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This paper is devoted to the study of the chaotic properties of some specific backward shift un-
bounded operatorsHp = A∗pAP+1; p = 0, 1, . . . realized as differential operators in Bargmann space,
where A and A∗ are the standard Bose annihilation and creation operators such that [A,A∗] = I.

1. Introduction

It is well known that linear operators in finite-dimensional linear spaces cannot be chaotic but
the nonlinear operator may be. Only in infinite-dimensional linear spaces can linear operators
have chaotic properties. These last properties are based on the phenomenon of hypercyclicity
or the phenomen of nonwandercity.

The study of the phenomenon of hypercyclicity originates in the papers by Birkoff [1]
and Maclane [2]who show, respectively, that the operators of translation and differentiation,
acting on the space of entire functions, are hypercyclic.

The theories of hypercyclic operators and chaotic operators have been intensively
developed for bounded linear operators; we refer to [1, 3–5] and references therein. For
a bounded operator, Ansari asserts in [6] that powers of a hypercyclic bounded operator
are also hypercyclic.

For an unbounded operator, Salas exhibits in [7] an unbounded hypercyclic operator
whose square is not hypercyclic. The result of Salas shows that one must be careful in the
formal manipulation of operators with restricted domains. For such operators, it is oftenmore
convenient to work with vectors rather than with operators themselves.

Now, let T be an unbounded operator on a separable infinite dimensional Banach
spaceX. A point φ is called wandering if there exists an open setU containing φ such that for
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some n0 < ∞ and for all n > n0 one has Tn(U)
⋂
U = ∅. (In other words, the neighbourhood

eventually never returns). A point φ is called nonwandering if it is not wandering.
A closed subspace E ⊂ X has hyperbolic structure if: E = Eu ⊕Es, TEu = Eu, and TEs =

Es, where Eu (the unstable subspace) and Es (the stable subspace) are closed. In addition,
there exist constants τ(0 < τ < 1) and C > 0, such that:

(i) for any Φ ∈ Eu, k ∈ N, Cτ−k||Φ|| ≤ ||TkΦ||,
(ii) for any Ψ ∈ Es, k ∈ N, ||TkΨ|| ≤ Cτk||Ψ||.

T is said to be a nonwandering operator relative to Ewhich has hyperbolic structure if the set
of periodic points of T is dense in E.

For the nonwandering operators, they are new linear chaotic operators. They are rel-
ative to hypercyclic operators, but different from them in the sense that some hypercyclic op-
erators are not non-wandering operators and there also exists a non-wandering operator,
which does not belong to hypercyclic operators (see [8], Remark 3.5). In fact, suppose T is a
bounded linear operator and T is invertible; if T is a hypercyclic operator, then σ(T)

⋂
∂D/=Φ

(see [9], Remark 4.3) but if T is a non-wandering operator, then σ(T)
⋂
∂D = Φ where ∂D is

the unit circle.
Now, when a linear operator is not invertible, there exist operators which are not only

non-wandering but also hypercyclic. Recently, these theories began to be developed on some
concrete examples of unbounded linear operators; see [1, 10–12]. On the basis of the work
in [13], we study the phenomenons of chaoticity of some specific backward shift unbounded
operators Hp = A∗pAp+1 = zp(dp+1/dzp+1); p = 0, 1, . . . realized as differential operators in
Bargmann space [14] (the space of entire functions with Gaussian measure), where A and
A∗ are the standard Boson annihilation and creation operators satisfying the commutation
relation

[A, A∗] = I. (1.1)

Of special interest is a representation of these operators A and A∗ as linear operators
in a separable Hilbert spanned by eigenvectors |n〉; n = 0, 1, . . . of the positive semidefinite
number operatorN = A∗A.
One has the well-known relations

A|n〉 =
√
n|n − 1〉, A∗|n〉 =

√
n + 1|n + 1〉. (1.2)

We denote the Bargmann space [14] by

B =
{

φ : C −→ C entire,
∫

C

∣
∣φ(z)

∣
∣2e−|z|

2
dx dy <∞

}

. (1.3)

The scalar product on B is defined by

〈
φ, ψ
〉
=
∫

C

φ(z)ψ(z)e−|z|
2
dx dy, (1.4)

and the associated norm is denoted by ‖ · ‖.
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An orthonormal basis of B is given by

en(z) =
zn√
n!
; n = 0, 1, . . . . (1.5)

