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We show that a “dynamical” interaction for arbitrary spin can be constructed in a straightforward
way if gauge and Lorentz transformations are placed on the same foundation. As Lorentz
transformations act on space-time coordinates, gauge transformations are applied to the gauge
field. Placing these two transformations on the same ground means that all quantized field like
spin-1/2 and spin-3/2 spinors are functions not only of the coordinates but also of the gauge
field components. As a consequence, on this stage the (electromagnetic) gauge field has to be
considered as classical field. Therefore, standard quantum field theory cannot be applied. Despite
this inconvenience, such a common ground is consistent with an old dream of physicists almost a
century ago. Our approach, therefore, indicates a straightforward way to realize this dream.

1. Introduction

After the formulation of general relativity which explained fources on a geometric ground,
physicists and mathematicians tried to incorporate the electromagnetic interaction into this
geometric picture. Weyl claimed that the action integral of general relativity is invariant not
only under space-time Lorentz transformations but also under the gauge transformation,
if this is incorporated consistently [1]. However, the theories at that time were not
ready to incorporate this view. Nowadays, we see more clearly that all physical variables
(like position, momentum, etc.), quantum wave functions, and fields transform as finite-
dimensional representations of the Lorentz group. The reason is that interactions between
fundamental particles (as irreducible representations of the Poincaré group) are most
conveniently formulated in terms of field operators (i.e., finite-dimensional representations
of the Lorentz group) if the general requirements like covariance, causality, and so forth are
to be incorporated in a consistent way. The relation between these two groups and their
representations is given by the Lorentz-Poincaré connection [2]. In this paper we show that if
gauge transformation is put on the same foundation, the resulting nonminimal “dynamical”
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interaction obeys all necessary symmetries which for higher spins are broken if the interaction
is introduced by the usual minimal coupling.

In Section 2 we explain details of the Poincaré group which are necessary in the
following. In Section 3 we deal with linear wave equations as objects to the Lorentz
transformation. In Section 4 we introduce the external electromagnetic field by a nonsingular
transformation. In Section 5 we specify the nonlinear transformation by the claim of gauge
invariance of the Poincaré algebra. Finally, in Section 6 we give our conclusions.

2. The Poincaré Group

Relativistic field theories are based on the invariance under the Poincaré group P1,3 (known
also as inhomogeneous Lorentz group IL [2–11]). This group is obtained by combining
Lorentz transformations Λ and space-time translations aT ,

(a,Λ) ≡ aTΛ : E1,3 � xμ −→ Λμ
νx

ν + aμ ∈ E1,3. (2.1)

The group’s composition law (a1,Λ1)(a2,Λ2) = (a1 + Λ1a2,Λ1Λ2) generates the semidirect
structure of P1,3,

P1,3 = T1,3 � L, (2.2)

where T1,3 is the abelian group of space-time translations (i.e., the additive group R
4) and

L = {Λ : detΛ = +1,Λ0
0 ≥ 1} is the proper orthochronous Lorentz group acting on the

Minkowski space E1,3 with metric

ημν = diag(1,−1,−1,−1). (2.3)

The condition of the metric to be invariant under Lorentz transformations Λ takes the form

Λμ
ρημνΛν

σ = ηρσ. (2.4)

Under the Lorentz transformation Λ ∈ L the transformation of the covariant functions
ψ according to a representation τ(Λ) of the Lorentz group [3–16] is determined by the
commutative diagram

ψ : x ∈ E1,3

τ Λ

ψ x

T

τ ψ : Λx T ψ x

(2.5)

That is,

T(Λ)ψ(x) =
(
τ(Λ)ψ

)
(Λx) ≡ ψΛ(Λx). (2.6)

The map T : Λ → T(Λ) is a finite-dimensional representation of L. If we parametrize the
element Λ ∈ L by Λ(ω) = exp(−(1/2)ωμνe

μν) where the Lorentz generators are given by

(
eμν

)ρ
σ
= −ηρμηνσ + ημση

ρ
ν (2.7)
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and ωμν = −ωνμ are six independent parameters, the parametrization of T reads

T(Λ(ω)) = exp
(
− i
2
ωμνs

μν

)
. (2.8)

The Lorentz groupL is noncompact. As a consequence, all unitary representations are infinite
dimensional. In order to avoid this, we introduce the concept ofH-unitarity (see, e.g., [9] and
references therein). A finite representation T is calledH-unitary if there exists a nonsingular
Hermitian matrixH = H† so that

T†(Λ)H = HT−1(Λ)⇐⇒ s†μνH = Hsμν. (2.9)

Notice that anH-unitary metric is always indefinite, so that the inner product 〈, 〉 generated
byH is sesquilinear sharing the hermiticity condition 〈ψ, ϕ〉 = 〈ϕ, ψ〉∗. The most famous case
ofH-unitarity is given in the Dirac theory of spin-1/2 particles whereH = γ0.

