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The homological Kähler-de Rham differential mechanismmodels the dynamical behavior of phys-
ical fields by purely algebraic means and independently of any background manifold substratum.
This is of particular importance for the formulation of dynamics in the quantum regime, where the
adherence to such a fixed substratum is problematic. In this context, we show that the functorial
formulation of the Kähler-de Rham differential mechanism in categories of sheaves of commuta-
tive algebras, instantiating generalized localization environments of physical observables, induces
a consistent functorial framework of dynamics in the quantum regime.

1. Introduction

The basic conceptual and technical issue pertaining to the current research attempts towards
the construction of a viable quantum theory of the gravitational field, refers to the problem
of independence of this theory from a fixed spacetime manifold substratum. In relation
to this problem, we have argued about the existence and functionality of a homological
schema of functorial general relativistic dynamics, constructed by means of connection
inducing functors and their associated curvatures, which is, remarkably, independent of any
background substratum [1]. More precisely, the homological dynamical mechanism is based
on the modeling of the notion of physical fields in terms of connections, which effectuate
the functorial algebraic process of infinitesimal scalars extensions, due to interactions caused
by these fields. The appealing property of this schema lies on the fact that the induced field
dynamics is not dependent on the codomain of representability of the observables and most
importantly is only subordinate to the algebra-theoretic characterization of their structures.
In this perspective, the absolute representability principle of classical general relativity, in
terms of real numbers, may be relativized without affecting the functionality of the algebraic
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mechanism. Consequently, it is possible to describe the dynamics of gravitational interactions
in generalized localization environments, instantiated by suitable categories of presheaves
or sheaves. In particular, according to this strategy, the problem of quantization of gravity is
equivalent to forcing the algebraic Kähler-de Rham general relativistic dynamical mechanism
of the gravitational connection functorial morphism inside an appropriate sheaf-theoretic
localization environment, which is capable of incorporating the localization properties
of observables in the quantum regime. The only cost to be paid for this sheaf-theoretic
localization [2] is the rejection of the fixed background manifold structure of the classical
theory. This is actually not a cost at all, since it would permit the intelligibility of the
field equations over geometric realizations that include manifold singularities and other
pathologies, without affecting the algebraic mechanism of dynamics, like that in [3, 4]. We
argue that the Kähler-de Rham general relativistic dynamical mechanism can be localized
in the quantum regime of observable structure by incorporating the novel conception of
physical localization associated with the notion of a Grothendieck topos [5, 6]. In particular,
the crucial observation that makes the Grothendieck topos theoretic environment relevant
is that a globally noncommutative or even partially commutative algebra of quantum
observables determines an underlying categorical diagram (presheaf) of commutative
observable algebras. Then, each one of the latter can be locally identified, in a precise sheaf-
theoretic way that makes use of the notion of an appropriate Grothendieck topology, with
a commutative algebra of classical observables. Consequently, the physical information
contained in a quantum observable algebra can be recovered by a gluing construction
referring to its local commutative subalgebras [7–12].

2. Topological Sheaf-Theoretic Dynamics via Abstract
Differential Geometry

The absolute representability principle of the classical general theory of relativity is based
on the set-theoretic conception of the real line, as a set of infinitely distinguished points
coordinatized bymeans of the field of real numbers. Expressed categorically, this is equivalent
to the interpretation of the algebraic structure of the reals inside the absolute universe of
Sets, or more precisely inside the topos of constant Sets. It is also well known that algebraic
structures and mechanisms can admit a variable reference, formulated in category-theoretic
jargon in terms of arrows only specifications, inside any suitable topos of discourse [6, 13]. A
general topos can be conceived as a manifestation of a universe of variable sets. For example,
the topos of sheaves of sets Shv(X) over the category of open sets of an abstract topological
space X, ordered by inclusion, is understood as a categorical universe of varying sets over
the open reference domains of the topology covering X. The relativization of physical
representability, with respect to the topos of sheaves Shv(X), amounts to the relativization
of both the notion and the algebraic structure of the real numbers inside this topos [7].
Regarding the notion of real numbers inside the topos Shv(X), this is equivalent to the notion
of continuously variable real numbers over the open domains of X, or else, equivalent to the
notion of real-valued continuous functions on X, when interpreted, respectively, inside the
topos of Sets [6, 7, 13]. Regarding the algebraic structure of the reals inside the topos Shv(X),
they form only an algebra in this topos, which is identical with the sheaf of R-algebras of
continuous real-valued functions on X, where R corresponds in that case to the constant
sheaf of real numbers over X.