B is closed in L2(C, dμ(z)), where the measure dμ(z) = e−|z|
2
dxdy and is closed related

to L2(R) by an unitary transform of L2(R) onto B given in [14] by the following integral
transform:

φ(z) =
∫

R

e−(1/2)(z
2+u2)+

√
2uzf(u)du. (1.6)

If f ∈ L2(R) the integral converges absolutely.
In this Bargmann representation, the annihilator and creator operators are defined by

Aφ(z) =
d

dz
φ(z) with domain D(A) =

{

φ ∈ B; d
dz

φ ∈ B
}

,

A∗φ(z) = zφ(z) with domain D(A∗) =
{
φ ∈ B; zφ ∈ B}.

(1.7)

Now, we define

Bp =

{

φ ∈ B; d
j

dzj
φ(0) = 0, 0 ≤ j ≤ p

}

. (1.8)

An orthonormal basis of Bp is given by

en(z) =
zn√
n!
; n = p + 1, p + 2, . . . . (1.9)

Hence, a family of weighted shiftsHp is defined as follows:

Hp = A∗pAp+1 with domain D
(
Hp

)
=
{
φ ∈ B;Hpφ ∈ B}

⋂
Bp. (1.10)

Remark 1.1. (i) For p = 0, the operator H0 = A is the derivation in Bargmann space, and it is
the celebrated quantum annihilation operator.

(ii)H∗
0en =

√
n + 1en+1 is a weighted shift with weight ωn =

√
n + 1 for n = 0, 1, . . ..

(iii) It is known that H0 with its domain D(H0) is a chaotic operator in Bargmann
space.

(iv) H0φλ(z) = λφλ(z) for all λ ∈ C where φλ(z) =
∑∞

n=0(λ
n/

√
n!)en(z) and ‖φλ‖2 =

e|λ|
2
.

(v) The function e−|λ|
2
φλ(z) is called a coherent normalized quantum optics (see [15,

16]).

Remark 1.2. (i) For p = 1, the operator H1 = A∗A2 = z(d2/dz2) has as adjoint the operator
H∗

1 = z2(d/dz).
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(ii)H∗
1en = n

√
n + 1en+1 is a weighted shift with weight ωn = n

√
n + 1 for n = 1, . . . and

it is known thatH1 +H∗
1 is a not self-adjoint operator and is chaotic in Bargmann space [13].

This operator plays an essential role in Reggeon field theory (see [17, 18]).
(iii) The operatorsHp arising also in the Jaynes-Cummings interaction models, see for

example a model introduced by Obada and Abd Al-Kader in [19], the interaction Hamilto-
nian for the model is

HI = −
∞∑

p=0

{

Ω1e
iφ1e−(η

2
1/2)

(
iη1
)2p+1

p!
(
p + 1

)
!
H∗

p + Ω2e
iφ2e−(η

2
2/2)

(
iη2
)2p+1

p!
(
p + 1

)
!
Hp

}

σ− + h · c, (1.11)

where Ωj are the Rabi frequencies and and η2j are the Lamb-Dicke; j = 1,2. The operators σ−
and σ+ act on the ground state |g〉 and excited state |e〉 as follows: σ±|g〉 = (1 ± 1/2)|e〉 and
σ±|e〉 = (1 ∓ 1/2)|g〉.

(iv) On Bp, p = 0, 1, . . ., which is the orthogonal of span {en;n ≤ p} in Bargmann space,
the adjoint ofHp isH∗

p = z
p+1(dp/dzp) such that

H∗
pen = ωnen+1 with weight ωn =

√
n + 1

n!
(
n − p)! for n ≥ p ≥ 0. (1.12)

This paper is organized as follows: in Section 2, we recall the definition of the
chaoticity for an unbounded operator following Devaney and sufficient conditions on
hypercyclicity of unbounded operators given by Bés-Chan-Seubert theorem [10]. As our
operator Hp is an unilateral weighted backward shift with an explicit weight, we use the
results of Bés et al. to proof the chaoticity of Hp in Bargmann space (we can also use the
results of Bermúdez et al. [11] to proof the chaoticity of our operatorHp). Then, we construct
the hyperbolic structure associated to Hp. In the appendix, we present a direct proof of the
chaoticity of Hp based on the Baire Category theorem. The last theorem is essential to proof
that the operator is topologically transitive and can be used for interested reader.

