermitian part
[12–14, 155–161]

x̂h ≡
(

i

2

)

↔
∇p, (E.2)

which was expected to yield an (ordinary) point-like localization, was derived also by writing
explicitly

(

Ψ, x̂Φ
)

= i
∫

d3p

p0
Ψ∗(p)∇pΦ(p), (E.3)
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and imposing hermiticity, that is, the reality of the diagonal elements. The calculation yielded

Re
(

Φ, x̂Φ
)

= i
∫

d3p

p0
Φ∗(p)

↔
∇pΦ(p), (E.4)

just suggesting to adopt the Lorentz-invariant quantity (E.2) as a bilinear Hermitian position
operator. Then, integrating by parts (and due to the vanishing of the surface integral), we
verified that (E.2) is equivalent to the ordinary Newton-Wigner operator

x̂h ≡
(

i

2

)

↔
∇p ≡ i∇p −

(

i

2

)

	p

p2 +m2
0

. (E.5)

We were left with the bilinear anti-Hermitian part

x̂a ≡
(

i

2

)

↔
∇

(+)

p , (E.6)

whose average values over the considered state (wave packet) were regarding as yielding [66]
the sizes of an ellipsoidal localization region.

In general, the extended-type position operator x̂ will give

〈

Ψ
∣

∣x̂
∣

∣Ψ
〉

=
(

	α + Δ	α
)

+ i
(	β + Δ	β

)

, (E.7)

where Δ	α and Δ	β are the mean-errors encountered when measuring the point-like position
and the sizes of the localization region, respectively. It is to evaluate the commutators (i, j =
1, 2, 3):

[

(

i

2

)
↔
∂
∂pi

,

(

i

2

)

↔
∂(+)

∂pj

]

=

(

i

2p2
0

)(

δij − 2pipj
p2

0

)

, (E.8)

where from the noticeable “uncertainty correlations” follow:

Δαi ·Δβj ≥
(

1
4

)

〈(

δij − 2pipj/p2
0

)

p2
0

〉

Ψ

. (E.9)

E.2. Four-Position Operators

It is tempting to propose as four-position operator the quantity x̂μ = x̂μh+ix̂
μ
a , whose Hermitian

(Lorentz-covariant) part can be written as

x̂
μ

h
≡ −

(

i

2

)
↔
∂
∂pμ

, (E.10)
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to be associated with its corresponding “operator” in four-momentum space

p̂
μ

h
≡ +

(

i

2

)
↔
∂
∂xμ

. (E.11)

Let us firstly recall the proportionality between the 4-momentum operator and the
4-current density operator in the chronotopical space

m0ρ̂ ≡ p̂0 =
(

i

2

)
↔
∂
∂t
,

m0
̂	j ≡ ̂	p = −

(

i

2

)
↔
∂
∂	r
.

(E.12)

Then, let us recall the canonical correspondence (in the 4-position and 4-momentum
spaces, resp.) and introduce the 4-position operators in the 4-momentum space (cf. the
previous section):

̂t = −
(

i

2

)
↔
∂
∂p0

, (E.13a)

̂	x =
(

i

2

)
↔
∂
∂	p
. (E.13b)

Now, recalling the properties of the time operator as a maximal Hermitian operator
in the nonrelativistic case, considered in Section 2.1, we can be easily convinced that
the relativistic time operator (E.13a) (for the Klein-Gordon case) has to be also self-adjoint
bilinear operator for continuous energy spectra and a maximal Hermitian linear operator due to the
boundedness by zero from below for the kinetic energy (or by m0 from below for the total energy ) for
the free particle.

Finally, comparing (E.12) and (E.13a) and (E.13b), we can conclude that the four-
position “operator” (E.13a) and (E.13b) can be regarded as a 4-current density operator in
the energy-momentum space [12–14].

Of course, similar considerations and conclusions can be carried on for the anti-
Hermitian parts also [12–14].

F. On Multiple Internal Reflections during
Tunnelling through a Barrier

Introduction

The analysis of multiple internal reflections inside potentials has been considered since
a long (see, e.g., [162–164]). The problem is rather trivial for attractive potentials and
for over-barrier energies in potential barriers, but things change drastically for under-
barrier energies, namely for tunneling. Indeed, in this case decreasing (evanescent) and
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increasing (antievanescent) waves separately correspond to zero—both stationary and (time-
averaged) nonstationary—fluxes. Nonzero fluxes correspond only to linear combinations of
both decreasing and increasing waves. As a consequence, evanescent and antievanescent
waves cannot be regarded as physical propagating waves. This circumstance was overlooked
anywhere up to now. It implies that a physical treatment of the problem requires a description
of the tunneling in terms of wave packets.