For an operator O [17, 18] acting on the ψ-space of covariant functions (we have to
impose the action on covariant functions because in case of higher spins the relations between
operators we obtain are valid only as weak conditions) the transformation τ(Λ) in (2.6) is a
covariant transformation if the diagram

Oψ : x

τ Λ

Oψ x

T

τ Oψ : Λx T Oψ x

(2.10)

is commutative, that is,

(
τ(Λ)Oτ−1(Λ)

)
(Λx)

(
τ(Λ)ψ

)
(Λx) = T(Λ)O(x)ψ(x). (2.11)

Using (2.6) we obtain

(
τ(Λ)Oτ−1(Λ)

)
(Λx)T(Λ)ψ(x) = T(Λ)O(x)ψ(x). (2.12)

Notice that the covariance of the transformation embodies only the property of equivalence
of reference systems. The covariant operator O is invariant under transformation (2.6) if in
addition τ(Λ)Oτ−1(Λ) = O. As a consequence we obtain the commutative diagram

Oψ : x

τ Λ

Oψ x

T

O τ ψ : Λx T Oψ x

(2.13)

or O(Λx)T(Λ)ψ(x) = T(Λ)O(x)ψ(x)which means

O(Λx)T(Λ) = T(Λ)O(x) (2.14)
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on the ψ-space. The invariance is a symmetry of the physical system and implies the
conservation of currents. In particular, the symmetry transformations leave the equations of
motion form-invariant.

While the Lorentz transformation T(Λ) changes the wave function ψ itself as well as
the argument of this function (cf. (2.6)), the proper Lorentz transformation τ(Λ) causes a
change of the wave function only. On the ground of infinitesimal transformations, this change
is performed by the substantial variation. Starting from an arbitrary infinitesimal coordinate
transformation Λ(δω) : xμ → xμ + δωμνxν, the substantial variation is given by [13]

δ0ψ(x) ≡ ψ ′(x) − ψ(x) = −
i

2
δωρσMρσψ(x), (2.15)

whereMρσ = �ρσ + sρσ , �ρσ = i(xρ∂σ − xσ∂ρ). The corresponding finite proper Lorentz trans-
formation can be written as

τ(Λ(ω)) = exp
(
− i
2
ωμνM

μν

)
, (2.16)

and the multiplicative structure of the group generates the adjoint action

Adτ(Λ) :Mμν −→ τ−1(Λ)Mμντ(Λ) = Λρ
μΛσ

νMρσ. (2.17)

Due to (2.9) the generators sρσ fulfill s†ρσH = Hsρσ . They depend on the spin of the field but
not on the coordinates xμ. Therefore, we have [�μν, sρσ] = 0. If a generic element of the
translation group is written as

exp
(
+iaμPμ

)
, (2.18)

the commutator relations of the Lie algebra are given by

[
Mμν,Mρσ

]
= i

(
ημσMνρ + ηνρMμσ − ημρMνσ − ηνσMμρ

)
,

[
Mμν, Pρ

]
= i

(
ηνρPμ − ημρPν

)
,

[
Pμ, Pν

]
= 0.

(2.19)

The Casimir operators of the algebra are P 2 = PμPμ andW2 =WμW
μ, where

Wμ = +
1
2
εμνρσMνρPσ (2.20)

is the Pauli-Lubanski pseudovector, [Pμ,Wν] = 0. In coordinate representation we have Pμ =
i∂μ, and the finite Poincaré transformation has the form

τ(a,Λ) : ψ(x) −→
(
τ(a,Λ)ψ

)
(x) = T(Λ)ψ

(
Λ−1(x − a)

)
. (2.21)
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This relation constitutes the Lorentz–Poincaré connection [2]. While the representation T
generally generates a reducible representation of P1,3, the spectra of the Casimir operators
P 2 andW2 determine the mass and spin content of the system.

3. The Wave Equations

As an operator O in the above sense we consider the operator of the wave equation. The
Dirac-type wave equation we will consider has the form

D(∂)ψ(x) ≡
(
iβμ∂μ − ρ

)
ψ(x) = 0, (3.1)

where ψ is anN-component function, βμ(μ = 0, 1, 2, 3), and ρ areN×N matrices independent
of x. Following Bhabha’s conception [19], it is “. . .logical to assume that the fundamental
equations of the elementary particles must be first-order equations of the form (3.1) and that
all properties of the particles must be derivable from these without the use of any further
subsidiary conditions.”