According to the functorial Kähler-de Rham general relativistic dynamical mechanism
[1], the absolute representability principle of classical General Relativity, in terms of real
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numbers, may be relativized locally with respect to a category of measurement loci without
affecting the functionality of the physical dynamical mechanism. Consequently, it is possible
to describe the dynamics of gravitational interactions in generalized localization environ-
ments. The latter are understood in the sense of categories of presheaves, defined over a base
category of reference loci, or categories of sheaves with respect to some suitable topological
covering system.

From a physical viewpoint, the construction of a sheaf of algebras of observables con-
stitutes the natural outcome of a complete localization process [2, 7]. Generally speaking,
a localization process is being implemented in terms of an action of some category of reference
contexts on a set-theoretic global algebra of observables. The latter, is then partitioned into
sorts parameterized by the objects of the category of contexts. In this way, the functioning
of a localization process can be represented by means of a fibered construct, understood
geometrically as a presheaf or, equivalently, as a variable set (algebra) over the base category
of contexts. The fibers of this presheaf may be thought, in analogy to the case of the action
of a group on a set of points, as the “generalized orbits” of the action of the category of
contexts. The notion of functional dependence, incorporated in this action, forces the global
algebraic structure of observables to fiber over the base category of reference contexts, giving
rise to a presheaf of algebras of observables. According to the physical requirements of
observability, for every reference context of the base category, the set of local observables
defined over it constitutes a commutative unital algebra over the real numbers. The transition
from a presheaf to a sheaf of algebras of observables requires the following: firstly, the
concrete specification of a topological covering system, on the category of reference contexts,
interpreted as a localization scheme of the global algebraic structure of observables. Secondly,
the collation of local observable information into global ones effectuated via a compatible
family of local sections of the presheaf over a localization system. If a locally compatible
choice of observables induces a unique global choice, then the condition for being a sheaf is
satisfied. We note that, in general, there will be more locally defined or partial choices than
globally defined ones, since not all partial choices need be extendible to global ones, but
a compatible family of partial choices uniquely extends to a global one; or in other words,
any presheaf uniquely defines a sheaf.

In the sequel, we consider the localization environment of the category of sheaves of
sets Shv(X) defined over the category of open sets O(X) of an abstract topological space X,
ordered by inclusion. We define a topological covering system in the environment ofO(X) as
follows.

A topological covering system on O(X) is an operation J , which assigns to each open
reference domain U in O(X), a collection J(U) of U-sieves called topological covering U-
sieves, such that the following three conditions are satisfied.

(1) For every open reference domain U in O(X), the maximal sieve {g : cod(g) = U}
belongs to J(U) (maximality condition).

(2) If S belongs to J(U) and h : V → U is a figure of U, then h∗(S) = {f : V →
U, (h ◦ f) ∈ S} belongs to J(V ) (stability condition).

(3) If S belongs to J(U) and if for each figure h : Vh → U in S there is a sieve Rh

belonging to J(Vh), then the set of all composites h ◦ g, with h ∈ S and g ∈ Rh,
belongs to J(U) (transitivity condition).

As a consequence of the conditions above, we can check that any two U-covering
sieves have a common refinement; that is, if S, R belong to J(U), then S ∩ R belongs to J(U).
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If we consider the partially ordered set of open subsets of a topological measurement
space X, viewed as the category of base reference loci O(X), then we specify that S is a
covering U-sieve if and only if U is contained in the union of open sets in S. The above
specification fulfills the requirements of topological covering sieves posed above and con-
sequently, defines a topological covering system on O(X). From a physical perspective,
the consideration of covering sieves as generalized measures of localization of observables,
within a global observable structure, gives rise to localization systems of the latter.