Analyzing multiple internal reflections in particle and photon tunneling, we will
follow [165, 166].

Evolution of Particle Tunneling through a 1D Rectangular Potential Barrier

We confine ourselves to the simplest case of particles moving along the x-direction and
tunneling through a rectangular potential barrier of height V0 in the interval (0, a) (see
Figure 1) where by I, II, and III we label the regions x < 0, 0 < x < a and x > a, respectively.
As usually [26, 27, 32, 47], we will use the following expression for the stationary wave
function ψ(k, x)

ψ ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ψI = ψin + ψR, x < 0,
ψII, 0 < x < a,
ψIII = ψT , x > a,

(F.1)

with

ψin ≡ eikx,

ψR ≡ ARe
−ikx,

ψII ≡ αe−χx + βeχx,

ψT ≡ ATe
ikx,

(F.2’)

where k = (2mE)1/2/�, χ = (2m(V0 − E))1/2/�, and E and m are the particle kinetic energy
and mass, respectively. The coefficients (amplitudes) AR, AT , α, and β can be analytically
calculated and are well known.

The tunneling evolution has to be described by the nonstationary description of
actually moving wave packets. These are built up in terms of the solutions ψ(k, x) of the
stationary Schroedinger equation by using the resolution of the evolution operator, namely,
by integrating ψ(k, x) exp(−iEt/�) over E from 0 to∞ with a weight amplitude g(E − E),

Ψ(x, t) =
∫

dE g(E − E)ψ(k, x) exp
(

− iEt
�

)

, (F.2)

where we assume the normalization condition
∫

dE|g(E − E)|2 = 1, quantity E being the
average kinetic energy.

By inserting in the integral (F.2) the initial (ψin), reflected (ψR) and transmitted (ψT )
wave, instead of the total wave ψ, we obtain the initial, final reflected and transmitted wave
packets, respectively, carrying a time delay during the motion or due to the interaction.
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Of course, there is always a certain distortion in the wave packet form due to the energy
dependence of AR and AT ; but for a wide class of weight amplitudes such a distortion is
negligible [6]. Moreover, we can get rid of the wave components with above-barrier energies
by introducing the additional transformation

g
(

E − E
)

−→ G
(

E − E
)

≡ g
(

E − E
)

Θ
(

E − V0
)

, (F.3)

(where Θ(z) is the Heaviside step function) in order to avoid distortions of the under-barrier
penetration (tunneling) due to the over-barrier transitions.

In the conventional approach, one requires that the stationary wave function ψ(k, x) and
its first derivative be continuous across both potential discontinuities at x = 0 and x = a.
This results in four equations in the four unknowns AR, AT , α, and β. If one does not take
explicitly into account multiple internal reflections inside the barrier, the general tunneling
evolution is quite simply described by passing from the stationary solution ψ(k, x) to the
nonstationary wave packet Ψ(x, t), defined by (F.2)-(F.3), but in a more detailed description
including multiple internal reflections one has to take a different course.

Our model of the tunneling process of a nonrelativistic particle is as follows. We are
going to solve the problem of a wave packet incident on the first (initial) potential wall;

(1) without taking into account the second (final) potential barrier wall, because the
wave packet has not yet reached it in consequence of its finite propagation speed;

(2) being careful of not breaking the requirement of the finiteness of the wave function
(packet) for infinitely wide barriers (when increasing waves have to be absent);

(3) constructing the waves in successive steps of multiple internal reflections from
both barrier walls, in such a way that they are analytical continuations of the related
expressions, corresponding to current waves in the simpler case of above-barrier energies.

We can therefore distinguish three subsequent steps in the evolution of the tunneling
process.

