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We discuss how to obtain black hole quasinormal modes (QNMs) using the asymptotic iteration
method (AIM), initially developed to solve second-order ordinary differential equations. We
introduce the standard version of this method and present an improvement more suitable for
numerical implementation. We demonstrate that the AIM can be used to find radial QNMs for
Schwarzschild, Reissner-Nordström (RN), and Kerr black holes in a unified way. We discuss some
advantages of the AIM over the continued fractions method (CFM). This paper presents for the
first time the spin 0, 1/2 and 2QNMs of a Kerr black hole and the gravitational and electromagnetic
QNMs of the RN black hole calculated via the AIM and confirms results previously obtained
using the CFM. We also present some new results comparing the AIM to the WKBmethod. Finally
we emphasize that the AIM is well suited to higher-dimensional generalizations and we give an
example of doubly rotating black holes.

1. Introduction

The study of quasinormal modes (QNMs) of black holes is an old and well-established
subject, where the various frequencies are indicative of both the parameters of the black hole
and the type of emissions possible. Initially the calculation of these frequencies was done in a
purely numerical way, which requires selecting a value for the complex frequency, integrating
the differential equation, and checking whether the boundary conditions are satisfied. Note
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that in the following we will use the definition that QNMs are defined as solutions of the
perturbed field equations with boundary conditions:

ψ(x) −→
⎧
⎨

⎩

e−iωx, x −→ −∞,

eiωx, x −→ ∞,
(1.1)

for an e−iωt time dependence (which corresponds to ingoing waves at the horizon and
outgoing waves at infinity). Also note the boundary condition as x → ∞ does not apply to
asymptotically anti-de-Sitter spacetimes, where instead something like a Dirichlet boundary
condition is imposed, for example, see [1]. Since those conditions are not satisfied in general,
the complex frequency plane must be surveyed for discrete values that lead to QNMs. This
technique is time consuming and cumbersome, making it difficult to systematically survey
the QNMs for a wide range of parameter values. Following early work by Vishveshwara [2],
Chandrasekhar and Detweiler [3] pioneered this method for studying QNMs.

In order to improve on this, a few semianalytic analyses were also attempted. In one
approach, employed by Ferrari and Mashhoon et al. [4], the potential barrier in the effective
one-dimensional Schrödinger equation is replaced by a parameterized analytic potential
barrier function for which simple exact solutions are known. The overall shape approximates
that of the true black hole barrier, and the parameters of the barrier function are adjusted to fit
the height and curvature of the true barrier at the peak. The resulting estimates for the QNM
frequencies have been applied to the Schwarzschild, Reissner-Nordström, and Kerr black
holes, with agreement within a few percent with the numerical results of Chandrasekhar and
Detweiler in the Schwarzschild case [3], and with Gunter [5] in the Reissner-Nordström case.
However, as this method relies upon a specialized barrier function, there is no systematic way
to estimate the errors or to improve the accuracy.

The method by Leaver [6], which is a hybrid of the analytic and the numerical,
successfully generates QNM frequencies by making use of an analytic infinite-series
representation of the solutions, together with a numerical solution of an equation for the
QNM frequencies which involves, typically by applying a Frobenius series solution approach,
the use of continued fractions. This technique is known as the continued fraction method
(CFM).

Historically, another commonly applied technique is the WKB approximation [7–
9]. Even though it is based on an approximation, this approach is powerful as the WKB
approximation is known in many cases to be more accurate and can be carried to higher
orders, either as a means to improve accuracy or as a means to estimate the errors explicitly.
Also it allows a more systematic study of QNMs than has been possible using outright
numerical methods. The WKB approximation has since been extended to sixth order [10].

However, all of these approaches have their limitations, where in recent years a new
method has been developed which can be more efficient in some cases, called the asymptotic
iteration method (AIM). Previously this method was used to solve eigenvalue problems [11,
12] as a semi analytic technique for solving second-order homogeneous linear differential
equations. It has also been successfully shown by some of the current authors that the AIM is
an efficient and accurate technique for calculating QNMs [13].