Furthermore, we can show that if A is the contravariant presheaf functor that assigns
to each open set U ⊂ X, the commutative unital algebra of all continuous observables on
U then A is actually a sheaf of sets. This is intuitively clear since the specification of a
topology on ameasurement spaceX (and, hence, of a topological covering system onO(X) as
previously) is solely used for the definition of the continuous observables onX, and thus, the
continuity of each observable can be determined locally. This means that continuity respects
the operation of restriction to open sets and moreover that continuous observables can be
collated in a unique manner, as it is required for the satisfaction of the sheaf condition. More
precisely, the sheaf condition means that the following sequence of commutative unital R-
algebras of local observables is left exact:

0 −→ A(U) −→
∏

a

A(Ua) −→
∏

a,b

A(Uab). (2.1)

It is instructive to emphasize that the algebraic functorial Kähler-de Rham framework
of dynamics is based for its conceptualization and operative efficacy, neither on the method-
ology of real analysis nor on the restrictive assumption of smoothness of observables,
but only, on the functorial expression of the inverse processes of infinitesimal scalars ex-
tension/restriction. Nevertheless, it is instructive to apply this algebraic framework for
the case of algebra sheaves of smooth observables, in order to reproduce the differential
geometric mechanism of smooth manifolds geometric spectra, interpreted in the localization
environment of the category Shv(X). For this purpose, we consider that A stands for the sheaf
of algebras of R-valued smooth functions on X, denoted by C∞, whereas Ωn(A) stand in this
context for the locally free sheaves of C∞-modules of differential n-forms on X. In this case,
the algebraic de Rham complex of A, gives rise to the corresponding differential de Rham
complex of C∞, as follows:

C∞ −→ Ω1(C∞) −→ · · · −→ Ωn(C∞) −→ · · · . (2.2)

The crucial mathematical observation concerning this complex, refers to the fact that, the
augmented differential de Rham complex

0 −→ R −→ C∞ −→ Ω1(C∞) −→ · · · −→ Ωn(C∞) −→ · · · (2.3)

is actually exact. The exactness of the augmented differential de Rham complex, as above,
constitutes an expression of the lemma of Poincaré, according to which every closed C∞-
form on X is exact at least locally in X. Thus, the welldefinability of the differential
geometric dynamical mechanism of smooth manifolds is precisely due to the exactness of
the augmented differential de Rham complex. This mathematical observation for the case
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of algebra sheaves of smooth observable coefficients, raises the issue of enrichment of the
general functorial mechanism of infinitesimal scalars extensions, by the requirement of
exactness of the respective augmented algebraic de Rham complex, securing in this sense
the well-definability of the dynamical mechanism for the general case and reproducing the
corresponding differential geometric mechanism of smooth manifolds faithfully, as well.
This requirement implements precisely the principle of covariance of dynamics with respect
to cohomologically well-behaved algebras of physical observables, interpreted within the
localization environment of Shv(X).

A complete settlement of this issue, addressing the principle of covariance as above,
comes from the mathematical theory of the abstract differential geometry (ADG) [14–16].
Actually, the axiomatic development of (ADG), in a fully-fledged mathematical theory,
has been based on the exploitation of the consequences of the above-stated mathematical
observation for the case of algebra sheaves of smooth observable coefficients. In this sense,
the operational machinery of (ADG) is essentially implemented by the imposition of the
exactness requirement of the following abstract de Rham complex, interpreted inside the
topos of sheaves Shv(X):

0 −→ R −→ A −→ Ω1(A) −→ · · · −→ Ωn(A) −→ · · · . (2.4)

ADG’s power of abstracting and generalizing the classical differential calculus on smooth
manifolds basically lies on the possibility of assuming other more general coordinate sheaves
A, while at the same time retaining, via the exactness of the algebraic augmented de Rham
complex as above, the mechanism of differentials instantiated paradigmatically, in the first
place, in the case of classical differential geometry on smooth manifolds.

For our physical purposes, we conclude that any cohomologically appropriate sheaf
of algebras A, characterized by the exactness property posed previously, can be legitimately
regarded as a sheaf of local observables, capable of providing a well-defined dynamical
mechanism, independently of any smooth manifold background, analogous, however, to the
one supported by smooth manifolds.

Conclusively, it is instructive to recapitulate and add some further remarks on the
physical semantics associated with the preceding algebraic cohomological dynamical frame-
work by invoking the sheaf-theoretic terminology explicitly. The basic mathematical objects
involved in the development of that framework consists of a sheaf of commutative unital
algebras A, identified as a sheaf of algebras of local observables, a sheaf of locally free A-
modules E of rank n, as well as the sheaf of locally free A-modules of universal 1-forms
Ω of rank n. We assume that these sheaves have a common base space, over which they
are localized, namely, an arbitrary topological measurement space X. A topological covering
system ofX is defined simply by an open coveringU = {U ⊆ X : U open in X} ofX such that
any locally free A-module sheaf N splits locally, by definition, that is, with respect to every
U in U into a finite n-fold Whitney sum A

n of A with itself as N|U = A
n|U. For this reason, a

topological covering system U of X may be called a coordinatizing open cover of N. Hence,
the local sections of the structure R-algebra sheaf A relative to the coordinatizing open cover
U obtain the meaning of local coordinates, while A itself may be called “the coefficient” or
“continuously variable real number coordinate sheaf” of N.