Step 1 (the particle starts tunneling the barrier by crossing the first wall at x = 0). At this
initial step, in region I we have the initial time-dependent wave packet

Ψin(x, t) =
∫

dEG
(

E − E
)

ψin(k, x) exp
(

− iEt
�

)

, x < 0, (F.4)

plus the externally reflected (from the initial potential wall) time-dependent wave packet

Ψex
R (x, t) =

∫

dEG
(

E − E
)

ψex
R (k, x) exp

(

− iEt
�

)

, x < 0. (F.5)

The sum of the wave packets (F.4) and (F.5) transforms continuously, in the passage across
the initial potential wall, into the internal time-dependent wave packet inside the barrier (in
region II). In the hypothesis that the tunneling packet does not feel the final potential wall, the
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corresponding flux is directed initially only towards the second wall, that is, the penetrated
wave packet does contain only decreasing waves:

Ψ1
pen(x, t) =

∫

dEG
(

E − E
)

α0 exp(−χx) exp
(

− iEt
�

)

, 0 < x < a, (F.6)

by α0 we denote the coefficient of initial penetration. Then, passing from the time-dependent
wave packets to the corresponding stationary wave functions, and requiring continuity at x =
0, we obtain for Step 1 (entrance of the initial wave packet inside the barrier) the following
two equations in the two unknowns A0

R, α0:

exp(ikx)
∣

∣

x=0 +A
0
R exp(−ikx)

∣

∣

x=0 = α0 exp(χx)
∣

∣

x=0,

ik
[

exp(ikx) −A0
R exp(−ikx)

]∣

∣

x=0 = −χα0,

(F.7)

where A0
R is the coefficient of the initial (external) reflection. Let us stress that the stationary

flux for α0 exp(−χx) is equal to zero and the total flux for Ψ1
pen(x, t), integrated over time t, is zero,

too.

Step 2 (the particle crosses the second barrier wall at x = a). The wave packet, penetrated
inside region II, reaches the second wall of the barrier. It therefore transforms into a wave
packet, transmitted through the final wall and propagated into region III, plus a wave
packet, reflected from the same wall and penetrated back into region II. Quite similarly to
(F.7) we obtain for this step, by the continuity requirement at x = a, the following two
equations:

α0 exp(−χx)
∣

∣

x=a + β0 exp(χx)
∣

∣

x=a = A
0
T exp(ikx)

∣

∣

x=a,

χ
[

− α0 exp(−χx) + β0 exp(χx)
]∣

∣

x=a = −ikA
0
T exp(ikx)

∣

∣

x=a,

(F.8)

which can be solved to yield the unknown coefficients β0 (amplitude of the evanescent wave
reflected from the second wall in region II) and A0

T (amplitude of the wave transmitted
through the second wall in region III).

Step 3 (the particle, bounced back from the second wall, crosses again the first wall moving in
the negative x-direction). The wave packet reflected from the second wall is incident inside
the barrier upon the first wall. Then, it transforms into a wave packet transmitted through this
wall (as an addition to the packet reflected back in region I), and in a wave packet reflected
from the same wall forward inside region II. Again, quite similarly to (F.7) and (F.8), we get
the following two equations in the unknown coefficients α1 (amplitude of the evanescent
wave reflected into region II) and A1

R (amplitude of the wave transmitted through the first
wall in region I):

α1 exp(−χx)
∣

∣

x=0 + β0 exp(χx)
∣

∣

x=0 = A1
R exp(ikx)

∣

∣

x=0,

χ
[

− α1 exp(−χx) + β0 exp(χx)
]∣

∣

x=0 = −ikA1
R.

(F.9)
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Step 3 corresponds, of course, to a first internal reflection. The process can be iterated
by considering successive processes of internal reflections of the gradually decreasing
(in consequence of preceding internal incidences with the walls) wave packet from the
barrier walls (with partial transmissions through the walls outside). Such a description of the
tunneling process is just the multiple internal reflection approach. It is easily seen that any of the
subsequent steps can be reduced to one of the first three steps considered above. Moreover,
we obtain, from the continuity requirement, the following recurrence relations:

α0 =
2k

k + iχ
, βn = αn

iχ − k
iχ + k

exp(−2χa), αn+1 = βn
iχ − k
iχ + k

,

A0
R =

k − iχ
k + iκχ

, An
T = αn

2iχ
iχ + k

exp(−χa − ika), An+1
R = βn

2iχ
iχ + k

(F.10)

for the unknown coefficients αn, βn, An
T , and An

R (n = 0, 1, . . .) at the successive steps of
evolution of the tunneling wave packet. The number n labels the successive steps of evolution
of the wave packet inside the barrier, starting from n = 0 (beginning of the wave-packet
penetration inside the barrier). For n/= 0, the corresponding evolution step is the internal
reflection from any barrier wall until the arriving to the other wall. Odd values n = 2μ + 1
correspond to reflections from the first wall, with amplitude αμ, whereas even values n =
2(v + 1) correspond to reflections from the second wall, with amplitude βv (e.g., step n = 2
discussed above describes reflection back inside from the second wall with amplitude β0,
while step n = 3 describes reflection forward inside from the first wall with amplitude α1).

