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We extend the Hijazi type inequality, involving the energy-momentum tensor, to the eigenvalues
of the Dirac operator on complete Riemannian Spinc manifolds without boundary and of finite
volume. Under some additional assumptions, using the refined Kato inequality, we prove the
Hijazi type inequality for elements of the essential spectrum. The limiting cases are also studied.

1. Introduction

On a compact Riemannian Spinc manifold (Mn, g) of dimension n � 2, any eigenvalue λ of
the Dirac operator satisfies the Friedrich type inequality [1, 2]

λ2 � n

4(n − 1) infM (S − cn|Ω|), (1.1)

where S denotes the scalar curvature of M, cn = 2[n/2]1/2 and iΩ is the curvature form of
the connection on the line bundle given by the Spinc structure. Equality holds if and only if
the eigenspinor ψ associated with the first eigenvalue λ1 is a Spinc Killing spinor; that is, for
every X ∈ Γ(TM), the eigenspinor ψ satisfies

∇Xψ = −λ1
n
X · ψ,

Ω · ψ = i
cn
2
|Ω|ψ.

(1.2)
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Here, X · ψ denotes the Clifford multiplication and ∇ the spinorial Levi-Civita connection
[3, 4]. In [5], it is shown that on a compact Riemannian Spinc manifold any eigenvalue λ of
the Dirac operator to which is attached an eigenspinor ψ satisfies the Hijazi type inequality
[6] involving the Energy-Momentum tensor and the scalar curvature

λ2 � inf
M

(
1
4
S − cn

4
|Ω| + |�ψ |2

)
, (1.3)

where �ψ is the field of symmetric endomorphisms associated with the field of quadratic
forms denoted by Tψ , called the Energy-Momentum tensor. It is defined on the complement
set of zeroes of the eigenspinor ψ, for any vector field X by

Tψ(X) = Re

〈
X · ∇Xψ,

ψ∣∣ψ∣∣2
〉
. (1.4)

Equality holds in (1.3) if and only, for all X ∈ Γ(TM), we have

∇Xψ = −�ψ(X) · ψ,

Ω · ψ = i
cn
2
|Ω|ψ,

(1.5)

where ψ is an eigenspinor associated with the first eigenvalue λ1. By definition, the trace
tr(�ψ) of �ψ , where ψ is an eigenspinor associated with an eigenvalue λ, is equal to λ. Hence,
(1.3) improves (1.1) since by the Cauchy-Schwarz inequality, |�ψ |2 � (tr(�ψ))2/n = λ2/n. It is
also shown that the sphere equipped with a special Spinc structure satisfies the equality case
in (1.3) but equality in (1.1) cannot occur.

In the same spirit as in [7], Herzlich and Moroianu (see [1]) generalized the Hijazi
inequality [7], involving the first eigenvalue of the Yamabe operator L, to the case of compact
Spinc manifolds of dimension n � 3: any eigenvalue λ of the Dirac operator satisfies

λ2 � n

4(n − 1)μ1, (1.6)

where μ1 is the first eigenvalue of the perturbed Yamabe operator defined by LΩ = L−cn|Ω|g =
4((n − 1)/(n − 2))Δ + S − cn|Ω|g . The limiting case of (1.6) is equivalent to the limiting
case in (1.1). The Hijazi inequality [6], involving the energy-momentum tensor and the first
eigenvalue of the Yamabe operator, is then proved by the author in [5] for compact Spinc

manifolds. In fact, any eigenvalue of the Dirac operator to which is attached an eigenspinor
ψ satisfies

λ2 � 1
4
μ1 + inf

M
|�ψ |2. (1.7)
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Equality in (1.7) holds if and only, for all X ∈ Γ(TM), we have

∇Xϕ = −�ϕ(X)·ϕ,

Ω · ψ = i
cn
2
|Ω|gψ,

(1.8)

where ϕ = e−((n−1)/2)uψ, the spinor field ψ is the image of ψ under the isometry between
the spinor bundles of (Mn, g) and (Mn, g = e2ug), and ψ is an eigenspinor associated with
the first eigenvalue λ1 of the Dirac operator. Again, (1.7) improves (1.6). In this paper we
examine these lower bounds on open manifolds, and especially on complete Riemannian
Spinc manifolds. We prove the following.

Theorem 1.1. Let (Mn, g) be a complete Riemannian Spinc manifold of finite volume. Then, any
eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies the Hijazi type (1.3).
Equality holds if and only if the eigenspinor associated with the first eigenvalue λ1 satisfies (1.5).

The Friedrich type (1.1) is derived for complete Riemannian Spinc manifolds of finite
volume and equality also holds if and only if the eigenspinor associated with the first
eigenvalue λ1 is a Killing Spinc spinor. This was proved by Grosse in [8, 9] for complete
spin manifolds of finite volume. Using the conformal covariance of the Dirac operator, we
prove the following.