At a further stage of development, the implementation of the notion of functorial
dynamical connectivity requires the functorial modeling of the notion of a physical field
in terms of a connection expressing the algebraic process of infinitesimal scalar extensions
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of the algebra sheaf of local observables. Thus, we conclude that a pair (E,∇E), consisting
of a left A-module sheaf E and a connection ∇E on E, represents a local causal agent of a
variable interaction geometry, namely, a physical field acting locally and causing infinitesimal
variations of coordinates, standing for local observables. In this sense, the local sections of A-
module sheaf E, relative to the open cover U, coordinatize the states of the corresponding
physical field. The connection ∇E on E is given by an R-linear morphism of A-modules
sheaves:

∇E : E −→ Ω1(A)
⊗

A

E = E
⊗

A

Ω1(A) := Ω1(E) (2.5)

such that the following Leibniz condition holds:

∇E

(
f · v) = f · ∇E(v) + df ⊗ v, (2.6)

for all f ∈ A, v ∈ E. Notice that, by definition, the connection∇E is only an R-linear morphism
of A-modules sheaves. Hence, although it is R-covariant, it is not A-covariant as well. The
connection ∇E on E contains the irreducible amount of information encoded in the process
of infinitesimal scalars extension caused by local interactions, induced by the corresponding
field.

A significant observation has to do with the fact that if E = A considered as an A-
module over itself, then, the R-linear morphism of sheaves of A-modules

d : Ω0(A) := A −→ Ω(A)1 := Ω(A) (2.7)

is a natural connection, which is also integrable or flat, since 〈Ω(A)〉 is actually a complex,
namely, the algebraic de Rham complex of A.

If we consider a coordinatizing open cover eU ≡ {U; (ei)0≤i≤n−1} of the A-module sheaf
E of rank n, every continuous local section s ∈ E(U), whereU ∈ U can be expressed uniquely
as a superposition

s =
n∑

i=1

siei (2.8)

with coefficients si in A(U). The action of ∇E on these sections of E is expressed as follows:

∇E(s) =
n∑

i=1

(si∇E(ei) + ei ⊗ d(si)), (2.9)

where

∇E(ei) =
n∑

i=1

ei ⊗ωij , 1 ≤ i, j ≤ n, (2.10)
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where ω = (ωij) denotes an n × n matrix of sections of local 1-forms. Consequently we have

∇E(s) =
n∑

i=1

ei ⊗
⎛
⎝d(si) +

n∑

j=1

sjωij

⎞
⎠ ≡ (d +ω)(s). (2.11)

Thus, every connection ∇E, where E is a locally free finite rank-n sheaf of modules E on X,
can be decomposed locally as follows:

∇E = d +ω. (2.12)

In this context, ∇E is identified as a covariant derivative, being decomposed locally as a sum
consisting of a flat part tautosemous with d, and a generally nonflat part ω, called the
gauge potential (vector potential), signifying a measure of deviation from the maximally
undisturbed process of dynamical variation (represented by the flat part), caused by the
corresponding physical field. The behavior of the gauge potential part ω of ∇E under
local gauge transformations constitutes the “transformation law of vector potentials” and
is established in the following manner: Let eU ≡ {U; ei=1···n} and hV ≡ {V ;hi=1···n} be two
coordinatizing open covers of E over the open sets U and V of X, such that U

⋂
V /= ∅. Let us

denote by g = (gij) the following change of local gauge matrix:

hj =
n∑

i=1

gijei. (2.13)

Under such a local gauge transformation (gij), the gauge potential part ω of ∇E transforms
as follows:

ω′ = g−1ωg + g−1dg. (2.14)

Furthermore, it is instructive to find the local form of the curvature R∇ of a connection ∇E,
where E is a locally free finite rank-n sheaf of modules E on X, defined by the following
A-linear morphism of sheaves:

R∇ := ∇1 ◦ ∇0 : E −→ Ω2(A)
⊗

A

E := Ω2(E). (2.15)

Due to its property of A-covariance, a nonvanishing curvature represents, in this context, the
A-covariant and thus, observable (by A-scalars) disturbance from the maximally symmetric
state of the variation caused by the corresponding physical field. In this sense, it may be
accurately characterized physically as “gauge field strength”. Moreover, since the curvature
R∇ is an A-linear morphism of sheaves of A-modules, R∇ may be thought of as an element of
End(E)⊗AΩ2(A) := Ω2(End(E)), that is,

R∇ ∈ Ω2(End(E)). (2.16)
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Hence, the local form of the curvature R∇ of a connection ∇E consists of local n × n matrices
having for entries local 2-forms on X.