The general evolution of the initial wave packet, tunneling through the barrier, is
obtained by summing on all possible steps. It is easy to see that

AT =
∞
∑

n=0

An
T =

4ikχ exp(−χa − ika)
F

,

AR =
∞
∑

n=0

An
R =

k2
0D−

F
,

α =
∞
∑

n=0

αn =
2k(k + iχ)

F
,

β =
∞
∑

n=0

βn =
2k(iχ − k) exp(−2χa)

F
,

(F.11)

where F = (k2 − χ2)D− + 2ikχD+, D± = 1 ± exp(−2χa), k2
0 = k2 + χ2 = 2mV0/�

2 .
All these results for the coefficients α, β, AT , and AR coincide with those derived

by a standard treatment of the tunneling process based on the general expressions for the
stationary wave function ψ(k, x), (F.1), and for the nonstationary wave packet Ψ(x, t), (F.2)-
(F.3). Moreover, by replacing

iχ −→ k1, (F.12)

where k1 = [2m(E − V0)]
1/2/� is the wave vector for the case of above-barrier energies

(

E >
V0), all the expressions (F.10)-(F.11) for αn, βn, An

T , A
n
R, α, β, AT , and AR transform into
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the corresponding ones obtained in the analysis of the ordinary particle propagation above
barrier in terms of multiple internal reflections.

In the limit χa → ∞ (i.e., for infinitely wide and/or high barriers), the infinite series
of multiple internal reflections reduces to only one step (the first) and we get (F.4)–(F.7) as
total solution, with

AT = 0, AR = A0
R, α = α0, β = 0, (F.13)

instead of (F.11). This case—together with the similar case of a subbarrier energy particle
tunneling into a semiclosed barrier region with a dead stopper at the second wall—has been
analyzed in [167].

Intermediate Reflection and Traverse Times, Total Tunneling and Reflection Times

In order to discuss the relevant times involved in the multiple reflection description of
the tunneling process, we will exploit the general definition of phase times as times of
propagation of the wave packet maximum (peak) for the quasimonochromatic wave packets
(F.1)–(F.3). We have, respectively:

(1)

tinc =
�∂(arg g)

∂E
(F.14)

for the incident phase time at the barrier beginning (x = 0); we take this as the zero
(origin) time;

(2)

τ1
refl = t1refl − tinc =

�∂ argA0
R

∂E
=

2
vχ

(F.15)

(with v = �k/m being the mean—or group—incident velocity) for the 1-step
(external) reflection phase time;

(3)

τ1
tr = t

1
tr − tinc =

a

v
+

�∂
(

argA0
T

)

∂E
=

2
vχ

(F.16)

for the 1-step traverse phase time at the barrier end (x = a).

Similarly, we obtain the following expressions for the n-step reflection and traverse
phase times:

τnrefl =
4(v + 1)
vχ

, n = v + 1, v = 0, 1, . . . ,

τntr =
2(2μ + 1)

vχ
, n = 2μ + 1, μ = 0, 1, . . . .

(F.17)
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Then, the total tunneling and reflection phase times are defined by:

τtun =
a

v
+

�∂
∑∞

n=0 argAn
T

∂E
=

(vχ)−1[k2
0 sh(2χa) + 2χak2(χ2 − k2)]

[

4k2χ2 + k2
0 sh2(χa)

]
,

τrefl =
�∂

∑∞
n=0 argAn

R

∂E
= τtun.

(F.18)

In the limit χa → ∞ (for infinitely wide and/or high barriers) one gets

τtun = τrefl = τ1
refl = τ1

tr =
2
vχ

. (F.19)

We see that for μ > 0 and v ≥ 0 all αμ, βv, Av
T , and Aμ

R are exponentially decreasing for
χa → ∞. Let us stress that not only τtun, but also all τntr (n = 1, 2, . . .), exhibit the HFE, that is, the
independence of τtun from a for large a (which implies an infinite growing of the tunneling
velocity a/τtun for a → ∞).