Theorem 1.2. Let (Mn, g) be a complete Riemannian Spinc manifold of finite volume and dimension
n > 2. Any eigenvalue λ of the Dirac operator to which is attached an eigenspinor ψ satisfies the Hijazi
type (1.7). Equality holds if and only if (1.8) holds.

Now, the Hijazi type (1.6) can be derived for complete Riemannian Spinc manifolds of
finite volume and dimension n > 2 and equality holds if and only if the eigenspinor associated
with the first eigenvalue λ1 is a Killing Spinc spinor. This was also proved by Grosse in
[8, 9] for complete spin manifolds of finite volume and dimension n > 2. On complete
manifolds, the Dirac operator is essentially self-adjoint and, in general, its spectrum consists
of eigenvalues and the essential spectrum. For elements of the essential spectrum, we also
extend to Spinc manifolds the Hijazi type (1.6) obtained by Grosse in [9] on spin manifolds.

Theorem 1.3. Let (Mn, g) be a complete Riemannian Spinc manifold of dimension n ≥ 5 with finite
volume. Furthermore, assume that S − cn|Ω| is bounded from below. If λ is in the essential spectrum
of the Dirac operator σess(D), then λ satisfies the Hijazi type (1.6).

For the 2-dimensional case, Grosse proved in [8] that for any Riemannian spin surface
of finite area, homeomorphic to R

2, we have

λ+ ≥ 4π
Area

(
M2, g

) , (1.9)

where λ+ = infϕ∈C∞c (M)((D2ϕ, ϕ)/(ϕ, ϕ)) (in the compact case, λ+ coincides with the first
eigenvalue of the square of the Dirac operator). Recently, in [10], Bär showed the same
inequality for any connected 2-dimensional Riemannian manifold of genus 0, with finite area
and equippedwith a spin structure which is bounding at infinity. A spin structure onM is said
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to be bounding at infinity ifM can be embedded into S
2 in such a way that the spin structure

extends to the unique spin structure of S
2.

Studying the energy-momentum tensor on a compact Riemannian spin or Spinc

manifolds has been done by many authors, since it is related to several geometric situations.
Indeed, on compact spin manifolds, Bourguignon and Gauduchon [11] proved that the
energy-momentum tensor appears naturally in the study of the variations of the spectrum
of the Dirac operator. Hence, when deforming the Riemannian metric in the direction of
this tensor, the eigenvalues of the Dirac operator are then critical. Using this, Kim and
Friedrich [12] obtained the Einstein-Dirac equation as the Euler-Lagrange equation of a
certain functional. The author extends these last results to compact Spinc manifolds [13].
Even it is not a computable geometric invariant, the energy-momentum tensor is, up to a
constant, the second fundamental form of an isometric immersion into a Spinc manifold
carrying a parallel spinor [13, 14]. Moreover, in low dimensions, the existence, on a spin
or Spinc manifold M, of a spinor ψ satisfying (1.5) is, under some additional assumptions,
equivalent to the existence of a local immersion ofM into R

3, S
3, CP 2, S

2 × R or some others
manifolds [14–16].

2. Preliminaries

In this section, we briefly introduce basic notions concerning Spinc manifolds, the Dirac
operator and its conformal covariance. Then, we recall the refined Kato inequality which
is crucial for the proof.

The Dirac Operator on Spinc Manifolds

Let (Mn, g) be a connected oriented Riemannian manifold of dimension n � 2 without
boundary. Furthermore, let SOM be the SOn-principal bundle overM of positively oriented
orthonormal frames. A Spinc structure ofM is a Spincn-principal bundle (Spin

cM,π,M) and
an S

1-principal bundle (S1M,π,M) together with a double covering given by θ : SpincM →
SOM×MS

1M such that θ(ua) = θ(u)ξ(a), for every u ∈ SpincM and a ∈ Spincn, where ξ is
the 2-fold covering of Spincn over SOn × S

1. Let ΣM := SpincM×ρnΣn be the associated spinor
bundle, where Σn = C

2[n/2] and ρn : Spincn → End(Σn) the complex spinor representation. A
section of ΣMwill be called a spinor and the set of all spinors will be denoted by Γ(ΣM) and
those of compactly supported smooth spinors by Γc(ΣM). The spinor bundleΣM is equipped
with a natural Hermitian scalar product, denoted by 〈·, ·〉, satisfying

〈
X · ψ, ϕ〉 = −〈ψ,X · ϕ〉 for every X ∈ Γ(TM), ψ, ϕ ∈ Γ(ΣM), (2.1)

whereX ·ψ denotes the Cliffordmultiplication ofX and ψ. With this Hermitian scalar product
we define an L2-scalar product