As such, we will review the AIM as applied to a variety of black hole spacetimes,
making (where possible) comparisons with the results calculated by the WKB method and
the CFM á la Leaver [6]. Therefore, the structure of this paper will be as following: In Section 2
we will review the AIM and the improved method of Ciftci et al. [11, 12] (also see [14]),
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along with a discussion of how the QNM boundary conditions are ensured. Applications to
simple concrete examples, such as the harmonic oscillator and the Poschl-Teller potential, are
also provided. In Section 3 the case of Schwarzschild (A)dS black holes will be discussed,
developing the integer and half-spin equations. In Section 4 a review of the QNMs of the
Reissner-Nordström black holes will be made, with several frequencies calculated in the AIM
and compared with previous results. Section 5 will review the application of the AIM to Kerr
black holes for spin 0, 1/2, 2 fields. Section 6 will discuss the spin-zero QNMs for doubly
rotating black holes. We then summarize and conclude in Section 7.

2. The Asymptotic Iteration Method

2.1. The Method

To begin we will now review the idea behind the AIM, where we first consider the
homogeneous linear second-order differential equation for the function χ(x):

χ′′ = λ0(x)χ′ + s0(x)χ, (2.1)

where λ0(x) and s0(x) are functions in C∞(a, b). In order to find a general solution to this
equation, we rely on the symmetric structure of the right-hand side of (2.1) [11, 12]. If we
differentiate (2.1)with respect to x, we find that

χ′′′ = λ1(x)χ′ + s1(x)χ, (2.2)

where

λ1 = λ′0 + s0 + (λ0)
2, s1 = s′0 + s0λ0. (2.3)

Taking the second derivative of (2.1) we get

χ′′′′ = λ2(x)χ′ + s2(x)χ, (2.4)

where

λ2 = λ′1 + s1 + λ0λ1, s1 = s′0 + s0λ0. (2.5)

Iteratively, for the (n + 1)th and the (n + 2)th derivatives, n = 1, 2, . . ., we have

χ(n+1) = λn−1(x)χ′ + sn−1(x)χ, (2.6)

and thus bringing us to the crucial observation in the AIM that differentiating the pervious
equation n times with respect to x leaves a symmetric form for the right-hand side:

χ(n+2) = λn(x)χ′ + sn(x)χ, (2.7)

where

λn(x) = λ′n−1(x) + sn−1(x) + λ0(x)λn−1(x), sn(x) = s′n−1(x) + s0(x)λn−1(x). (2.8)
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For sufficiently large n the asymptotic aspect of the “method” is introduced, that is

sn(x)
λn(x)

=
sn−1(x)
λn−1(x)

≡ β(x), (2.9)

where the QNMs are obtained from the “quantization condition”:

δn = snλn−1 − sn−1λn = 0, (2.10)

which is equivalent to imposing a termination to the number of iterations [14]. From the ratio
of the (n + 1)th and the (n + 2)th derivatives, we have

d

dx
ln
(
χ(n+1)

)
=
χ(n+2)

χ(n+1)
=

λn
(
χ′ + (sn/λn)χ

)

λn−1
(
χ′ + (sn−1/λn−1)χ

) . (2.11)

From our asymptotic limit, this reduces to

d

dx
ln
(
χ(n+1)

)
=

λn
λn−1

, (2.12)

which yields

χ(n+1)(x) = C1 exp
(∫x λn(x′)

λn−1(x′)
dx′

)

= C1λn−1 exp
(∫x(

β + λ0
)
dx′

)

, (2.13)

where C1 is the integration constant and the right-hand side of (2.8) and the definition of β(x)
have been used. Substituting this into (2.6), we obtain the first-order differential equation:

χ′ + βχ = C1 exp
(∫x(

β + λ0
)
dx′

)

, (2.14)

which leads to the general solution:

χ(x) = exp
[

−
∫x

β
(
x′)dx′

](

C2 + C1

∫x

exp

{∫x′[
λ0

(
x′′) + 2β

(
x′′)]dx′′

}

dx′
)

. (2.15)

The integration constants, C1 and C2, can be determined by an appropriate choice of nor-
malisation. Note that for the generation of exact solutions C1 = 0.
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2.2. The Improved Method

Ciftci et al. [11, 12] were among the first to note that an unappealing feature of the recursion
relations in (2.8) is that at each iteration one must take the derivative of the s and λ terms
of the previous iteration. This can slow the numerical implementation of the AIM down
considerably and also lead to problems with numerical precision.