The behavior of the curvature R∇ of a connection ∇E under local gauge transforma-
tions constitutes the “transformation law of gauge field strengths.” If we agree that g = (gij)
denotes the change of gauge matrix—we have previously considered in the discussion of the
transformation law of gauge potentials—we deduce the following local transformation law
of gauge field strengths:

R∇
g�−→ R∇′ = g−1(R∇)g. (2.17)

According to the above dynamical framework, applications of ADG include the refor-
mulation of Gauge theories in sheaf-theoretic terms [15, 16], as well as the pertinent study
of the problem of manifold singularities appearing in the context of general relativity
[3, 4, 17–21]. Related with the first issue, ADG has modeled Yang-Mills fields in terms of
appropriate pairs (E,DE), where E are vector sheaves whose sections have been identified
with the states of the corresponding particles, and DE are connections that act on the
corresponding states causing interactions by means of the respective fields they refer to.
Related with the second issue, ADG has replaced the sheaf of R-algebras C∞(M) of smooth
real-valued functions on a differential manifold with a sheaf of R-algebras that incorporates
the singularities of the manifold in terms of appropriate ideals, allowing the formulation
of Einstein’s equations in a covariant form with respect to the generalized scalars of that
sheaf of R-algebras. An overview of the didactics of topological sheafification of field
dynamics according to ADG has been recently presented in [22], whereas the general
underlying philosophical framework of ADG, pointing towards the general conception and
implementation of relational mathematics, has been recently summarized in [23, 24].

3. Quantum Localization of the Kähler-de Rham
Differential Mechanism

The basic defining feature of the quantum theory according to the Bohrian interpretation [25–
27], in contradistinction to all classical theories, is the realization that physical observables
are not definitely or sharply valued as long as a measurement has not taken place, meaning
both the precise specification of a concrete experimental context and also the registration
of a value of a measured quantity in that context by means of an apparatus. Furthermore,
Heisenberg’s uncertainty relations determine the limits for simultaneous measurements of
certain pairs of complementary physical properties, like position and momentum. In a well-
defined sense, the uncertainty relations may be interpreted as measures of the valuation
vagueness associated with the simultaneous determination of all physical observables in the
same experimental context. In all classical theories, the valuation algebra is fixed once and for
all to be the algebra of real numbers R, reflecting the fact that values admissible as measured
results must be real numbers, irrespective of the measurement context and simultaneously
for all physical observables.

The resolution of valuation vagueness in the quantum theory can be algebraically
comprehended through the notion of local relativization of representability of the valuation
algebra with respect to commutative algebraic contexts that correspond to prepared mea-
surement environments [7–12]. Only after such a relativization, the eigenvalue equations
formulated in the context of such a measurement environment yield numbers corresponding
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to measurement outcomes. At a logical level, commutative contexts of measurement cor-
respond to Boolean algebras, identified as subalgebras of a quantum logical observable alge-
bra. In the general case, commutative algebraic contexts are identified with commutative R-
algebras, which may be thought of as subalgebras of a globally noncommutative algebra
of quantum observables represented irreducibly as an algebra of hypermaximal Hermitian
operators on a complex Hilbert space of quantum states [10].

The decisive fact that implies the relativization of quantum representability of the
valuation algebra with respect to commutative algebraic contexts is due to the observation
that a globally noncommutative or even partially commutative algebra of quantum observ-
ables determines an underlying categorical diagram (presheaf) of commutative observable
algebras. Then, each one of the latter can be locally identified with a commutative algebra
of classical observables. Consequently, the physical information contained in a quantum
observable algebra can be recovered by a gluing sheaf-theoretic construction referring to its
local commutative subalgebras [10]. According to this idea, the representation of a quantum
observable algebra AQ, in the category AQ, is effected by means of the functor of points of
a quantum observable algebra, restricted to all these morphisms in AQ