(
ψ, ϕ

)
=
∫
M

〈
ψ, ϕ

〉
vg, (2.2)

for any spinors ψ and ϕ in Γc(ΣM). Additionally, given a connection 1-form A on S
1M, A :

T(S1M) → iR and the connection 1-form ωM on SOM for the Levi-Civita connection ∇M,
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we consider the associated connection on the principal bundle SOM×MS
1M, and hence a

covariant derivative ∇ on Γ(ΣM) [3].
The curvature of A is an imaginary valued 2-form denoted by FA = dA, that is, FA =

iΩ, where Ω is a real valued 2-form on S
1M. We know that Ω can be viewed as a real-valued

2-form onM [3]. In this case, iΩ is the curvature form of the associated line bundle L. It is the
complex line bundle associated with the S

1-principal bundle via the standard representation
of the unit circle. For any spinor ψ and any real 2-form Ω, we have [1]

〈
iΩ · ψ, ψ〉 � −cn

2
|Ω|g

∣∣ψ∣∣2, (2.3)

where |Ω|g is the norm of Ω given by |Ω|2g =
∑

i<j(Ωij)
2. Moreover, equality holds in (2.3) if

and only if

Ω · ψ = i
cn
2
|Ω|gψ. (2.4)

The Dirac operator is a first-order elliptic operator locally given by

D =
n∑
i=1

ei · ∇ei . (2.5)

It is an elliptic and formally self-adjoint operator with respect to the L2-scalar product;
that is, for all spinors ψ, ϕ, at least one of which is compactly supported on M, we have
(Dψ, ϕ) = (ψ,Dϕ). An important tool when examining the Dirac operator is the Schrödinger-
Lichnerowicz formula

D2 = ∇∗∇ +
1
4
S IdΓ(ΣM) +

i

2
Ω·, (2.6)

where ∇∗ is the adjoint of ∇ and Ω· is the extension of the Clifford multiplication to
differential forms given by (e∗i ∧ e∗j ) · ψ = ei · ej · ψ. For the Friedrich connection ∇fXψ =
∇Xψ + (f/n)X · ψ, where f is real valued function one gets a Schrödinger-Lichnerowicz type
formula similar to the one obtained by Friedrich in [2]

(
D − f)2ψ = Δfψ +

(
S

4
+
n − 1
n

f2
)
ψ +

i

2
Ω · ψ − n − 1

n

(
2fDψ +∇f · ψ), (2.7)

where Δf is the spinorial Laplacian associated with the connection ∇f .
A complex number λ is an eigenvalue of D if there exists a nonzero eigenspinor

ψ ∈ Γ(ΣM) ∩ L2(ΣM) with Dψ = λψ. The set of all eigenvalues is denoted by σp(D), the
point spectrum. We know that if M is closed, the Dirac operator has a pure point spectrum
but on open manifolds, the spectrum might have a continuous part. In general, the spectrum
of the Dirac operator σ(D) is composed of the point, the continuous and the residual
spectrum. For complete manifolds, the residual spectrum is empty and σ(D) ⊂ R. Thus,
for complete manifolds, the spectrum can be divided into point and continuous spectrum.
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But often another decomposition of the spectrum is used: the one into discrete spectrum
σd(D) and essential spectrum σess(D).

A complex number λ lies in the essential spectrum of D if there exists a sequence
of smooth compactly supported spinors ψi which are orthonormal with respect to the L2-
product and

∥∥(D − λ)ψi∥∥L2 −→ 0. (2.8)

The essential spectrum contains all eigenvalues of infinite multiplicity. In contrast, the
discrete spectrum σd(D) := σp(D) \ σess(D) consists of all eigenvalues of finite multiplicity.
The proof of the next property can be found in [8]: on a Spinc complete Riemannianmanifold,
0 is in the essential spectrum ofD−λ if and only if 0 is in the essential spectrum of (D−λ)2, and
in this case, there is a normalized sequence ψi ∈ Γc(ΣM) such that ψi converges L2-weakly to
0 with ‖(D − λ)ψi‖L2 → 0 and ‖(D − λ)2ψi‖L2 → 0.

Spinor Bundles Associated with Conformally Related Metrics

The conformal class of g is the set of metrics g = e2ug, for a real function u onM. At a given
point x of M, we consider a g-orthonormal basis {e1, . . . , en} of TxM. The corresponding g-
orthonormal basis is denoted by {e1 = e−ue1, . . . , en = e−uen}. This correspondence extends
to the Spinc level to give an isometry between the associated spinor bundles. We put a “−−′′

above every object which is naturally associated with the metric g. Then, for any spinor field
ψ and ϕ, one has 〈ψ, ϕ〉 = 〈ψ, ϕ〉, where 〈·, ·〉 denotes the natural Hermitian scalar products
on Γ(ΣM), and on Γ(Σ M). The corresponding Dirac operators satisfy

D
(
e−((n−1)/2)uψ

)
= e−((n+1)/2)uDψ. (2.9)

The norms of any real 2-form Ωwith respect to g and g are related by

|Ω|g = e−2u|Ω|g. (2.10)

Hijazi [6] showed that on a spin manifold the energy-momentum tensor verifies

∣∣∣�ϕ∣∣∣2
g
= e−2u|�ϕ|2g = e−2u|�ψ |2g, (2.11)

where ϕ = e−((n−1)/2)u)ψ. We extend the result to a Spinc manifold and get the same relation.

