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1. Introduction

The Landau Hamiltonian describes a charged particle moving in a plane, influenced by a
constant magnetic field of strength B > 0 orthogonal to the plane. It is a classical result, see [1,
2], that the spectrum of the Landau Hamiltonian consists of infinitely degenerate eigenvalues
B(2q + 1), q = 0, 1, 2, . . ., called Landau levels.

In this paper, we will study the even-dimensional Landau Hamiltonian outside a
compact obstacle, imposing magnetic Neumann conditions at the boundary. Our motivation
to study this operator comes mainly from the papers [3, 4]. Spectral properties of the exterior
Landau Hamiltonian in the plane are discussed in [3], under both Dirichlet and Neumann
conditions at the boundary, with focus mainly on properties of the eigenfunctions. A more
qualitative study of the spectrum is done in [4], where the authors fix an interval around a
Landau level and describe how fast the eigenvalues in that cluster converge to that Landau
level. They work in the plane and with Dirichlet boundary conditions only. The goal of this
paper is to perform the same qualitative description when we impose magnetic Neumann
conditions at the boundary. Moreover, we do not limit ourself to the plane but work in
arbitrary even-dimensional Euclidean space.
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The result is that the eigenvalues do accumulate with the same rate to the Landau
levels for both types of boundary conditions; see Theorem 3.2 for the details. However, the
eigenvalues can only accumulate to a Landau level from below in the Neumann setting. In
the Dirichlet case they accumulate only from above.

It should be mentioned that we suppose that the compact set removed has no holes
and that its boundary is smooth. This is far more restrictive than the conditions imposed on
the compact set in [4].

Several different perturbations of the Landau Hamiltonian have been studied in the
last years; see [4–11]. They all share the common idea of making a reduction to a certain
Toeplitz-type operator whose spectral asymptotics are known. We also do this kind of
reduction. The method we use is based on the theory for pseudodifferential operators and
boundary PDE methods, which we have not seen in any of the mentioned papers.

In Section 2, we define the Landau Hamiltonian and give some auxiliary results about
its spectrum, eigenspaces, and Green function.

We begin Section 3 by defining the exterior Landau Hamiltonian with magnetic
Neumann boundary condition and formulating and proving the main theorems (Theorems
3.1 and 3.2) about the spectral asymptotics of the operator. The main part of the proof, the
reduction step, is quite technical and therefore moved to Section 4. When the reduction step
is done we use the asymptotic formulas of the spectrum of the Toeplitz-type operators, given
in [8, 10], to obtain the asymptotic formulas in Theorem 3.2.

In the higher dimensional case (R2d, d > 1), we also consider the case when the
compact obstacle is a Reinhardt domain. We use some ideas from [12] to prove a more precise
asymptotic formula for the eigenvalues. This is done in Section 5.

2. The Landau Hamiltonian in R
2d

We denote by x = (x1, . . . , x2d) a point in R
2d. Let B > 0 and denote by �a the magnetic vector

potential

�a(x) =
(
a1(x), . . . , a2d(x)

)
=

B

2
( − x2, x1,−x4, x3, . . . ,−x2d, x2d−1). (2.1)

It corresponds to an isotropic magnetic field of constant strength B. The Landau Hamiltonian
L in R

2d describes a charged, spinless particle in this homogeneous magnetic field. It is given
by

L = (− i∇ − �a)2 (2.2)

and is essentially self-adjoint on the set C∞
0 (R2d) in the usual Hilbert space H = L2(R2d). For

j = 1, . . . , d,we also introduce the self-adjoint operators

Lj =
(
− i

(
∂

∂x2j−1 ,
∂

∂x2j

)
− (a2j−1, a2j

)
)2

, (2.3)
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in the Hilbert spaces Hj = L2(R2). Note that H = ⊗d
j=1Hj , and

L = L1 ⊗ I⊗(d−1) + I ⊗ L2 ⊗ I⊗(d−2) + · · · + I⊗(d−1) ⊗ Ld. (2.4)

2.1. Landau Levels

The spectrum of each two-dimensional Landau Hamiltonian Lj consists of the so-called
Landau levels, eigenvalues B(2q + 1), q ∈ N := {0, 1, 2, . . .}, each of infinite multiplicity. Let
κ̂ = (κ1, . . . κd) ∈ N

d be a multi-index. We denote by |κ̂| = κ1 + · · · + κd the length of the multi-
index κ̂ and also set κ̂! = κ1! · · ·κd!. From (2.4) it follows that the spectrum of L consists of the
infinitely degenerate eigenvalues

Λκ̂ = B
d∑

j=1

(
2κj + 1

)
, κj ∈ N. (2.5)

Note that Λκ̂ = Λκ̂′ if |κ̂| = |κ̂′|. Hence the spectrum of L consists of eigenvalues of the form
Λμ = B(2μ + d), μ ∈ N.