2. Chaoticity of the Operator Hp = zp(dp+1/dzp+1) on Bp

Definition 2.1. Let T be an unbounded linear operator on a separable infinite dimensional
Banach X with domain D(T) dense in X and such that Tn is closed for all positive integers n.

(a) The operator T is hypercyclic if there exists a vector f ∈ D(T) such that Tnf ∈ D(T)
and if the orbit {f, Tf, T2f, . . .} is dense in X. The vector f is called a hypercyclic
vector of T .

(b) A vector g ∈ D(T) is called a periodic point of T if there existsm such that Tmg = g.
The operators having both dense sets of periodic points and hypercyclic vectors are
said to be chaotic following the definition of Devaney [20, 21].

Sufficient conditions for the hypercyclicity of an unbounded operator are given in the
following Bés-Chan-Seubert theorem:

Theorem 2.2 (Bés-Chan-Seubert [10]). LetX be a separable infinite dimensional Banach, and let T
be a densely defined linear operator on X. Then, T is hypercyclic if

(i) Tm is a closed operator for all positive integers m,
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(ii) there exists a dense subset F of the domain D(T) of T and a (possibly nonlinear and
discontinuous) mapping S : F → F so that TS is the identity on F and Tn, Sn → 0
pointwise on F as n → ∞.

Theorem 2.3. Let B be the Bargmann space with orthonormal basis en(z) = zn/
√
n!. Let Hp =

zp(dp+1/dzp+1) = A∗pAp+1 with domain D(Hp) = {φ ∈ B;Hpφ ∈ B}⋂Bp, where Bp = {φ ∈
B; (dj/dzj)φ(0) = 0, 0 ≤ j ≤ p}. Then,Hp is a chaotic operator.

Remark 2.4. (i) Following the ideas of Gross-Erdmann in [4, 5] or the Theorem 2.4 of
Bermúdez et al. [11], we can use a test on the weight ofHp to give a proof of the chaoticity of
Hp.

We choose to give a proof under lemma form based on the theorem of Bès et al. recalled
above, we also indicate in the appendix the utilization of the Baire category theorem in
the hepercyclicity theory and we prove that Hp possesses a certain ”sensitivity to initial
conditions” though this property is redundant in Devaney’s definition (see Banks et al. in
[20]).

(ii) Let T be an unbounded operator on separable infinite dimensional Banach X. It
may happen that vector f ∈ D(T), but Tf fails to be in the domain of T . We can exhibit a closed
operator whose square is not. For example, the operator acting on L2(0, 1) × L2(0, 1) defined
by T(u, v)(x) = (v′(x), f(x)v(0)) with domain D(T) = L2(0, 1) ×H1(0, 1), where v′(x) is the
derivative of v(x) and f is a function inH1(0, 1)with f(0) = 1, whereH1(0, 1) is the classical
Sobolev space. Then T , is a closed operator and D(T2) = D(T), where D(T2) is the domain
of T2 but the operator T2 is not closed and has not closed extension.This operator can, for
example, justify the asumption (a) of the Definition 2.1 for the unbounded linear operators.

Lemma 2.5. For each positive integer m, the operator (Hp)
m, with domain D((Hp)

m) = {φ ∈
B; (Hp)

mφ ∈ B}⋂Bp, is a closed operator.

Proof. As (Hp)
m is closed if and only if the graph G((Hp)

m) is a closed linear manifold of
Bp × Bp, then let (φn, (Hp)

mφn) be a sequence in G((Hp)
m) which converges to (φ, ψ) in

Bp × Bp. As φn converges to φ in Bp, then zp(dp+1/dzp+1)φn converges to zp(dp+1/dzp+1)φ
pointwise on C and (Hp)

mφn converges to (Hp)
mφ pointwise on C. As (Hp)

mφn converges to
ψ, we deduce that (Hp)

m)φ = ψ and φ ∈ D((Hp)
m), hence G((Hp)

m) is closed.

Lemma 2.6. Let Hp = zp(dp+1/dzp+1) with domain D(Hp) = {φ ∈ B;Hpφ ∈ B}⋂Bp, where
Hpen = ωn−1en−1, en(z) = zn/

√
n!, and ωn =

√
n + 1(n!/(n − p)!) for n ≥ p ≥ 0. Then, Hp is

hypercyclic.