Study of the Physical Meaning of the Evanescent-Wave Packets with the Help of the Virtual
Momentum Fourier Expansion and the Instanton Approaches

We want now to discuss the physical meaning of the wave packet (F.6) constructed from
evanescent waves by exploiting the virtual momentum Fourier expansion and the instanton
approach.

The Fourier Expansion

We will expand the wave packet (F.6) constructed from evanescent waves as a virtual
momentum (−∞ < q <∞) Fourier integral:

Ψ1
pen(x, t) =

∫

dEG
(

E − E
)

α0 exp(−χx) exp
(

− iEt
�

)

= (2π)−1
∫∞

−∞
dq gη(q) exp(−qx)

×
∫

dEG
(

E − E
)

α0 exp
(

− iEt
�

)

[

− χ − iq
]−1[ exp(−χa − iqa) − 1

]

,

(F.20)

where the infinitesimally narrow-step function gη(q), defined as

gη(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(n + 1)
(

q

η

)n

− n
( |q|
η

)n+1

, n ≥ 2, 0 ≤ |q| ≤ η,

1, η ≤ |q|,
(F.21)
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within the infinitesimal interval (−η, η) (η > 0, η → 0+), is inserted in order to eliminate the
point q = 0. By passing to the variable ε = E−Eq (with Eq = �

2q2/2m), (F.20) can be rewritten
as

Ψ1
pen(x, t) = (2π)−1

∫∞

−∞
dq gη(q) exp

(

iqx −
iEqt

�

)

×
∫

dEG
(

E − E
)

α0 exp
(

− iεt
�

)

[

− χ − iq
]−1[ exp(−χa − iqa) − 1

]

.

(F.22)

In (F.22) one can see current waves exp
(

iqx − iEqt/�) and the oscillating factor exp(−iεt/�),
damped with time. The main contribution to (F.22) originates from the current waves which
satisfy the condition

ε −→ 0, or Eq ≈ E, (F.23)

when the dampingis practically absent even for large t,—more precisely, when

εt

�
≤ 1, (F.24)

and also for q within the range

−χ ≤ q ≤ χ. (F.25)

(By the way, it is striking that generally in this approach both symmetrically forward (q > 0)
and backward (q < 0) motions are possible.) Either condition (F.23) or (F.25) is satisfied when
both k and χ are within the range Δk, covered by the weight amplitude g(E − E).

The Instanton Approach

We will now analyze the propagation of the wave packet (F.6) using the well-known method
of transforming the space-time metric inside the barrier region, namely the formal inspection
of the wave-packet motion along an imaginary time axis t → iτ , which is typical of the
instanton approach (see, e.g., [116, 168, 169] and references therein). In this case, χ becomes
imaginary: χ → −iκ (κ > 0), and therefore one gets nonzero fluxes along the axis τ ; moreover,
E → E′. So, we get for Ψ1

pen(x, t)

Ψ1
pen(x, t) =

∫

dE α0G
(

E − E
)

exp
(

iκx − Eτ
�

)

. (F.26)

By introducing the virtual-energy (−∞ < É <∞) Fourier transform

exp
(

− E
′τ

�

)

= �
−1(2π)−1/2

∫∞

−∞
D
(

E′, É
)

exp
(

iÉτ
�

)

dÉ, (F.27)



72 Advances in Mathematical Physics

with

D
(

E′, É
)

= �(2π)−1/2
∫∞

0
exp

(

− E
′τ

�

)

exp
(

− iÉτ
�

)

dτ = �(2π)−1/2(E′ + iÉ
)−1

, (F.28)

equation (F.26) can be rewritten as

Ψ1
pen(x, t) = (2π)−1

∫

dEG
(

E − E
)

α0 exp
(

iκ − iEκτ
�

)∫∞

−∞
dÉ exp

[

i
(

Eκ + É
)

τ

�

]

[

E′ + iÉ
]−1

,

(F.29)

where Eκ = �
2κ2/2m. So, it is easily seen that along the axis τ inside the barrier, the functions

(F.29) correspond to wave-packet motions with group velocities ±dEκ/d|κ| = �|κ|/m,
accompanied by oscillations described by the factor exp[i(Eκ + É)τ/�], damped for τ → ∞.