Refined Kato Inequalities

On a Riemannian manifold (M,g), the Kato inequality states that away from the zeros of any
section ϕ of a Riemannian or Hermitian vector bundle E endowed with a metric connection
∇, we have

∣∣d(∣∣ϕ∣∣)∣∣ ≤ ∣∣∇ϕ∣∣. (2.12)
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This could be seen as follows 2|ϕ||d(|ϕ|)| = |d(|ϕ|)2| = 2|〈∇ϕ, ϕ〉| ≤ 2|ϕ‖∇ϕ|. In [17], refined
Kato inequalities were obtained for sections in the kernel of first order elliptic differential
operators P . They are of the form |d(|ϕ|)| ≤ kP |∇ϕ|, where kP is a constant depending on the
operator P and 0 < kP < 1. Without the assumption that ϕ ∈ kerP , we get away from the zero
set of ϕ

∣∣d∣∣ϕ∣∣∣∣ ≤ ∣∣Pϕ∣∣ + kP ∣∣∇ϕ∣∣. (2.13)

A proof of (2.13) can be found in [8, 17, 18] or [9]. In [17], the constant kP is determined in
terms of the conformal weights of the differential operator P . For the Dirac operator D and
for D − λ, where λ ∈ R, we have kD = kD−λ =

√
(n − 1)/n.

3. Proof of the Hijazi Type Inequalities

First, we follow the main idea of the proof of the original Hijazi inequality in the compact
case [6, 7], and its proof on spin noncompact case obtained by Grosse [9]. We choose the
conformal factor with the help of an eigenspinor and we use cutoff functions near its zero set
and near infinity to obtain compactly supported test functions.
Proof of Theorem 1.2. Let ψ ∈ C∞(M,S) ∩ L2(M,S) be a normalized eigenspinor; that is, Dψ =
λψ and ‖ψ‖ = 1. Its zero set Υ is closed and lies in a closed countable union of smooth (n− 2)-
dimensional submanifolds which has locally finite (n − 2)-dimensional Hausdorff measure
[19]. We can assume without loss of generality that Υ is itself a countable union of (n − 2)-
submanifolds described above. Fix a point p ∈M. Since M is complete, there exists a cutoff
function ηi : M → [0, 1] which is zero on M \ B2i(p) and equal 1 on Bi(p), where Bl(p) is
the ball of center p and radius l. In between, the function is chosen such that |∇ηi| ≤ 4/i and
ηi ∈ C∞c (M). While ηi cuts off ψ at infinity, we define another cutoff near the zeros of ψ. Let
ρa,ε be the function

ρa,ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for r < aε,

1 − δ ln ε
r

for aε ≤ r ≤ ε,
1 for ε < r,

(3.1)

where r = d(x,Υ) is the distance from x to Υ. The constant 0 < a < 1 is chosen such that
ρa,ε(aε) = 0, that is, a = e−1/δ. Then, ρa,ε is continuous, constant outside a compact set and Lip-
schitz. Hence, for ϕ ∈ Γ(ΣM) the spinor ρa,εϕ is an element inHr

1(ΣM) for all 1 ≤ r ≤ ∞. Now,
consider Ψ := ηiρa,εψ ∈ Hr

1(ΣM). These spinors are compactly supported onM \ Υ. Further-
more, g = e2ug = h4/(n−2)g with h = |ψ|(n−2)/(n−1) is a metric onM\Υ. SettingΦ := e−((n−1)/2)uΨ
(ϕ = e−((n−1)/2)uψ), (2.3), (2.10), (2.11), and the Schrödinger-Lichnerowicz formula imply