2.2. Creation and Annihilation Operators

The structure of the eigenspaces of L has been described before in [8]. We give the results
without proofs. It is convenient to introduce complex notation. Let z = (z1, . . . , zd) ∈ C

d,
where zj = x2j−1 + ix2j . Also, we use the scalar potential W(z) = −(B/4)|z|2 and the complex
derivatives

∂

∂zj
=

1
2

(
∂

∂x2j−1 − i
∂

∂x2j

)
,

∂

∂zj
=

1
2

(
∂

∂x2j−1 + i
∂

∂x2j

)
. (2.6)

We define creation and annihilation operators Q∗
j , Qj as

Q∗
j = −2ie−W ∂

∂zj
eW, Qj = −2ieW ∂

∂zj
e−W, (2.7)

and note that

[Q∗
j ,Q∗

k

]
=
[Qj ,Qk

]
=
[Q∗

j ,Qk

]
= 0, if j /= k. (2.8)

The notation Q∗
j for the creation operators is motivated by the fact that it is the formal adjoint

of Qj inH.
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A function u belongs to the lowest Landau level Λ0 if and only if Qju = 0 for j =
1, . . . , d. This means that the function f = e−Wu is an entire function, so via multiplication by
e−W the eigenspace LΛ0 corresponding to Λ0 is equivalent to the Fock space

F2
B =

{

f | f is entire and
∫

Cd

|f |2e−(B/2) |z|2dm(z) < ∞
}

. (2.9)

Here, and elsewhere, dm denotes the Lebesgue measure. A function u belongs to the
eigenspace LΛμ of the Landau level Λμ if and only if it can be written in the form

u =
∑

|κ̂|=μ
cκ̂
(Q∗)κ̂(eWfκ̂

)
, (2.10)

where (Q∗)κ̂ = (Q∗
1)

κ1 · · · (Q∗
d)

κd and fκ̂ all belong to F2
B. The multiplicity of each eigenvalue

Λμ is infinite. We denote by PΛκ̂
and PΛμ the projection onto the eigenspaces LΛκ̂

and LΛμ ,
respectively, and note by (2.16) that the orthogonal decompositions

LΛμ =
⊕

|κ̂|=μ
LΛκ̂

, PΛμ =
⊕

|κ̂|=μ
PΛκ̂

(2.11)

hold in H.

2.3. The Resolvent

Let Rρ = (L + ρI)−1 be the resolvent of L, ρ ≥ 0. An explicit formula of the kernel Gρ(x, y)
of Rρ was given in [3] for d = 1. In Section 4.2, we will use the behavior of Gρ(x, y) near the
diagonal x = y, given in the following lemma.

Lemma 2.1. Rρ is an integral operator with kernel Gρ(x, y) that has the following singularity at the
diagonal:

Gρ(x, y)∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π

log
(

1
|x − y|

)
+O(1), d = 1,

1
2π2

|x − y|−2 +O

(
log
(

1
|x − y|

))
, d = 2,

Γ(d − 1)
2πd

|x − y|2−2d +O
(|x − y|4−2d), d > 2,

(2.12)

as |x − y|→ 0.

Proof. The kernel Gρ(x, y) of Rρ can be written as

Gρ(x, y) =
∫∞

0
e−ρte−Lt(x, y)dm(t). (2.13)
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Now, since the variables separate pairwise, we have

e−Lt(x, y) =
d∏

j=1

e−Lj t
(
x2j−1, x2j , y2j−1, y2j). (2.14)

The formula for e−Lj t is given in [13]. It reads

e−Lj t =
B

4π
exp
(
− iB

2
(
x2j−1y2j − x2jy2j−1)

)
1

sinh(Bt/2)

× exp
(
− B

4
coth

(
Bt

2

)
((
x2j−1 − y2j−1)2 +

(
x2j − y2j)2)

)
.