In (F.29) one can see current waves exp
(

iκx − iEκτ/�) and the oscillating factor
exp[i(Eκ + É)τ/�] damped with time. The main contribution to (F.29) originates from the
current waves which satisfy the condition

∣

∣Eκ + É
∣

∣τ

�
≤ 1, (F.30)

when the dampingis practically absent, and also for É within the range

−E ≤ É ≤ E. (F.31)

Either condition (F.30)-(F.31) is satisfied when both E and Eκ are within the range ΔE (or k
and κ are within the range Δk = ((2mΔE)1/2/�), covered by the weight amplitude g(E − E),
precisely as in the previous case. The only difference between these approaches is the absence
of backward motion in the instanton representation.

Some Words on Multiple Internal Reflections for Particle Energies above a Single
Barrier and for Two Separated Barriers with Even Particle Subbarrier Energies

For the case of the above-barrier energies, there is an evident influence of multiple internal
reflections of propagating waves. In [170–174] it was presented the detailed study of such
influence and it was shown the presence of a multitude of various secondary reflected and
transmitted peaks in addition to two main treflected and transmitted wave packet peaks.
In [175], the influence of multiple internal reflections was extended for transmissions of
relativistic Dirac wave packets with energies above a single barrier.

In [176], the influence of multiple internal reflections was further extended, taking into
account multiple internal reflections in the motion of free (nonrelativisctic) propagating wave
packets between two separated barriers. It was shown the existence of multiple peaks, due
to multiple reflections in the free region between two barriers, in addition to the assumption
of a single outgoing peak in the case of neglecting such multiple reflections as it was made in
Section 3.7 on the base of [127–129].
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The Case of Photon Tunneling

It follows from [165, 166] (see also [47] and Section 2.4) that all the results and conclusions
of Appendix F for subbarier energies, concerning both multiple internal reflections and total
phase tunneling and reflection times, are also valid for the tunneling of photons in a 1D
rectangular wave guide (with the only substitution v → c in (2.27)–(2.31)).

In the particular case of quasimonochromatic wave packets, using the stationary-
phase method under the same boundary and measurement conditions as considered for
particles in Section 3.2, we obtained there the identical expression (3.19) which manifests the
superluminal photon effective tunneling velocity. This result agrees with the experimental
findings of the microwave-tunneling measurements presented in [170–174]. Analyzing now
the multiple internal reflections for photons, one can also see that (as in the particle case) not
only τtun but also all τntr (n = 1, 2, . . .) manifest the HFE.

Summary: Conclusions and Perspectives

(1) The time operator (2.1a), (2.1b), and (2.26) is general for any quantum collision and
process in the continuum energy spectrum within nonrelativistic quantum mechanics and
quantum electrodynamics (with self-consistent definition of averaging measures over time
for the 1D particle and photon motion). Of course, it cannot be defined in the cases with zero
fluxes and unmoving particles, but for the same cases apriori there is no evolution processes
at all. The uniqueness of the maximal symmetric time operator (2.1a), (2.1b), and (2.26) does
directly follow from the uniqueness of the Fourier transformations from time representation
to energy one.

Two measures of averaging over time and connection between them are analyzed. The
foundations of the self-consistent time analysis for quantum (in particular, tunneling and
nuclear) processes are in fact developed on the base of the time operator with the proper
measure of averaging over time (2.7) and/or (2.9). They include the mathematically rigorous
and one-to-one time and energy representations of the Olkhovsky-Recami definition of mean
durations and variances in distributions of durations for all really known Hamiltonians in
various quantum processes and collisions (including all kinds of multiple internal reflections
between barriers and inside barriers among them).

An actual perspective for the nearest future is opened for generalizing the time
analysis of quantum processes for more complicated particle and photon motions (e.g., such
as along helixes and motions through 2D and 3D (nonspherical) potentials and barriers).

As to systems with the discrete energy spectra, the form (2.43) for the time operator
corresponds to the class of bound-state wave functions just similarly to the situation with
the azimuth-angle operator. It is general for processes in the discrete energy spectrum (or a
system has a purely discrete energy spectrum either it has a discrete spectrum as a part of its
total energy spectrum). The time operator cannot be defined in the case of one bound state
with zero flux and unmoving particle, and there is no evolution here too.