∥∥∥∥∇�Φ

Φ
∥∥∥∥
2

g

=
∥∥∥DΦ

∥∥∥2

g
− 1
4

∫
M−Υ

S
∣∣∣Φ∣∣∣2vg −

∫
M−Υ

∣∣∣�Φ∣∣∣2∣∣∣Φ∣∣∣2vg −
∫
M−Υ

〈
i

2
Ω · Φ,Φ

〉
vg

�
∥∥∥DΦ

∥∥∥2

g
− 1
4

∫
M

(
Se2u − cn|Ω|g

)
|Ψ|2e−uvg −

∫
M

∣∣∣�Ψ∣∣∣2|Ψ|2e−uvg
=
∥∥∥DΦ

∥∥∥2

g
− 1
4

∫
M

(
h−1LΩh

)
|Ψ|2e−uvg −

∫
M

∣∣∣�Ψ∣∣∣2|Ψ|2e−uvg,

(3.2)
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where ∇�ϕX ϕ is the spinor field defined in [6] by ∇�ϕX ϕ := ∇Xϕ + �ϕ(X) · ϕ, and where we
used |Φ|2vg = eu|Ψ|2vg and Se2u − cn|Ω|g = h−1LΩh (see [5]). Using D ϕ = λe−uϕ and
〈∇(ηiρa,ε) ·ϕ, ϕ〉 ∈ C∞(M, iR), we calculate

∥∥∥DΦ
∥∥∥2

g
=
∥∥∇(ηiρa,ε) · ϕ∥∥2

g + λ
2
∫
M

η2i ρ
2
a,εe

−(n+2)u∣∣ϕ∣∣2vg. (3.3)

Inserting (3.3) and ‖∇�Φ

Φ‖2
g

� 0 in the above inequality, we get

∥∥∇(ηiρa,ε) · ϕ∥∥2
g ≥

1
4

∫
M

(
h−1LΩh

)
|Ψ|2e−uvg +

∫
M

∣∣∣�Ψ
∣∣∣2|Ψ|2e−uvg − λ2

∫
M

η2i ρ
2
a,ε

∣∣ϕ∣∣2e−(n+2)uvg.
(3.4)

Moreover, we have ‖∇(ηiρa,ε) · ϕ‖2g =
∫
M |∇(ηiρa,ε) · ψ|2e−uvg . Thus, with eu = |ψ|2/(n−1) the

above inequality reads

∫
M

∣∣∇(ηiρa,ε)∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg ≥ 1
4

∫
M

ηiρa,ε
∣∣ψ∣∣(n−2)/(n−1)LΩ

(
ηiρa,ε

∣∣ψ∣∣(n−2)/(n−1))vg

− λ2
∫
M

η2i ρ
2
a,ε

∣∣ψ∣∣2((n−2)/(n−1))vg

− n − 1
n − 2

∫
M

∣∣∇(ηiρa,ε)∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg

+
∫
M

|�ψ |2∣∣ψ∣∣2((n−2)/(n−1))η2i ρ2a,εvg.

(3.5)

Hence, we obtain

2n − 3
n − 2

∫
M

∣∣∇(ηiρa,ε)∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg ≥
(
μ1

4
+ inf

M
|�ψ |2 − λ2

)∫
M

η2i ρ
2
a,ε

∣∣ψ∣∣2((n−2)/(n−1))vg,
(3.6)

where μ1 is the infimum of the spectrum of the perturbed conformal Laplacian. With
|ηi∇ρa,ε + ρa,ε∇ηi|2 ≤ 2η2i |∇ρa,ε|2 + 2ρ2a,ε|∇ηi|2, we have

k

∫
M

(
η2i
∣∣∇ρa,ε∣∣2 + ρ2a,ε∣∣∇ηi∣∣2

)∣∣ψ∣∣2((n−2)/(n−1))vg ≥
(
μ1

4
+ inf

M
|�ψ |2 − λ2

)∥∥∥ηiρa,ε∣∣ψ∣∣(n−2)/(n−1)
∥∥∥2
,

(3.7)
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where k = 2((2n − 3)/(n − 2)). Next, we examine the limits when a goes to zero. Recall
that Υ ∩ B2i(p) is bounded, closed (n − 2)-C∞-rectifiable and has still locally finite (n − 2)-
dimensional Hausdorff measure. For fixed i, we estimate

∫
M

∣∣∇ρa,ε∣∣2η2i ∣∣ψ∣∣2((n−2)/(n−1))vg ≤ sup
B2i(p)

∣∣ψ∣∣2((n−2)/(n−1))
∫
B2i(p)

∣∣∇ρa,ε∣∣2vg. (3.8)

Furthermore, we set Bε,p := {x ∈ Bε | d(x, p) = d(x,Υ)} with Bε := {x ∈M | d(x,Υ) ≤ ε}. For
ε sufficiently small each Bε,p is star shaped. Moreover, there is an inclusion Bε,p ↪→ Bε(0) ⊂ R

2

via the normal exponential map. Then, we can calculate

∫
Bε∩B2i(p)

∣∣∇ρa,ε∣∣2vg ≤ voln−2
(
Υ ∩ B2i

(
p
))

sup
x∈Υ∩B2i(p)

∫
Bε,x\Baε,x

∣∣∇ρa,ε∣∣2vg ′

≤ c voln−2
(
Υ ∩ B2i

(
p
)) ∫

Bε(0)\Baε(0)