To circumvent these issues we developed an improved version of the AIM which
bypasses the need to take derivatives at each step [13]. This greatly improves both the
accuracy and speed of the method. We expand the λn and sn in a Taylor series around the
point at which the AIM is performed, ξ:

λn(ξ) =
∞∑

i=0

cin(x − ξ)i,

sn(ξ) =
∞∑

i=0

din(x − ξ)i,
(2.16)

where the cin and d
i
n are the ith Taylor coefficients of λn(ξ) and sn(ξ), respectively. Substituting

these expressions into (2.8) leads to a set of recursion relations for the coefficients:

cin = (i + 1)ci+1n−1 + d
i
n−1 +

i∑

k=0

ck0c
i−k
n−1,

din = (i + 1)di+1n−1 +
i∑

k=0

dk0c
i−k
n−1.

(2.17)

In terms of these coefficients the “quantization condition” equation (2.10) can be reexpressed
as

d0
nc

0
n−1 − d0

n−1c
0
n = 0, (2.18)

and thus we have reduced the AIM into a set of recursion relations which no longer require
derivative operators.

Observing that the right-hand side of (2.17) involves terms of order at most n − 1,
one can recurse these equations until only ci0 and d

i
0 terms remain (i.e., the coefficients of λ0

and s0 only). However, for large numbers of iterations, due to the large number of terms,
such expressions become impractical to compute. We avert this combinatorial problem by
beginning at the n = 0 stage and calculating the n+1 coefficients sequentially until the desired
number of recursions is reached. Since the quantisation condition only requires the i = 0 term,
at each iteration n we only need to determine coefficients with i < N − n, where N is the
maximum number of iterations to be performed. The QNMs that we calculate in this paper
will be determined using this improved AIM.
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2.3. Two Simple Examples

2.3.1. The Harmonic Oscillator

In order to understand the effectiveness of the AIM, it is appropriate to apply this method to
a simple concrete problem: the harmonic oscillator potential in one dimension:

(

− d2

dx2
+ x2

)

φ = Eφ. (2.19)

When |x| approaches infinity, the wave function φ must approach zero. Asymptotically the
function φ decays like a Gaussian distribution, in which case we can write

φ(x) = e−x
2/2f(x), (2.20)

where f(x) is the new wave function. Substituting (2.20) into (2.19) then rearranging the
equation and dividing by a common factor, one can obtain

d2f

dx2
= 2x

df

dx
+ (1 − E)f. (2.21)

We recognise this as Hermite’s equation. For convenience we let 1 − E = −2j, such that in our
case λ0 = 2x and s0 = −2j. We define

δn = λnsn−1 − λn−1sn, for n = 1, 2, 3, . . .. (2.22)

Thus using (2.8) one can find that

δn = 2n+1
n∏

i=0

(
j − i), (2.23)

and the termination condition (2.10) can be written as δn = 0. Hence j must be a nonnegative
integer, which means that

Ek = 2k + 1, for k = 0, 1, 2, . . .. (2.24)

and this is the exact spectrum for such a potential. Moreover, the wave function φ(x) can also
be derived in this method.

We will point out that in this case the termination condition, δn = 0, is dependent only
on the eigenvalue j for a given iteration number n, and this is the reason why we can obtain
an exact eigenvalue. However, for the black hole cases in subsequent sections, the termination
condition depends also on x, and therefore one can only obtain approximate eigenvalues by
terminating the procedure after n iterations.
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2.3.2. The Poschl-Teller Potential

To conclude this section we will also demonstrate that the AIM can be applied to the case
of QNMs, which have unbounded (scattering) like potentials, by recalling that we can
find QNMs for Scarf II (upside-down Poschl-Teller-like) potentials [15]. This is based on
observations made by one of the current authors [16] relating QNMs from quasiexactly
solvable models. Indeed bound state Poschl-Teller potentials have been used for QNM
approximations previously by inverting black hole potentials [4]. However, the AIM does
not require any inversion of the black hole potential as we will show.