(2.15)

Hence the formula for Gρ(x, y) becomes

Gρ(x, y) =
(

B

4π

)d

exp

(

− iB

2

d∑

j=1

(
x2j−1y2j − x2jy2j−1)

)

I
(|x − y|2), (2.16)

where

I(s) =
∫∞

0
e−ρt

1

sinhd(Bt/2)
exp

(

− B

4
coth

(
Bt

2

)

s

)

dm(t). (2.17)

An expansion of I(s) shows that

I(s)∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2
B

)
log
(
1
s

)
+O(1), d = 1,

8
B2

s−1 +O

(
log
(
1
s

))
, d = 2,

(
4
B

)d Γ(d − 1)
2

s1−d +O
(
s2−d
)
, d > 2,

as s −→ 0, (2.18)

from which (2.12) follows.

3. The Exterior Landau-Neumann Hamiltonian in R
2d

Let K ⊂ R
2d be a simply connected compact domain with smooth boundary Γ and let Ω =

R
2d \K. We define the exterior Landau-Neumann Hamiltonian LΩ in HΩ = L2(Ω) by

LΩ = (− i∇ − �a)2, inΩ, (3.1)
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with magnetic Neumann boundary conditions

∂Nu := (− i∇ − �a)u·ν = 0, on Γ. (3.2)

Here ν denotes the exterior normal to Γ. Our aim is to study how much the spectrum of LΩ

differs from the Landau levels discussed in the previous section. The first theorem below
states that the eigenvalues of LΩ can accumulate to each Landau level only from below. The
second theorem says that the eigenvalues do accumulate to the Landau levels from below,
and the rate of convergence is given.

Theorem 3.1. For every μ ∈ N and each ε, 0 < ε < dB, the number of eigenvalues of LΩ in the
interval (Λμ,Λμ + ε) is finite.

Denote by l
(μ)
1 ≤ l

(μ)
2 ≤ · · · the eigenvalues of LΩ in the interval (Λμ−1,Λμ) and

by N(a, b, T) the number of eigenvalues of the operator T in the interval (a, b), counting
multiplicities. Also, let Cap(K) denote the logarithmic capacity of K; see [14, Chapter 2].

Theorem 3.2. Let μ ∈ N.

(a) If d = 1 then limj→∞ (j!(Λμ − l
(μ)
j ))

1/j
= (B/2)(Cap(K))2.

(b) If d > 1 thenN(Λμ−1,Λμ − λ, LΩ) ∼
( μ+d−1

d−1
)
(1/d!)(| lnλ|/ ln | lnλ|)d as λ ↘ 0.

3.1. Proof of the Theorems

Wewant to compare the spectrum of the operators L and LΩ. However, the expression L−LΩ

has no meaning since L and LΩactin different Hilbert spaces. We introduce the Hilbert space
HK = L2(K) and define the interior Landau-Neumann Hamiltonian LK in HK by the same
formulas as in (3.1) and (3.2) but with Ω replaced by K. We note that H = HK ⊕ HΩ and
define L̃ as

L̃ = LK ⊕ LΩ, in HK ⊕HΩ. (3.3)

The inverse of LK is compact, so LK has at most a finite number of eigenvalues in each interval
(Λμ−1,Λμ). The operators LK and LΩ act in orthogonal subspaces of H, so σ(L̃) = σ(LK) ∪
σ(LΩ). This means that L̃ has the same spectral asymptotics as LΩ in each interval (Λμ−1,Λμ),
so it is enough to prove the statements in Theorems 3.1 and 3.2 for the operator L̃ instead of
LΩ.

Since the unbounded operators L and L̃ have different domains, we cannot compare
them directly. However, they act in the same Hilbert space, so we can compare their inverses.
Let

R = R0 = L−1, R̃ = L̃−1 = L−1
K ⊕ L−1

Ω , (3.4)

and set

V = R̃ − R, Tμ = PΛμVPΛμ , for μ ∈ N. (3.5)
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Lemma 3.3. V is nonnegative and compact.

Proof. See Section 4.1.