Proof. Let F = {φk(z) =
∑k

n=p anen(z)}. This space is dense in Bp.
Let Sp: F → F and Spen = (1/ωn)en+1;n ≥ p ≥ 0.
Then,HpSpφk(z) = φk(z), that is,HpSp = I|F .
Now, as [Hp]

ken = 0 for all k > n ≥ p we deduce that any element of F can be anni-
hilated by a finite power kn ofHp since as [

∏kn+n
j=n ωj]

−1 → 0 when kn → ∞, we have

Sknp en =

⎡

⎣
kn+n∏

j=n

ωj

⎤

⎦

−1

ek+n −→ 0 in Bp. (2.1)

Now, the hypercyclicity ofHp follows from the theorem of Bés et al. recalled above.
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Lemma 2.7. Let Hp = zp(dp+1/dzp+1) with domain D(Hp) = {φ ∈ B;Hpφ ∈ B}⋂Bp, where
Hpen = ωn−1en−1, en(z) = (zn/

√
n!), and ωn =

√
n + 1(n!/(n−p)!) for n ≥ p ≥ 0. Then, there exist

k > 0 and g ∈ D(Hk
p ) such thatH

k
pg(z) = g(z).

Proof. Let λ ∈ C and

gλ(z) = ep(z) +
∞∑

n=p+1

λn−p

ωpωp+1 · · ·ωn−1
en(z), (2.2)

then gλ is in the domain ofHp and it is an eigenvector forHp corresponding to eigenvalue λ,
therefore it is a periodic point ofHp. λ is a root of unity.

In fact, let r > 0 and |λ| < r, then as

lim
n−1∏

j=p

ωj = ∞ when n −→ ∞, (2.3)

there exist n0 > 0 and q < 1 such that

r
(
ωpωp+1 · · ·ωn−1

) (1/n)
≤ q for n ≥ n0 , (2.4)

since for |λ| < r, we have

|λ|(n−p)
(
ωpωp+1 · · ·ωn−1

)2 ≤ q2n; n ≥ n0 (2.5)

and gλ is in Bargmann space. Now as,

〈
gλ, ep

〉
= 1,

〈
gλ, en+1

〉
=

λn−p+1

ωpωp+1 · · ·ωn
,

(2.6)

we get

∣
∣
〈
gλ, en+1

〉∣
∣ 2 =

λ2(n−p+1)
(
ωpωp+1 · · ·ωn

)2 ,

|〈gλ, en+1
〉| 2(ωn) 2 =

λ2(n−p+1)
(
ωpωp+1 · · ·ωn−1

)2 ≤ q2n|λ|2 for n ≥ n0.
(2.7)
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We deduce that

∞∑

n=p

∣
∣
〈
gλ, en+1

〉∣
∣2(ωn)2 <∞, (2.8)

that is, gλ ∈ D(Hp).
Thus, we get

Hpgλ = Hpep +
∞∑

n=p+1

λn−p

ωpωp+1 · · ·ωn−1
·ωn−1en−1

= λ
∞∑

m=p

λm−p

ωpωp+1 · · ·ωm−1
em

= λ

⎧
⎨

⎩
ep +

∞∑

m=p+1

λm−p

ωpωp+1 · · ·ωm−1
em

⎫
⎬

⎭

= λgλ.

(2.9)

Therefore, gλ is the eigenvector corresponding to the eigenvalue λ and gλ is a periodic
point ofHp, where λ is a root of unity.

Lemma 2.8. The set of periodic points ofHp is dense in Bp.

Proof. Let

G = span
{
gλ;λ is a root of unity

}
. (2.10)

G is dense in Bp, otherwise there exists nonzero vector g ∈ Bp which is orthogonal to G.
Let

g(z) =
∞∑

n=p
bnen(z) such that

〈
g, gλ

〉
= 0, for each gλ ∈ G,

f(λ) =
〈
g, gλ

〉
for |λ| < 1, f(λ) = 0 for |λ| = 1 .

(2.11)

f(λ) is a continuous function on the closed unit disc which is holomorphic on the
interior and vanishes at each root of unity, hence on the entire unit circle, hence f(λ) vanishes
for all |λ| ≤ 1. We deduce that bn = 0 for n ≥ p, then G is dense in Bp.

Remark 2.9. (i) The Lemmas 2.5, 2.6, and 2.8 show the chaoticity ofHp.
(ii) The Theorem 2.3 generalizes the result of [12] on the annihilation operator in

Bargmann space.