Once more we underline that at the limit of infinitesimally close levels formula (2.50)
passes to formula (2.1b) for systems with continuous spectra.

All commutation relations, analyzed here, (2.24) and (2.44) and also uncertainty
relations (2.25) and (2.47) are set side by side with the similar relations for other pairs
of canonically conjugate observables (such as, for coordinate x̂ and momentum p̂x in the
case of (2.25), and for azimuthal angle ϕ and angular momentum ̂Lz in the case of (2.47)).
Our relations do not replace, but essentially extend the meaning of the time and energy
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uncertainties given in [177, 178]. Also they are consistent with the conclusions of [179, 180]
where, in particular, it was directly said about absence of objections against those limitations
on the time and energy measurements which can be derived from the mathematic formalism
with introducing the adequate energy and time operators and the corresponding statistical
fluctuations. We hope that these relations which are deduced with applying the properties of
the time operator can help to attenuate endless debates about the status of the time-energy
uncertainty relation.

(2) Finally, we state that not only time but any other quantities, to which maximal
symmetrical (Hermitian) operators correspond (e.g., a momentum in a semispace with a rigid
wall and a radial momentum, both are defined over the semibounded axis from 0 to∞) can
be considered as quantum-physical observables in the same degree as the quantities to which
self-adjoint operators correspond, without introducing any new physical postulates. The same
conclusion is valid for quasi-self-adjoint operators like (2.37) and (2.43).

(3) Similar derivations and conclusions with quite evident generalization can be
carried out for time operator in relativistic quantum mechanics (the Klein-Gordon case and
the Dirac case). It is rather perspective (but, of course, not always simple) to develop the
analysis of three- and four-position operators for other relativistic cases, especially to analyze
the localization problems (the Dirac particles, 2D and 3D particles and photon motions, etc.)

(4) Actually, the time operator (2.1a), (2.1b), and (2.26) has been rather fruitfully used
in the case of the tunneling times (see [26, 27, 32–35, 47]). We have established that practically
all earlier known particular tunneling times appear to be the special cases of the mean
tunneling time or of the square root of the variance in the tunneling-time distribution (or pass
into them under some boundary conditions), defined within the general O-R approach. It
had been carried out in some reviews (in particular, in [26, 27, 32, 47, 81]) also the connection
of other earlier known approaches or simultaneously elaborated approaches with the O-R
approach which had been recognized as the most self-consistent definition of the tunnelling
time within the conventional quantum mechanics (see, e.g., [81]).

It is meaningful to stress also that, although any direct classical limit for particle
tunnelling through potential barrier with subbarrier energies is really absent, there is the direct
classical limit for wave packet tunneling. Let us recall real evanescent and antievanescent waves, well
known in classical optics and in classicalacoustics (see, e.g., [176, 181–185]).

(5) The HFE is now extended for all expressions of mean tunneling times, however,
with sufficiently narrow momentum spreads of initial particle wave packets (and, of course,
for quasimonochromatical particles). The violations of the HFE are revealed and explained
for the presence of the absorption and also for the cases of the rather large momentum spreads
of initial particle wave packets.

(6) It is elaborated the rigorous combined resonant and nonresonant description of the
1D particle tunneling through two potential rectangular barriers.

(7) There are derived and analyzed new general expressions for the elastic scattering
S-matrix, for internal and external transmissions and reflection probability amplitudes and
also the connection between them in a 3D tunnelling process through spherically symmetric
potential (rectangular and Coulomb) barriers, taking into account the multiple internal
reflections from internal barrier wall into the potential well. In the case of a rectangular
barrier, there are also derived the expressions for the tunnelling and reflection phase time,
and it is shown the occurrence of the HFE. Of course, in the realistic 3D situations in
nuclear physics one has to use typical phenomenological potentials (like the Saxon-Woods
well) and consider also the charge distribution inside and at the surface of the daughter
nucleus.
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We have also taken into account the resonances and written in this case the explicit
analytical expression for the resonant S-matrix, with the resonance width proportional to
the very small exponential factor e−2χ(R2−R1) (in the case of a rectangular barrier with l = 0).
Similarly one can write the resonant S-matrix for the Coulomb barrier, with the resonance
width proportional to the very small exponential factor e−2πη and for cases with l > 0.