By Weyl’s theorem, the essential spectrum of R and R̃ coincides. Since R̃ = R + V and
V ≥ 0, Theorem 3.1 follows immediately from [15, Theorem 9.4.7] and the fact that σ(R) =
σess(R) = {Λ−1

μ }. We continue with the proof of Theorem 3.2.
Let τ > 0 be such that ((Λ−1

μ −2τ,Λ−1
μ +2τ)\{Λ−1

μ })∩σess(R) = ∅. Denote the eigenvalues
of Tμ by

t
(μ)
1 ≥ t

(μ)
2 ≥ · · · , (3.6)

and the eigenvalues of R̃ in the interval (Λ−1
μ ,Λ−1

μ + τ) by

r
(μ)
1 ≥ r

(μ)
2 ≥ · · · . (3.7)

Lemma 3.4. Given ε > 0, there exists an integer l such that

(1 − ε)t(μ)
j+l ≤ r

(μ)
j −Λ−1

μ ≤ (1 + ε)t(μ)
j−l , for all sufficiently large j. (3.8)

Proof. See [4, Proposition 2.2].

Hence the study of the asymptotics of the eigenvalues of R̃ is reduced to the study of
the eigenvalues of the Toeplitz-type operator Tμ. For a bounded simply connected set U in
R

2d, we define the Toeplitz operator SU
μ as

SU
μ = PΛμχUPΛμ , (3.9)

where χU denotes the characteristic function ofU. The following lemma reduces our problem
to the study of these Toeplitz operators, which are easier to study than Tμ.

Lemma 3.5. Let K0 � K � K1 be compact domains such that ∂Ki ∩ Γ = ∅. There exist a constant
C > 0 and a subspace S ⊂ H of finite codimension such that

1
C

〈
f, SK0

μ f
〉 ≤ 〈f, Tμf

〉 ≤ C
〈
f, SK1

μ f
〉

(3.10)

for all f ∈ S.

Proof. See Section 4.2.

The asymptotic expansion of the spectrum of SU
μ is given in the following lemma.
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Lemma 3.6. Denote by s
(μ)
1 ≥ s

(μ)
2 ≥ · · · the eigenvalues of SU

μ and by n(λ, SU
μ ) the number of

eigenvalues of SU
μ greater than λ (counting multiplicity). Then

(a) if d = 1 we have limj→∞(j!s
(μ)
j )

1/j
= (B/2)(Cap(U))2,

(b) if d > 1 we have n(λ, SU
μ )∼

( μ+d−1
d−1
)
(1/d!)(| lnλ|/ ln | lnλ|)d as λ ↘ 0.

Proof. See [10, Lemma 3.2] for part (a) and [8, Proposition 7.1] for part (b).

Proof of Theorem 3.2. We are now able to finish the proof of Theorem 3.2. By lettingK0 andK1

in Lemma 3.5 get closer and closer to our compact K we see that the eigenvalues {t(μ)j } of Tμ
satisfy

lim
j→∞

(
j!t(μ)j

)1/j
=

B

2
(
Cap(K)

)2 (3.11)

if d = 1, and

n(λ, Tμ)∼
(
μ + d − 1

d − 1

)
1
d!

( | lnλ|
ln | lnλ|

)d

, as λ ↘ 0 (3.12)

if d > 1. Since neither formula (3.11) nor (3.12) is sensitive for finite shifts in the indices, it
follows from Lemma 3.4 that the eigenvalues of {r(μ)j }R̃ satisfy

lim
j→∞

(
j!
(
r
(μ)
j −Λ−1

μ

))1/j
=

B

2
(
Cap(K)

)2 (3.13)

if d = 1, and

N
(
Λ−1

μ + λ,Λ−1
μ−1, R̃

)∼
(
μ + d − 1

d − 1

)
1
d!

( | lnλ|
ln | lnλ|

)d

, as λ ↘ 0. (3.14)

If we translate this in terms of L̃ we get

lim
j→∞

(
j!
(
Λμ − l

(μ)
j

))1/j
=

B

2
(
Cap(K)

)2 (3.15)

for d = 1, and

N
(
Λμ−1,Λμ − λ, L̃

)∼
(
μ + d − 1

d − 1

)
1
d!

( | ln(λ/Λμ(Λμ − λ))|
ln | ln(λ/Λμ(Λμ − λ))|

)d

∼
(
μ + d − 1

d − 1

)
1
d!