∣∣∇ρa,ε∣∣2vgE

≤ c′
∫ε

aε

δ2

r
dr = −c′δ2 lna = c′δ −→ 0 for a −→ 0,

(3.9)

where voln−2 denotes the (n − 2)-dimensional volume and g ′ = g|Bε,p . The positive constants
c and c′ arise from voln−2(Υ ∩ B2i(p)) and the comparison of vg ′ with the volume element of
the Euclidean metric. Furthermore, for any compact set K ⊂ M and any positive function f
it holds ρ2a,εf ↗ f , and thus by the monotone convergence theorem, we obtain when a → 0,

∫
K

ρ2a,εfvg −→
∫
K

fvg. (3.10)

When applied to the functions ρ2a,ε|∇ηi|2|ψ|2((n−2)/(n−1)), with K = B2i(p), we get

∫
B2i(p)

ρ2a,ε
∣∣∇ηi∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg −→

∫
B2i(p)

∣∣∇ηi∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg, (3.11)

as a → 0 and thus,

k

∫
M

∣∣∇ηi∣∣2∣∣ψ∣∣2((n−2)/(n−1))vg ≥
(
μ1

4
+ inf

M
|�ψ |2 − λ2

)∫
M

η2i
∣∣ψ∣∣2((n−2)/(n−1))vg. (3.12)

Next, we have to study the limit when i → ∞: Since M has finite volume and ‖ψ‖ = 1,
the Hölder inequality ensures that

∫
M |ψ|2((n−2)/(n−1))vg is bounded. With |∇ηi| ≤ 4/i, we
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get the result. Equality is attained if and only if ‖∇�Φ

Φ‖2
g
→ 0 for i → ∞, a → 0 and

Ω · ψ = i(cn/2)|Ω|gψ. But we have

0←−
∥∥∥∥∇�

Φ

Φ
∥∥∥∥
2

g

=
∥∥∥∥ηiρa,ε∇�

Φ

ϕ +∇(ηiρa,ε) · ϕ
∥∥∥∥
g

≥
∥∥∥∥ηiρa,ε∇�

ϕ

ϕ

∥∥∥∥
g

− ∥∥∇(ηiρa,ε) · ϕ∥∥g.
(3.13)

Since ‖∇(ηiρa,ε) ·ϕ‖g → 0, we conclude that ∇�
ϕ

ϕ has to vanish onM \ Υ.

Remark 3.1. By the Cauchy-Schwarz inequality, we have

|�ψ |2 � (tr(�ψ))2

n
=
λ2

n
, (3.14)

where tr denotes the trace of �ψ . Hence, the Hijazi type (1.6) can be derived. Equality is
achieved if and only if the eigenspinor associated with the first eigenvalue λ1 is a Spinc Killing
spinor. In fact, if equality holds then λ2 = (n/4(n−1))μ1 = (1/4)μ1+|�ψ |2 and equality in (3.14)
is satisfied. Hence, it is easy to check that

Tψ
(
ei, ej

)
= 0 for i /= j, Tψ(ei, ei) = ±λ

n
. (3.15)

Finally, �ψ(X) = ±(λ/n)X and �ϕ(X) = e−u�ψ(X) = ±(λ/n)e−uX. By (1.8) we get that ϕ is a
generalized Killing Spinc spinor and hence a Killing Spinc spinor for n � 4 [1, Theorem 1.1].
The function e−u is then constant and ψ is a Killing Spinc spinor. For n = 3, we follow the
same proof as in [1]. First we suppose that λ1 /= 0, because if λ1 = 0, the result is trivial. We
consider the Killing vector ξ defined by

i g
(
ξ, X

)
=
〈
X ·ϕ, ϕ〉g for every X ∈ Γ(TM). (3.16)

In [1], it is shown that dξ = 2λ1e−u(∗ ξ),∇|ξ|2 = 0 and ξ ·ϕ = i|ξ|2ϕ, where ∗ is the Hodge
operator defined on differential forms. Since ∗ ξ(ξ, ·) = 0, the 2-form Ω can be written Ω =
Fξ + ξ ∧ α, where α is a real 1-form and F a function. We have [1]

Ω
(
ξ, ·

)
=
∣∣∣ξ∣∣∣2α(·) = −4λ1d(e−u)(·),

Ω ·ϕ = −iFϕ − i
∣∣∣ξ∣∣∣2α ·ϕ.