The principle of relativity states that a change of the reference frame cannot have
implications for the motion of the system. This means that (3.1) is invariant under Lorentz
transformations. Equivalently, the Lorentz symmetry of the systemmeans the covariance and
form-invariance of (3.1) under the transformation in (2.6), that is, the transformed wave
equation is equivalent to the old one. Therefore, we require that every solution ψΛ(Λx) of
the transformed equation

DΛ(Λ∂)ψΛ(Λx) = 0 (3.2)

can be obtained as Lorentz transformation of the solution ψ(x) of (3.1) in the original
system and that the solutions in the original and transformed systems are in one-to-one
correspondence. The explicit form of the covariance follows from (2.11),

(
τ(Λ)Dτ−1(Λ)

)
(Λ∂)

(
τ(Λ)ψ

)
(Λx) = T(Λ)D(∂)ψ(x) = 0, (3.3)

and leads to the explicit Lorentz transformations

βΛμ = Λμ
ρT(Λ)βρT−1(Λ), ρΛ = T(Λ)ρT−1(Λ). (3.4)

The Lorentz invariance is given by the substitution

D(∂)ψ(x) = 0
(2.6)−→ D(∂)ψΛ(x) = 0. (3.5)

or

T−1(Λ)βμT(Λ) = Λμ
ρβ

ρ, T−1(Λ)ρT(Λ) = ρ. (3.6)

The difference of the original and transformed wave equation is given by the wave equation
where the wave function ψ is replaced by the substantial variation δ0ψ, D(∂)δ0ψ(x) = 0.
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As a consequence we obtain [D,Mρσ] = 0 or

[
βμ, sρσ

]
= i

(
ημρβσ − ημσβρ

)
,

[
ρ, sρσ

]
= 0. (3.7)

An excellent discussion of such matrices β can be found in [13, 19–23]. The hermiticity of the
representation T in (2.9) implies the hermiticity of (3.1). Including a still unspecified Hermi-

tian matrixH the hermiticity condition reads D(∂)†H != (D(∂)H)† = HD(−∂) or

βμ†H = Hβμ, ρH = Hρ. (3.8)

Writing ψ = ψ†H, one obtains the adjoint equation

ψD
(
−
←
∂
)
= ψ

(
−iβμ

←
∂μ − ρ

)
=
(
HD(∂)ψ

)† = 0. (3.9)

4. Introduction of the External Field

It may be reasonable to introduce an external field directly into the Poincaré algebra which
can be applied to classically understand the elementary particle. To do so one has to
transform the generators of the Poincaré group to be dependent on the external field in
such a way that the new, field-dependent generators obey the commutation relations (2.19).
As it was proposed by Charkrabarti [24] and Beers and Nickle [25], the simplest way to
build such a field-dependent algebra is to introduce the external field A by a nonsingular
transformation

AdV(A) : p1,3 −→ pd1,3(A) = V(A)p1,3V−1(A). (4.1)

In case of a particular external electromagnetic field A, the external field can be introduced
by using an evolution operator V(A), called the “dynamical” representation [26, 27]. By
analogy with the free-particle case one can realize this representation on the solution space of
relativistically invariant equations. Expressing the operators explicitly in terms of free-field
operators, one obtains the “dynamical” interaction. Applying, for instance, the operator
V(A) to (3.1) one obtains

V(A) : D(∂)ψ(x) = 0 −→ Dd(∂,A)Ψ(x,A) = 0, (4.2)

where Dd(∂,A) = V(A)D(∂)V−1(A) and

Ψ(x,A) = V(A)ψ(x) (4.3)

(here and in the following we will skip the argument x for Ψ and the argument ∂ for Dd).
Having introduced the external gauge field A, we introduce gauge covariance on the same
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foundation as Lorentz covariance in (2.6), that is, by claiming that the diagram

Ψ : A

g λ λ

A

G λ

Ψλ : Aλ A ∂λ G λ A

(4.4)

is commutative, that is,

Ψλ(A + ∂λ) = G(λ)Ψ(A). (4.5)

According to (2.13), the “dynamical” interaction Dd is gauge invariant under the gauge
transformation A → Aλ ≡ A + ∂λ if the diagram

DdΨ : A

λ

Dd A A

G λ

DdΨλ : A ∂λ G λ Dd A A

(4.6)

is commutative, that is,

Dd(A + ∂λ)Ψλ(A + ∂λ) = G(λ)Dd(A)Ψ(A). (4.7)

Together with (4.5)we obtain Dd(A + ∂λ)G(λ)Ψ(A) = G(λ)Dd(A)Ψ(A) or

Dd(A + ∂λ)G(λ) = G(λ)Dd(A) (4.8)

on the ψ-space. Note that up to now we have not specified the explicit shape of the
finite-dimensional representation G : λ → G(λ) of the gauge group.