( | lnλ|
ln | lnλ|

)
, as λ ↘ 0,

(3.16)

for d > 1. This completes the proof of Theorem 3.2.
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4. Proof of the Lemmas

In this section, we prove Lemmas 3.3 and 3.5. We will use the theory of pseudodifferential
operators and boundary layer potentials. More details about these tools can be found in [16]
and [17, Chapter 5].

4.1. Proof of Lemma 3.3

The operators L and L̃ are defined by the same expression, but the domain of L̃ is contained
in the domain of L. It follows from [4, Proposition 2.1] that L− L̃ ≥ 0, and hence V = R̃−R ≥ 0.

Next we prove the compactness of V . Let f and g belong to H. Also, let u = Rf and
v = R̃g. Then u belongs to the domain of L and v belongs to the domain of L̃, so v = vK ⊕ vΩ,
and LKvK ⊕ LΩvΩ = g. Integrating by parts and using (3.2) for vK and vΩ, we get

〈f, V g〉 = 〈f, R̃g〉 − 〈Rf, g〉

=
∫

K

Lu ·vKdm(x) +
∫

Ω
Lu ·vΩdm(x) −

∫

K

u ·LKvKdm(x) −
∫

Ω
u ·LΩvΩdm(x)

=
∫

Γ
∂Nu · (vΩ − vK

)
dS.

(4.1)

Here dS denotes the surface measure on Γ.
Take a smooth cutoff function χ ∈ C∞

0 (R2d) such that χ(x) = 1 in a neighborhood of
K. Then we can replace u and v by ũ = χu and ṽ = χv in the right-hand side of (4.1). By
local elliptic regularity we have that ũ ∈ H2(R2d) and ṽ ∈ H2(R2d \Γ). However, the operator
ũ �→ ∂Nũ|Γ is compact as considered from H2(R2d) to L2(Γ) and both ṽ �→ ṽΩ|Γ and ṽ �→ ṽK|Γ
are compact as considered from H2(R2d \ Γ) to L2(Γ), so it follows that V is compact.

4.2. Proof of Lemma 3.5

We start by showing that Tμ, originally defined in L2(R2d), can be reduced to an operator
in L2(Γ). More precisely we show that Tμ can be realized as an elliptic pseudodifferential
operator of order 1 on some subspace of L2(Γ) of finite codimension, and hence there exists a
constant C > 0 such that

1
C
‖f‖L2(Γ)‖f‖H1(Γ) ≤

〈
f, Tμf

〉 ≤ C‖f‖L2(Γ)‖f‖H1(Γ) (4.2)

for all f in that subspace.
Let f and g belong toH. Also, let u = Rf , v = R̃g, and w = Rg. We saw in (4.1) that

〈f, V g〉 =
∫

Γ
∂Nu · (vΩ − vK

)
dS. (4.3)
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To go further we will introduce the Neumann-to-Dirichlet and Dirichlet-to-Neumann
operators. Let Gρ(x, y) be as in (2.16). We start with the single- and double-layer integral
operators, defined by

Aα(x) =
∫

Γ
G0(x − y)α(y)dS(y), x ∈ R

2d,

Bα(x) =
∫

Γ
∂NyG0(x − y)α(y)dS(y), x ∈ R

2d \ Γ,

Aα(x) =
∫

Γ
G0(x − y)α(y)dS(y), x ∈ Γ,

Bα(x) =
∫

Γ
∂NyG0(x − y)α(y)dS(y), x ∈ Γ.

(4.4)

The last two operators are compact on L2(Γ), since, by Lemma 2.1, their kernels have weak
singularities. Moreover, since the kernel G0 has the same singularity as the Green kernel for
the Laplace operator in R

2d (see [18, Chapter 7, Section 11]), we have the following limit
relations on Γ

AαK = AαK,

BαK =
1
2
α + Bα,

AαΩ = AαΩ,

BαΩ = −1
2
α + Bα.