Definition 2.10. Let T be an unbounded linear operator on a separable infinite dimensional
Banach X whose domain D(T) is dense in X, and let Tn be closed for all positive integers n.
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(a) A closed subspace E ⊂ X has hyperbolic structure if E = Eu ⊕ Es, TEu = Eu, and
TEs = Es, where Eu (the unstable subspace) and Es (the stable subspace) are closed.
In addition, there exist constants τ(0 < τ < 1) and C > 0, such that:

(i) For any Φ ∈ Eu, k ∈ N, Cτ−k||Φ|| ≤ ||TkΦ|| (the vectors of Eu are exponen-
tially expanded, we say they belong to the unstable subspace Eu).

(ii) For any Ψ ∈ Es, k ∈ N, ||TkΨ|| ≤ Cτk||Ψ|| (some vectors are contracted
exponentially fast by the iterates of the operator T , we say they belong to the
stable subspace Es).

(b) If there exists a closed subspace E ⊂ X which has hyperbolic structure relative to T
and the set of periodic points of T is dense in E, then T is said to be a nonwandering
operator relative to E following the definition of Tian et al. [8].

Since Hp is chaotic operator on Bp, so Hp has dense set of periodic points on Bp, we
only need to construct an hyperbolic structure associated to it in Bp to obtain:

Theorem 2.11. Let B be the Bargmann space with orthonormal basis en(z) = zn/
√
n!.

LetHp = zp(dp+1/dzp+1) = A∗pAp+1 with domain D(Hp) = {φ ∈ B;Hpφ ∈ B}⋂Bp, where
Bp = {φ ∈ B; (dj/dzj)φ(0) = 0, 0 ≤ j ≤ p}.

Then,Hp is a nonwandering operator.

Proof. We construct a closed invariant subspace E ⊂ Bp such that E has hyperbolic structure.
For λ ∈ C, the function defined by (2.2).
gλ(z) = ep(z) +

∑∞
n=p+1(λ

n−p/ωpωp+1 · · ·ωn−1)en(z) is in the domain of Hp and is an
eigenvector forHp corresponding to the eigenvalue λ.

Let Eu = span{gλ; |λ| > 1}, Es = span{gλ; 0 < |λ| < 1}, and E = Eu ⊕ Es, where
⊕ represents direct sum.

We will verify that E has an hyperbolic structure.
For φ ∈ Eu, there exists a sequence (ai), i = 1, 2, . . . such that

φ(z) =
∞∑

i=1

aigλi(z) =
∞∑

i=1

ai
∞∑

n=p

λ
n−p
i

ωpωp+1 · · ·ωn−1
en(z). (2.12)

And for each positive integerm, we have

∥
∥
(
Hp

)m
φ
∥
∥ =

∥
∥
∥
∥
∥

(
Hp

)m
∞∑

i=1

aigλi

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

(
Hp

)m
∞∑

i=1

aiλ
m
i

∞∑

n=p

λ
n−p
i

ωpωp+1 · · ·ωn−1
en

∥
∥
∥
∥
∥
≥ μm∥∥φ∥∥, (2.13)

where μ = min{|λi|; |λi| > 1}.
Next, we will prove Eu is the invariant subspace ofHp.
Let φ ∈ Eu, then

φ(z) =
∞∑

i=1

aigλi(z) =
∞∑

i=1

ai
∞∑

n=p

λ
n−p
i

ωpωp+1 · · ·ωn−1
en(z) = Hp

∞∑

i=1

bigλi(z), (2.14)

where bi = ai/λi then Eu ⊂ HpE
u.
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Now for ψ ∈HpEu , then there exists φ ∈ Eu, such that ψ = HpΦ =
∑∞

i=1 cigλi , where
ci = λiai. Therefore,HpE

u ⊂ Eu.
Similarly, let Es = span{gλ; 0 < |λ| < 1} , we deduce that HpE

s = Es and if we chose
τ = 1/μ, then we have

∥
∥
(
Hp

)m
φ
∥
∥ ≥

∥
∥φ
∥
∥

τm
. (2.15)

Then, E has hyperbolic structure andHp is nonwandering operator relative to E.
Here, the linear space Es is formed by the (spectral) subspace corresponding to the eigen-
values ofHp of modulus less than 1, while the unstable subspace Eu corresponds to those of
modulus greater than 1.