5. Specifying V(A) by Gauge Invariance

At this point we specify V(A) by two claims. Due to gauge symmetry as a fundamental prin-
ciple the dynamical transformation V has to be compatible with the gauge transformation.
Therefore, we first claim the gauge invariance in (4.8) not only for the operatorDd but for the
whole dynamical Poincaré algebra pd1,3(A),

pd1,3(A + ∂λ)G(λ) = G(λ)pd1,3(A). (5.1)

By using (4.1) and multiplying by G(λ)−1 from the right we obtain

V(A + ∂λ)p1,3V−1(A + ∂λ) = G(λ)V(A)p1,3(G(λ)V(A))−1. (5.2)
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This means that the first claim is fulfilled if

V (A + ∂λ) = G(λ)V (A). (5.3)

On the other hand, with (4.3) and (4.5)we obtain

Vλ(A + ∂λ)ψ(x) = G(λ)V(A)ψ(x) (5.4)

and, therefore, Vλ = V on the ψ-space. To summarize, by the first claim the gauge symmetry
determines the gauge properties of V(A) and, therefore, of the interacting field Ψ(A).

The second claim is that the dynamical transformation operator V(A) should be of
Lorentz type, that is, for the generators sμν of the Poincaré algebra p1,3 one has

V(A)sμνV−1(A) = V μ
ρ (A)Vνσ(A)sρσ (5.5)

which is a local extension of (2.17). V (A) = V (x,A) is the local Lorentz transformation
generated by the external field A and obeying

Vμρ(A)V μ
σ (A) = Vρμ(A)V μ

σ (A) = ηρσ. (5.6)

If such a local Lorentz transformation exists, the problem is solved. Therefore, in the following
we make the attempt to find explicit realizations of the local Lorentz transformation Vμν(A).
It is hard to find the Lorentz transformation Vμν(A) in general. However, as first shown by
Taub [28], in the case of a plane-wave field we obtain

Vμν(A) = ημν −
q

kP
Gμν −

q2

2k2P
A2kμkν, (5.7)

where q is the electric charge of the particle and Gμν = kμAν − kνAμ. The plane-wave field
Aμ = Aμ(ξ), ξ = kx is characterized by its lightlike propagation vector kμ, k2 = 0, and its
polarization vector aμ such that a2 = −1 and ka = 0. The operator kP ≡ kμP

μ commutes
with any other and has a special role in the theory. For particles with nonzero mass one
has kμPμ /= 0. Therefore, for the plane wave the differential operator 1/kP is local and well
defined for the plane-wave solution ψP of the Klein-Gordon equation. In all other cases, 1/kP
is assumed to exist.

Note that the plane-wave solution of the Dirac equation was found more than 70 years
ago by Wolkow [29] and extended later on to a field of two beams of electromagnetic radia-
tion [30, 31]. However, these approaches did not make use of the nonsingular transformation
V(A). The realization of V(A) can be achieved by the nonsingular transformation V(A) =
V0(A)Vs(A), where

V0(A) = exp
{
−i

∫
dξ

2kP

(
2q(AP) − q2A2

)}
,

Vs(A) = exp
{
−
iq

2kP
Gμνs

μν

}
.

(5.8)
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It has to be mentioned that the evolution operator V(A) may be chosen to be H-unitary
according to the representation T in (2.9), that is,

V†(A)H = HV−1(A). (5.9)

Considering the nonsingular transformation of Dirac-type wave equation

V(A) :
(
βμPμ −m

)
ψ = 0 −→

(
Γμ(A)Πμ(A) −m

)
Ψ(A) = 0, (5.10)

with the help of (5.8) the “dynamical” counterparts to the operator Pμ = i∂μ can be calculated
to be Πμ(A) = V(A)PμV−1(A),

Pμ −→ Πμ(A) = Pμ + kμ
q

2kP

(
qA2 − 2AP −�F

)
, (5.11)

P 2 −→ Π2(A) =
(
P − qA

)2 − q�F (5.12)

(�F ≡ sμνFμν)while the “dynamical” counterpart to βμ is given by Γμ(A) = V(A)βμV−1(A),

Γμ(A) = V μ
ν (A)βν = βμ −

q

kP

(
q

2kP
A2kμkν +Gμν

)
βν. (5.13)

In terms ofΠμ(A) and Γμ(A) we have

Dd(A)Ψ(A) =
(
Γμ(A)Πμ(A) −m

)
Ψ(A) = 0. (5.14)

However, expressed in terms of Dμ = Pμ − qAμ and βμ, we obtain

Dd(A)Ψ(A) ≡
(
βμDμ −

q

2kP
�k�F −m

)
Ψ(A) = 0, (5.15)

where �k ≡ βμkμ. This interaction is nonminimal. However, as we have shown before, it is
determined completely by the claim of gauge invariance.