(4.5)

Using a Green-type formula for L in K we see that

β = BβK −A(∂NβK
)
. (4.6)

If we combine this with the limit relations (4.5), we get

(
B − 1

2
I

)
βK = A

(
∂NβK

)
, on Γ. (4.7)

A similar calculation for Ω gives

(
B +

1
2
I

)
βΩ = A

(
∂NβΩ

)
, on Γ. (4.8)

It seems natural to do the following definitions.
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Definition 4.1. We define the Dirichlet-to-Neumann and Neumann-to-Dirichlet operators in
K and Ω as

(DN)K = A−1
(
B − 1

2
I

)
,

(ND)K =
(
B − 1

2
I

)−1
A,

(DN)Ω = A−1
(
B +

1
2
I

)
,

(ND)Ω =
(
B +

1
2
I

)−1
A.

(4.9)

Remark 4.2. The inverses above exist at least on a space of finite codimension. This follows
from the fact that A is elliptic and B is compact.

Lemma 4.3. The operator (ND)K − (ND)Ω is an elliptic pseudodifferential operator of order −1.

Proof. Using a resolvent identity, we see that

(ND)K − (ND)Ω =
(
B +

1
2
I

)−1(
B − 1

2
I

)−1
A. (4.10)

It follows from the asymptotic expansion of G0(x, y) in Lemma 2.1 and the fact that
G0 is a Schwartz kernel (again, see [18, Chapter 7, Section 11]) that A is an elliptic
pseudodifferential operator of order −1. Moreover the operator B is compact, so the other
two factors are pseudodifferential operators of order 0 which do not change the principal
symbol noticeably.

Let us now return to the expression of V . We have

〈f, V g〉 =
∫

Γ
∂Nu · (vΩ − vK

)
dS

=
∫

Γ
∂Nu · (vΩ −w +w − vK

)
dS

=
∫

Γ
∂Nu · ((ND)Ω

(
∂N
(
vΩ −w

)
+ (ND)K

(
∂N
(
w − vK

))))
dS

=
∫

Γ
∂Nu · (((ND)K − (ND)Ω

)
(∂Nw

))
dS.

(4.11)

Since we are interested in Tμ and not V , we may assume that f and g belong to LΛμ . Then
u = Rf = Λ−1

μ f and w = Rg = Λ−1
μ g. For such f and g we get

〈f, V g〉 =
(
Λμ

)−2
∫

Γ
∂Nf ·(((ND)K − (ND)Ω

)(
∂Ng

))
dS (4.12)
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or with the introduced operators above

〈f, V g〉 =
(
Λμ

)−2
∫

Γ
f ·((DN)∗K

(
(ND)K − (ND)Ω

)(
(DN)Kg

))
dS. (4.13)

Moreover, (DN)K is an elliptic pseudodifferential operator of order 1. This follows from the
identity A(DN)K = B − (1/2)I, and the fact that A is an elliptic pseudodifferential operator
of order −1. It follows from (4.13) that Tμ is an elliptic pseudodifferential operator or order 1.

Next, we prove the inequality (3.10). Because of the projections, it is enough to show
it for functions f in LΛμ .

The lower bound. We prove that there exists a subspace S̃ ⊂ LΛμ of finite codimension
such that the lower bound in (3.10) is valid for all f ∈ S̃. Since f ∈ LΛμ we have Lμf :=
(L − Λμ)f = 0 so f belongs to the kernel of the second-order elliptic operator Lμ. Let ϕ = f |Γ.
We study the problem

Lμf = 0 in K◦,

f = ϕ on Γ.
(4.14)

Let E(x, y) be the Schwartz kernel for Lμ. It is smooth away from the diagonal x = y. One can
repeat the theory with the single- and double-layer potentials for Lμ and write the solution f
in the case it exists.

Let Bμ be the double-layer operator evaluated at the boundary,

Bμα(x) =
∫

Γ
∂NyE(x, y)α(y)dS(y), x ∈ Γ. (4.15)

The operator Bμ is compact, since the kernel ∂NyE(x, y) has a weak singularity at the diagonal
x = y. Thus there exists a subspace S1 ⊂ L2(Γ) of finite codimension such that the operator
(1/2)I + Bμ is invertible on S1. Hence, there exists a subspace S̃ ⊂ LΛμ of finite codimension
where we have the representation formula

f(x) =
∫

Γ

∂E(x, y)
∂νy

((
1
2
I + Bμ

)−1
ϕ

)
(y)dS(y), x ∈ K◦ (4.16)

for all f ∈ S̃. The inequality ‖f‖L2(K0) ≤ C‖f‖L2(Γ) follows easily from (4.16) for all such
functions f .