op having as domains
spaces (maximal ideal spectra) corresponding to commutative subalgebras of a quantum
observable algebra. In this way, the variation of generalized points over all domain objects
of the subcategory of AQ

op consisting of commutative algebras of observables produces the
functor of points of AQ restricted to the subcategory of commutative objects, identified with
AC

op. This functor of points of AQ is made then an object in the category of presheaves
SetsAC

op
, representing a quantum observables algebra in the environment of the topos of

presheaves over the category of its commutative subalgebras.
More precisely, we make the basic assumption that there exists a coordinatization

functor, M : AC → AQ, which assigns to commutative observable algebras in AC, that
instantiates amodel category, the underlying quantum algebras fromAQ and to commutative
algebras morphisms the underlying quantum algebraic morphisms. If AC

op is the opposite
category of AC, then SetsAC

op
denotes the functor category of presheaves of commutative

observable algebras, which has objects all functors P : AC
op → Sets and morphisms all

natural transformations between such functors. Each object P in this category is a contrava-
riant set-valued functor onAC, called a presheaf onAC. The functor category of presheaves-
on commutative observable algebras SetsAC

op
, exemplifies a well-defined notion of a universe

of variable sets, and is characterized as a topos of presheaves. Now, if we consider the
category of quantum observables algebras AQ and the coordinatization functor M, we can
define the functor

F : AQ −→ SetsAC
op

(3.1)

from AQ to the category of presheaves of commutative observables algebras given by

F
(
AQ

)
(−) := HomAQ

(
M(−), AQ

)
. (3.2)

Then, the representation of a quantum observable algebra AQ, by means of its functor of
points, is based on the existence of a categorical adjunction L � F as follows [10]:

L : SetsACop � AQ : F (3.3)
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which says that the functor of points of a quantum observable algebra restricted to commu-
tative observable algebras F(AQ)(−) has a left adjoint

L : SetsACop −→ AQ, (3.4)

which is defined for each presheaf P in SetsACop
as the colimit

L(P) = P ⊗
AC

M. (3.5)

Equivalently, there exists a bijection, natural in P and AQ as follows:

Nat
(
P,F

(
AQ

)) ∼= HomAQ
(
LP, AQ

)
. (3.6)

As a consequence, we depict the category of presheaves PShv(AC) := SetsACop

as the
appropriate topos for the generation of a quantum dynamical mechanism. Furthermore, a
suitable localization scheme applicable to the quantum regime of observable structure is
obtained by the notion of a Grothendieck topology, defined in terms of covers on the base
category AC. More concretely, a Grothendieck topology suitable for this purpose is defined
by means of a covering system S of epimorphic families on the base category of commutative
contexts, by requiring that the morphism

GS :
∐

{s:AC
′ →AC}∈S

AC
′ −→ AC, (3.7)

where AC, AC
′ in AC, is an epimorphism in AQ [10]. In this way, the Grothendieck topology

defined above specifies functorially a physical localization scheme suited for probing the
quantum regime of observable structure.

Now, it is important to notice that the counit of the adjunction

L : SetsACop � AQ : F,

εAQ : LF
(
AQ

) −→ AQ,
(3.8)

defined by the composite endofunctor

G := LF : AQ −→ AQ, (3.9)

constitutes the first step of a functorial free resolution of a quantum observable algebra AQ

in AQ. Actually, by iterating the endofunctor G, we may extend εAQ to a free simplicial
resolution of AQ. In this setting, we may now apply Kähler’s methodology in order to obtain
the object of quantum differential 1-forms, by means of the following split short exact
sequence:

0 −→ ΩAQ −→ GAQ −→ AQ (3.10)
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or equivalently

0 −→ ΩAQ −→ F
(
AQ

) ⊗
AC

M −→ AQ. (3.11)

According to the above, we obtain that

ΩAQ =
J

J2
, (3.12)

where J = Ker(εAQ) denotes the kernel of the counit of the adjunction. At a next stage, we
notice that the functor of points of a quantum observable algebra restricted to commutative
algebras F(AQ) is left exact, because it is the right adjoint functor of the established
adjunction. Thus, it preserves the short exact sequence defining the object of quantum
differential 1-forms, in the following form:

0 −→ F
(
ΩAQ

) −→ F
(
G
(
AQ

)) −→ F
(
AQ

)
. (3.13)