As in [22], we can use the Gazeau-Klauder formalism to construct the coherent states
of this operatorHp and investigate some properties of these coherent states (see [23]).

We conclude that main results of this work can be considered in [24] as an introduction
to study of the operatorsHp,m = zp(∂p+m/dzp+m)with p = 0, 1, . . . andm = 1, 2, . . . particularly,
to study the chaoticity ofHp,m +H∗

p,m.

Appendix

Let us recall below the essential spaces and operators used in above sections

(i) B = {φ : C → C entire;
∫
C
|φ(z)|2e−|z|2dx dy <∞},

(ii) Bp = {φ ∈ B; (dj/dzj)φ(0) = 0, 0 ≤ j ≤ p},

(iii) Hpen = ωn−1en−1 with en(z) = zn/
√
n! and ωn =

√
n + 1(n!/(n − p)!) for n ≥ p ≥ 0,

(iv) F = {φk(z) =
∑k

n=p anen(z), k = p, p + 1, . . .},

(v) Spen = (1/ωn)en+1;n ≥ p ≥ 0.

Then, we have the following.

Lemma A.1. For arbitrary φ, ψ ∈ Bp, there exists φk ∈ F such that φk → φ andHk
pφk → ψ.

Proof. As F is dense in Bp, then for arbitrary ψ ∈ Bp, there exists ψk ∈ F such that ψk → ψ.
Let m a natural number, as ωn =

√
n + 1(n!/(n − p)!) for n ≥ p ≥ 0, then we get

ωnωn+1 · · ·ωn+m =
√
(n +m)!

n+m∏

j=n

j!
(
j − p)! for n ≥ p ≥ 0,

1
ωnωn+1 · · ·ωn+m

≤ 1
√
(n +m)!

for n ≥ p ≥ 0 .

(A.1)
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Now, for arbitrary φ ∈ F and ||φ|| = 1, φ =
∑∞

n=p anen, we have

Smp φ =
∞∑

n=p
an

1
ωnωn+1 · · ·ωn+m

en+m,

∣
∣
∣
∣
∣
∣Smp φ

∣
∣
∣
∣
∣
∣ ≤

∞∑

n=p
|an| 1
√
(n +m)!

.

(A.2)

As form ≥ 3, we have (1/m!) ≤ (1/2m), then

∣
∣
∣
∣
∣
∣Smp φ

∣
∣
∣
∣
∣
∣ ≤ 1√

2
m +

1
√
2
m+1

+ · · · ≡ 1

2 − √
2

1√
2
n −→ 0 (m −→ ∞), (A.3)

hence Smp tends pointwise to zero on F.
By choosing diagonal element of {Smp ψk}, we get

Skpψk −→ 0 when k −→ ∞. (A.4)

AsHpSp = I on F, then we can write ψk = HpSpψk, that is,

HpS
k
pψk −→ ψ when k −→ ∞. (A.5)

Now as KerHm
p = span{ej , p ≤ j ≤ p+m−1}, where KerHm

p , is the kernel space ofH
m
p

then
∏∞

m=pKerH
m
p , is dense in Bp and for arbitrary Φ ∈ ⋃∏∞

m=pKerH
m
p , there exists m such

that φ ∈ KerHm
p . Therefore,H

m
p tends pointwise to zero on a dense subset of Bp.

For arbitrary φ ∈ Bp, there exists fk ∈∏∞
m=pKerH

m
p such that fk → φ, therefore

Hm
p fk −→ 0 (m −→ ∞). (A.6)

Particularly,

Hk
pfk −→ 0 (k −→ ∞). (A.7)

Let

φk = fk + Skpψk. (A.8)

Then,Hk
pφk → ψ (k → ∞).

Lemma A.2. Let φ ∈ G =
⋂∞
j=0
⋃∞
m=0H

m
p Dj , where Dj , is an enumeration of open ball in Bp with

centers in a countable dense subset of Bp, then {φ,Hpφ, . . . ,H
m
p Φ, . . .} is dense in Bp.

Proof. The above lemma imply for arbitrary φ ∈ Dj and ψ ∈ Bp that there exists φk ∈ Dj such

that φk → φ, and H
k

pφk → ψ, hence
⋃∞
m=0H

m
p Dj is dense in Bp and Baire category theorem

implies G is dense in Bp. Hence,Hp is topologically transitive.
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