Since we also have ‖f‖L2(Γ) ≤ C‖f‖H1(Γ) the lower bound in (3.10) follows via the lower
bound in (4.2).

The upper bound. By the upper bound in (4.2) it is enough to show the following
inequalities

‖f‖L2(Γ)‖f‖H1(Γ) ≤ C‖f‖H1/2(K)‖f‖H3/2(K) ≤ C‖f‖2
H2(K) ≤ C‖f‖2L2(K1)

. (4.17)
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However, the first inequality is just the Trace theorem, the second is the Sobolev-Rellich
embedding theorem. We note that Lμf = 0, so the third inequality is a standard estimate
for elliptic operators.

5. Spectrum of Toeplitz Operators in a Reinhardt Domain

In the case whenK is a Reinhardt domain one can strengthen part (b) of Lemma 3.6. Assume
that K◦, the interior of K, is a Reinhardt domain. This means that 0 ∈ K◦ and if z ∈ K◦, then
the set

{(
w1, . . . , wd) | wj = tzj , t ∈ C, |t| < 1

}
(5.1)

is a subset of K◦. If the set

log |K| = {(y1, . . . , yd) | yj = log
∣∣zj
∣∣, z ∈ K◦} (5.2)

is convex in the usual sense, thenK◦ is said to be logarithmically convex, andK◦ is a domain
of holomorphy. Denote by VK : R

d →R the function defined by

VK(x) = sup
y ∈ log |K|

〈x, y〉. (5.3)

We denote by J : F2
B →H̃ := L2(K, e−(B/2)|z|

2
dm(z)) the embedding operator. The s -values sκ̂,

κ̂ ∈ N
d, of Jcoincide with the numbers

{ ∥∥zκ̂
∥∥2
H̃

∥∥zκ̂
∥∥2
F2

B

}

κ̂≥0

(5.4)

(we remind the reader of the notation of eigenvalues in Lemma 3.6). Unlike the case d = 1,
see [10], it is natural to numerate the eigenvalues by the d-tuples κ̂ = (κ1, . . . , κd), just as for
the eigenvalues of the Laplace operator in the unit cube [0, 1]d, where the eigenvalues are
given by (2π)−d|κ̂|22 = (2π)−d(κ2

1 + · · · + κ2
d
).

Lemma 5.1. Let d > 1 and ω = κ̂/|κ̂|. Then

(
κ̂!sκ̂
)1/|κ̂| ∼ B

2
exp
(
2VK(ω)

)(
1 + o(1)

)
, as |κ̂| −→ ∞. (5.5)

Proof. The denominator in (5.4) is easily calculated to be

∥∥zκ̂
∥∥2
F2

B
=
(
2π
B

)d( 2
B

)|κ̂|
κ̂!. (5.6)
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For the numerator, we do estimations from above and below, as in [12]. First, note that

Iκ̂ =
∥
∥zκ̂
∥
∥2
H̃ =

∫

log |K|
exp
(
2〈κ̂, x〉)dm̃(x), (5.7)

where dm̃(x) is the transformed measure. It is clear that

Iκ̂ ≤ exp
(
2|κ̂|VK(ω)

)
m(K). (5.8)

For the inequality in the other direction, fix δ > 0. The hyperplane

〈κ̂, x〉 = (1 − δ)VK(κ̂) (5.9)

cuts log |K| in two components. Let Pδ be the component for which the inequality 〈κ̂, x〉 ≥
(1 − δ)VK(κ̂) holds. Then we have

Iκ̂ ≥
∫

Pδ

exp
(
2|κ̂|(1 − δ)VK(ω)

)
dm̃(x) ≥ Cδ exp

(
2|κ̂|(1 − δ)VK(ω)

)
, (5.10)

where Cδ =
∫
Pδ
dm̃(x) > 0. It follows that

(
κ̂!sκ̂
)1/|κ̂| ≤

(
m(K)

(
B

2π

)d)1/|κ̂|
B

2
exp
(
2VK(ω)

)
,

(
κ̂!sκ̂
)1/|κ̂| ≥

(
Cδ

(
B

2π

)d)1/|κ̂|
B

2
exp
(
2(1 − δ)VK(ω)

)
,

(5.11)

from which (5.5) follows.
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