Hence, we immediately obtain that

F
(
ΩAQ

)
=

Z

Z2
, (3.14)

where Z = Ker(F(εAQ)). Then, by analogy to the general algebraic situation, interpreted
inside the proper universe that the functor of points of a quantum observable algebra assumes
existence, namely, the topos SetsACop

, we introduce the notion of an interaction field, termed
quantum field, by means of the functorial pair (F(AQ) := HomAQ(M(−), AQ),∇F(AQ)), where
the quantum connection ∇F(AQ) is defined as the following natural transformation:

∇F(AQ) : F
(
AQ

) −→ F
(
ΩAQ

)
. (3.15)

Thus, the quantum connection ∇F(AQ) induces a sequence of functorial morphisms or equiv-
alently natural transformations as follows:

F
(
AQ

) −→ F
(
ΩAQ

) −→ · · · −→ F
(
Ωn

AQ

) −→ · · · . (3.16)

Let us denote by

R∇ : F
(
AQ

) −→ F
(
Ω2

AQ

)
(3.17)

the composition ∇1 ◦ ∇0 in the obvious notation, where ∇0 := ∇F(AQ), which we call the
curvature of the quantum connection ∇F(AQ). The latter sequence of functorial morphisms is
actually a complex if and only if R∇ = 0. We say that the quantum connection ∇F(AQ) is
integrable or flat if R∇ = 0, referring to the above complex as the functorial de Rham
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complex of the integrable connection ∇F(AQ) in that case. The vanishing of the curvature of
the quantum connection, that is,

R∇ = 0, (3.18)

can be used as a means of transcription of Einstein’s equations in the quantum regime, in
the absence of cohomological obstructions. We may explain the curvature of the quantum
connection as the effect of nontrivial interlocking of the information carried by commutative
reference contexts, in some underlying diagram of a quantum algebra of observables, being
formed by such localizing commutative observables subalgebras. The nontrivial gluing of the
information of commutative contexts in localization systems of a quantum algebra is caused
by topological obstructions that, in turn, are being co-implied with respect to the nontriviality
of the cohomology groups of the corresponding algebraic de Rham complex. Intuitively,
a nonvanishing curvature is the nonlocal attribute detected by an observer employing
a commutative reference context in a discretely topologized categorical environment, in
the attempt to understand the quantum localization properties, after having introduced
a potential (quantum gravitational connection) in order to account for the latter by means
of a differential geometric mechanism. Thus, the physical meaning of curvature is associated
with the apparent existence of nonlocal correlations from the restricted spatial perspective of
disjoint classical commutative contexts AC. It is instructive to make clear that, in the present
schema, the notion of curvature does not refer to an underlying background manifold, since
such a structure has not been required at all in the development of the differential geometric
mechanism, according to functorial algebraic methods.

4. Conclusions

Conclusively, it is worthwhile to emphasize that discussions, of background manifold inde-
pendence pertaining to the current research focus in quantum gravity, should take at face
value the fact that the fixed manifold construct in general relativity is just the byproduct
of fixing physical representability in terms of the field of real numbers. Moreover, it is
completely independent of the possibility of formulating dynamics, since the latter can be
developed precisely along purely algebraic lines, that is, by means of functorial connections.
Hence, the usual analytic differential geometric framework of smooth manifolds, needed
for the formulation of classical General Relativity, is just a special coordinatization of the
universal functorial mechanism of infinitesimal scalars extension and thus should be sub-
stituted appropriately, in case a merging with quantum theory is sought. The substitution
is guided by the principle of relativized representability, which forces the topos SetsACop

as the proper universe of discourse for probing the quantum regime. In turn, this requires
a functorial adaptation of the algebraic mechanism of connections inside this topos, and
subsequently, an interpretation of quantum gravitational dynamics sheaf cohomologically
with respect to the nontrivial localization schemes of observables in the quantum regime.
The central conceptual issue characterizing the present sheaf-theoretic approach, developed
on the basis of the general algebraic homological framework of functorial dynamics
constructed in [1], resolves in the explicit consideration and intrinsic modeling of generalized
localization environments for the formulation of physical interaction processes. More con-
cretely, in classical theories, localization has been conceived by means of metrical properties
on a preexisting smooth set-theoretic spacetime manifold. In contradistinction, quantum
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localization should be understood categorically and sheaf-theoretically, that is purely in
functorial terms of relational information between quantum observable algebras and cov-
ering diagrams of commutative ones, without any supporting notion of a fixed smooth
background manifold.
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