The presented method can be used as the initial phase for the joint time-dependent
study of nuclear reactions (beginning from the scattering) and decays for any value of l, and
not only for spherically symmetric interactions but also for nonspherical cases (beginning
from the coupled-channel method). Also the results for the case of the Coulomb barrier can
be used as an initial phase for analysis of the subbarrier low-energy astrophysical nuclear-
fusion reactions (near the Gamow energy). In distinction from the 1D WKB approximation
which is used till now for such analysis, in the 3D case it is important even for very small
k to take into account not only the exponential factor e−2πη but also the multiple internal
reflections with

Ain
R −→ e2iKR1 ,

1
1 +Ain

R

−→
[

1 + exp
(

2ikR1
)]−1 (F.32)

for both resonance and nonresonant collisions.
Then, for this same system, we have derived the elastic scattering S-matrix (and its

connection with the transmission and reflection probability amplitudes) and all quantities
related taking into account the multiple internal reflection.

The results we have obtained can be used for the study of the alpha and proton
radioactivity decay, if one will use the Coulomb barrier instead of the rectangular one and
may be introduce the hard core inside the internal well and then modify all the potentials into
more realistic (“smoothed” like Woods-Saxon well, etc.) potentials. Also they can be used in
another field, with the appropriate modifications, for the study of the photon emission from
a glass sphere surrounded by a spherical air layer and externally by another glass sphere.

(8) The analysis of the possibility and the study of the multiple internal reflections, of
wave packets with subbarrier energies, not only between barriers but also inside barriers
(and not only for particles but also for photons) by several approaches is carried out in
Appendix F. Inside barriers we have used (i) the analytic continuation from axis of real
momentum values to axis of imaginary momentum values, (ii) the Fourier expansion, and
(iii) the instanton approach.

One can see an interesting perspective to research the multiple internal reflections also
experimentally (in particular, by frustrated total internal reflections by 2D and 3D barriers
in photon (see [181–183] where namely such optical experiments are firstly described) and
acoustical tunneling) with presented here theoretic foundations of time analysis of quantum
processes.

Another interesting perspective, firstly in theoretical reseach, is revealed in [186, 187]
by establishing of not only incoherent multiple internal reflections for particles and also
photons but also coherent multiple internal reflections from barriers inside wells between
barriers—-in the cases of the tunneling of small bound systems through certain Coulomb
barriers during long decays of more complex systems (e.g., long-living alpha-radioactive
nuclei and heavy nuclei, undergoing the spontaneous fission, etc.)

(9) Some results of the time analysis of nuclear collisions and decays are briefly
reviewed. In the regions of isolated resonances, distorted by the nonresonant background,
the principal possibility of the negative values of time delays (i.e., advances) is shown and
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concretely the time analysis of proton scattering by nuclei 12C and 14N at the range of isolated
resonances distorted by the nonresonant background, accompanied by the bremsstrahlung,
resulted in the discovery of the real possibility of the delay-advance phenomenon in the
proton emission during scattering [151, 152].

The time analysis of high-energy nuclear reactions, with highly excited (at the range of
very dense overlapping energy resonances) final compound-fragment formations, resulted in
the revealing of the new phenomenon of time resonances (or explosions) of such formations
[148].

Results of the time analysis for other nuclear processes are presented in [21, 23–25, 188–
191].

Acknowledgments

The author is deeply indebted to L. S. Emelyanova for the encouraging stimulation to write
this review. He acknowledges the strong cooperation, collaboration, and useful discussions
received along years by E. Recami and also V. Petrillo and R. Mignani. The author thanks
N. V. Eremin, A. S. Holevo, G. Giardina, G. Fazio, V. L. Lyuboshitz, and B. N. Zakharyev for
the useful discussions and friendly support. He is also grateful to his former postgraduate
students A. K. Zaichenko, S. P. Maydanyuk, M. E. Dolinska, and V. V. Davydovsky for the
help.

References

[1] W. Pauli, in Handbuch der Physik, S. Fluegge, Ed., vol. 5/1, p. 60, Springer, Berlin, Germany, 1926.
[2] W. Pauli, General Principles of Quantum Mechanics, Springer, Berlin, Germany, 1980.
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[155] A. J. Kálnay, “Lorentz-covariant localized states and the extended-type position operator,” Boletin
del IMAF, vol. 2, p. 11, 1966.
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