(3.17)

But equality in (1.1) is achieved so Ω ·ϕ = i(cn/2)|Ω|gϕ, which implies that Ω ·ϕ is collinear
to ϕ and hence α ·ϕ is collinear to ϕ. Moreover, d(e−u)(ξ) = −(1/4λ1)Ω(ξ, ξ) = 0 so α(ξ) = 0.
It is easy to check that 〈α ·ϕ, ϕ〉g = 0 which gives α ·ϕ ⊥ ϕ. Because of α ·ϕ ⊥ ϕ and α ·ϕ is
collinear to ϕ, we have α ·ϕ = 0 and finally α = 0. Using (3.17), we obtain d(e−u) = 0, that is,
e−u is constant, hence ϕ is a Killing Spinc spinor and finally ψ is also a Spinc Killing spinor.
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Proof of Theorem 1.1. The proof of Theorem 1.1 is similar to Theorem 1.2. It suffices to take
g = g, that is, eu = 1. The Friedrich type (1.1) is obtained from the Hijazi type (1.6).

Next, we want to prove Theorem 1.3 using the refined Kato inequality.

Proof of Theorem 1.3. Wemay assume vol(M,g) = 1. If λ is in the essential spectrum ofD, then
0 is in the essential spectrum of D − λ and of (D − λ)2. Thus, there is a sequence ψi ∈ Γc(ΣM)
such that ‖(D − λ)2ψi‖ → 0 and ‖(D − λ)ψi‖ → 0, while ‖ψi‖ = 1. We may assume that
|ψi| ∈ C∞c (M). That can always be achieved by a small perturbation. Now let, 1/2 ≤ β ≤ 1.
Then |ψi|β ∈ H2

1(M). First, we will show that the sequence ‖d(|ψi|β)‖ is bounded: by the
Cauchy-Schwarz inequality, we have

∣∣∣∣∣
∫
|ψi|/= 0

∣∣ψi∣∣2β−2
〈
(D − λ)2ψi, ψi

〉
vg

∣∣∣∣∣ ≤
∥∥∥∣∣ψi∣∣2β−1

∥∥∥
{|ψi|/= 0}

∥∥∥(D − λ)2ψi
∥∥∥

≤ ∥∥ψi∥∥2β−1∥∥∥(D − λ)2ψi
∥∥∥

=
∥∥∥(D − λ)2ψi

∥∥∥.

(3.18)

Using (2.3) and the Schrödinger-Lichnerowicz type (2.7), we obtain

∥∥∥(D − λ)2ψi
∥∥∥ ≥

∫
|ψi|/= 0

∣∣ψi∣∣2β−2
∣∣∣∇λψi

∣∣∣2vg + 2
(
β − 1)

∫
|ψi|/= 0

∣∣ψi∣∣2β−3
〈
d
∣∣ψi∣∣ · ψi,∇λψi

〉
vg

+
∫(

S

4
− cn

4
|Ω| − n − 1

n
λ2
)∣∣ψi∣∣2βvg − 2n − 1

n
λ
∥∥∥∣∣ψi∣∣2β−1

∥∥∥
{|ψi|/= 0}

∥∥(D − λ)ψi∥∥.
(3.19)

The Cauchy-Schwarz inequality and the refined Kato (2.12) for the connection ∇λ imply

∫
|ψi|/= 0

∣∣ψi∣∣2β−2
∣∣∣∇λψi

∣∣∣2vg + 2
(
β − 1)

∫
|ψi|/= 0

∣∣ψi∣∣2β−3
〈
d
∣∣ψi∣∣ · ψi,∇λψi

〉
vg

≥ (
2β − 1)

∫
|ψi|/= 0

∣∣ψi∣∣2β−2∣∣d(∣∣ψi∣∣)∣∣2vg =
(
2β − 1) 1

β2

∫
|ψi|/= 0

∣∣∣d(∣∣ψi∣∣β
)∣∣∣2vg.

(3.20)

Hence, we have

∥∥∥(D − λ)2ψi
∥∥∥ ≥ (

2β − 1) 1
β2

∫
|ψi|/= 0

∣∣∣d(∣∣ψi∣∣β
)∣∣∣2vg +

∫(
S

4
− cn

4
|Ω| − n − 1

n
λ2
)∣∣ψi∣∣2βvg

− 2n − 1
n

λ
∥∥(D − λ)ψi∥∥.

(3.21)
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Since S−cn|Ω| is bounded from below,
∫
(S−cn|Ω|)|ψi|2βvg ≥ inf(S−cn|Ω|) ‖ψi‖2β2β ≥ min{inf(S−

cn|Ω|), 0} is also bounded. Thus, with ‖(D − λ)ψi‖ → 0, we see that ‖d|ψi|β‖ is also bounded.
Next, we fix α = (n − 2)/(n − 1) and obtain

μ1

4
− n − 1

n
λ2 ≤

(
μ1

4
− n − 1

n
λ2
)∥∥∣∣ψi∣∣α∥∥2

≤ 1
4

∫ ∣∣ψi∣∣αLΩ∣∣ψi∣∣αvg − n − 1
n

λ2
∥∥∣∣ψi∣∣α∥∥2

=
∫ ∣∣ψi∣∣2((n−2)/(n−1))−2

[
n

n − 1
∣∣d(∣∣ψi∣∣)∣∣2 + 1

2
d∗d

(∣∣ψi∣∣2
)