Note that due to the antimutation of the γ-matrices, in the spin-1/2 case the dynamical
interaction in (5.15) reduces to the minimal coupling. However, in order to obtain the correct
values of the gyromagnetic factor, in some cases the (phenomenological) Pauli term γμγνF

μν

has to be added by hand to the minimal coupling of the Dirac equation (see also [32, page
109]). In case of plane waves the exact solution of this (supplemented) Dirac equation as
given by Charkrabarti [24] obeys the same gauge invariance conditionΨ(A+∂λ) = G(λ)Ψ(A).
This property is found also in the book by Fried [33].

Finally, as a consequence of the explicit form (5.8), the associated transformation of the
evolution operator V(A) under the local gauge transformation for the plane wave field,

Aμ(ξ) −→ Aμ(ξ) + ∂μλ(ξ), (5.16)
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becomes

V(A) −→ V(A + ∂λ) = e−iqλV(A). (5.17)

As an example of higher spin, the spin-3/2 case is considered in detail in [34]. As it turns
out, the Rarita-Schwinger spin-3/2 equation on the presence of a “dynamical” interaction is
algebraically consistent and causal.

6. Conclusions

As a consequence of gauge invariance and Lorentz type of V(A)we obtain

(1) the invariance of the wave function under gauge transformations,

Ψλ(A + ∂λ) = Vλ(A + ∂λ)ψ = V(A + ∂λ)ψ = Ψ(A + ∂λ), (6.1)

that is, Ψλ = Ψ,

(2) the explicit shape of G(λ) in (4.5),

Ψλ(A + ∂λ) = V(A + ∂λ)ψ = e−iqλV(A)ψ = e−iqλΨ(A), (6.2)

that is, G(λ) = e−iqλ,

(3) the invariance of Dd under gauge transformations from (4.7) and

Dd(A + ∂λ)Ψλ(A + ∂λ) = Dd(A + ∂λ)e−iqλΨ(A), (6.3)

that is, Dd(A + ∂λ)G(λ) = G(λ)Dd(A) on the ψ-space,

(4) the “dynamical” interaction for any spin as given by

Dd(A)Ψ(A) =
(
βμDμ −

q

2kP
�k�F −m

)
Ψ(A) = 0 (6.4)

being nonminimal but completely determined by gauge invariance, thereby
causing Poincaré symmetry,

(5) as a consequence of (5.12), the gyromagnetic factor in the presence of a “dynamical”
interaction as being g = 2 for any spin [27].

Let us close again with Weyl In [1] he honestly confessed: “Die entscheidenden Folgerungen in
dieser Hinsicht verschanzen sich aber noch hinter einemWall mathematischer Schwierigkeiten, den ich
bislang nicht zu durchbrechen vermag.” (“However, the crucial consequences in this respect entrench
oneself still behind a bank of mathematical difficulties which up to now I am not able to penetrate.”)
We hope that our work breaks a small bay into this mathematical bank.
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[29] D.M.Wolkow, “Über eine Klasse von Lösungen der Diracschen Gleichung,” Zeitschrift für Physik, vol.
94, no. 3-4, pp. 250–260, 1935.

[30] N. D. Sen Gupta, “On the solution of the Dirac equation in the field of two beams of electromagnetic
radiation,” Zeitschrift für Physik, vol. 200, no. 1, pp. 13–19, 1967.

[31] M. Pardy, “Volkov solution for two laser beams and ITER,” International Journal of Theoretical Physics,
vol. 45, no. 3, pp. 647–659, 2006.

[32] J. J. Sakurai,Modern Quantum Mechanics, Addison-Wesley, Reading, Mass, USA, 1993.
[33] H.M. Fried, Basics of Functional Methods and Eikonal Models, Editions Frontières, Gif-sur-Yvette, France,

1990.
[34] R. Saar, S. Groote, H. Liivat, and I. Ots, ““Dynamical” interactions and gauge invariance,” http://

arxiv.org/abs/0908.3761.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Advances in

Mathematical Physics

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Combinatorics

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