+
(
S

4
− cn

4
|Ω| − n − 1

n
λ2
)∣∣ψi∣∣2

]
vg,

(3.22)

where we used the definition of μ1 as the infimum of the spectrum of LΩ and |ψi|αd∗d(|ψi|α) =
(α/2)|ψi|2α−2d∗d(|ψi|2) − α(α − 2)|ψi|2α−2|d(|ψi|)|2. Next, using the following:

1
2
d∗d

〈
ψi, ψi

〉
�

〈
D2ψi, ψi

〉
− 1
4
(S − cn|Ω|)

∣∣ψi∣∣2 − ∣∣∇ψi∣∣2,
∣∣∣∇λψi

∣∣∣2 = ∣∣∇ψi∣∣2 − 2λ
n
Re

〈
(D − λ)ψi, ψi

〉 − λ2
n

∣∣ψi∣∣2,
(3.23)

we have

μ1

4
− n − 1

n
λ2 ≤

∫ ∣∣ψi∣∣2((n−2)/(n−1))−2
(

n

n − 1
∣∣d(∣∣ψi∣∣)∣∣2 −

∣∣∣∇λψi
∣∣∣2
)
vg

+
∫ ∣∣ψi∣∣2((n−2)/(n−1))−2

〈
(D − λ)2ψi, ψi

〉
vg

+
∫
2
(
1 − 1

n

)
λ
∣∣ψi∣∣2((n−2)/(n−1))−2 Re〈(D − λ)ψi, ψi〉vg.

(3.24)

The limit of the last two summands vanish since

∣∣∣∣
∫ ∣∣ψi∣∣2((n−2)/(n−1))−2

〈
(D − λ)2ψi, ψi

〉
vg

∣∣∣∣ ≤
∥∥∥(D − λ)2ψi

∥∥∥
∥∥∥∣∣ψi∣∣(n−3)/(n−1)

∥∥∥ −→ 0,

∣∣∣∣
∫ ∣∣ψi∣∣2((n−2)/(n−1))−2 Re〈(D − λ)ψi, ψi〉vg

∣∣∣∣ ≤
∥∥(D − λ)ψi∥∥

∥∥∥∣∣ψi∣∣(n−3)/(n−1)
∥∥∥ −→ 0.

(3.25)

For the other summand, we use the Kato type (2.13)

∣∣d(∣∣ψ∣∣)∣∣ ≤ ∣∣(D − λ)ψ∣∣ + k∣∣∣∇λψ∣∣∣, (3.26)
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which holds outside the zero set of ψ, and where k =
√
(n − 1)/n. Thus, for n ≥ 5, we can

estimate
∫ ∣∣ψi∣∣2α−2

(
n

n − 1
∣∣d(∣∣ψi∣∣)∣∣2 −

∣∣∣∇λψi
∣∣∣2
)
vg

=
∫ ∣∣ψi∣∣2α−2

(
k−1

∣∣d(∣∣ψi∣∣)∣∣ −
∣∣∣∇λψi

∣∣∣)(k−1∣∣d(∣∣ψi∣∣)∣∣ +
∣∣∣∇λψi

∣∣∣)vg

≤ k−1
∫
{|d(|ψi|)|≥k|∇λψi|}

∣∣ψi∣∣2α−2∣∣(D − λ)ψi∣∣
(
k−1

∣∣d(∣∣ψi∣∣)∣∣ +
∣∣∣∇λψi

∣∣∣)vg

≤ 2k−2
∫
{|d(|ψi|)|≥k|∇λψi|}

∣∣ψi∣∣2α−2∣∣(D − λ)ψi∣∣∣∣d(∣∣ψi∣∣)∣∣vg

≤ 2k−2
n − 1
n − 3

∥∥(D − λ)ψi∥∥
∥∥∥d(∣∣ψi∣∣(n−3)/(n−1)

) ∥∥∥.

(3.27)

For n ≥ 5, we have 1 ≥ (n − 3)/(n − 1) ≥ 1/2 and, thus, ‖d|ψi|(n−3)/(n−1)‖ is bounded. Together
with ‖(D − λ)ψi‖ → 0, we obtain the following: for all ε > 0, there is an i0 such that for all
i ≥ i0, we have

∫ ∣∣ψi∣∣2((n−2)/(n−1))−2
(

n

n − 1
∣∣d∣∣ψi∣∣∣∣2 −

∣∣∣∇λψi
∣∣∣2
)
vg ≤ ε. (3.28)

Hence, we have μ1/4 ≤ ((n − 1)/n)λ2.
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