Starting with the potential term

V (x) =
1
2
sech2x, (2.25)

and the Schrödinger equation, we obtain

d2ψ

dx2
+
(

ω2 − 1
2
sech2x

)

ψ = 0. (2.26)

As we will also see in the following sections that it is more convenient to transform our
coordinates to a finite domain. Hence, we will use the transformation y = tanhx, which leads
to

(
1 − y2

) d

dy

[(
1 − y2

)dψ

dy

]

+
[

ω2 − 1
2

(
1 − y2

)]

ψ = 0,

=⇒ d2ψ

dy2
−
(

2y
1 − y2

)
dψ

dy
+

[
ω2

(
1 − y2

)2 − 1
2
(
1 − y2

)

]

ψ = 0,

(2.27)

where −1 < y < 1. The QNM boundary conditions in (1.1) can then be implemented as
follows. As y → 1 we will have ψ ∼ e∓iωx ∼ (1 − y)±iω/2. Hence our boundary condition is
ψ ∼ eiωx ⇒ ψ ∼ (1 − y)−iω/2. Likewise, as y → −1 we have ψ ∼ e±iωx ∼ (1 + y)±iω/2 and
the boundary condition ψ ∼ e−iωx ⇒ ψ ∼ (1 + y)−iω/2. As such we can take the boundary
conditions into account by writing

ψ =
(
1 − y)−iω/2(1 + y)−iω/2φ, (2.28)

and therefore we have

d2φ

dy2
=

2y(1 − iω)
1 − y2

dφ

dy
+
1 − 2iω − 2ω2

2
(
1 − y2

) φ, (2.29)
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where

λ0 =
2y(1 − iω)
1 − y2

,

s0 =
1 − 2iω − 2ω2

2
(
1 − y2

) .

(2.30)

Following the AIM procedure, that is, taking δn = 0 successively for n = 1, 2, . . ., one can
obtain exact eigenvalues:

ωn = ±1
2
− i

(

n +
1
2

)

. (2.31)

This exact QNM spectrum is the same as the one in [16] obtained through algebraic means.
The reader might wonder about approximate results for cases where Poschl-Teller

approximations can be used, such as Schwarzschild and SdS backgrounds; for example, see
[1, 4]. In fact when the black hole potential can be modeled by a Scarf like potential, the
AIM can be used to find the eigenvalues exactly [15] and hence the QNMs numerically. We
demonstrate this in the next section.

3. Schwarzschild (A)DS Black Holes

We will now begin the core focus of this paper, the study of black hole QNMs using the
AIM. Recall that the perturbations of the Schwarzschild black holes are described by the
Regge and Wheeler [17] and Zerilli [18] equations, and the perturbations of Kerr black
holes are described by the Teukolsky equations [19]. The perturbation equations for Reissner-
Nordström black holes were also derived by Zerilli [20] and byMoncrief [21–23]. Their radial
perturbation equations all have a one-dimensional Schrödinger-like form with an effective
potential.

Therefore, we will commence in the coming subsections by describing the radial
perturbation equations of Schwarzschild black holes first, where our perturbed metric will
be gμν = g0

μν + hμν, and where g0
μν is spherically symmetric. As such it is natural to introduce

a mode decomposition to hμν. Typically we write

Ψlm

(
t, r, θ, φ

)
=
e−iωtul(r)

r
Ylm

(
θ, φ

)
, (3.1)

where Ylm(θ, φ) are the standard spherical harmonics. The function ul(r, t) then solves the
wave equation:

(
d2

dx2
−ω2 − Vl(r)

)

ul(r) = 0, (3.2)
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where x, defined by dx = dr/f(r), are the so-called tortoise coordinates and V (x) is a master
potential of the following form [24]:

V (r) = f(r)

[
�(� + 1)

r2
+
(
1 − s2

)
(

2M
r3

−
(
4 − s2)Λ

6

)]

. (3.3)

In this section

f(r) = 1 − 2M
r

− Λ
3
r2, (3.4)

with cosmological constant Λ. Here s = 0, 1, 2 denotes the spin of the perturbation: scalar,
electromagnetic, and gravitational (for half-integer spin see [25–27] and Section 5.2).

3.1. The Schwarschild Asymptotically Flat Case

To explain the AIM we will start with the simplest case of the radial component of a pertur-
bation of the Schwarzschild metric outside the event horizon [18]. For an asymptotically flat
Schwarzschild solution (Λ = 0),

f(r) = 1 − 2M
r
, (3.5)

where from dx = dr/f(r)we have

x(r) = r + 2M ln
( r

2M
− 1

)
, (3.6)

for the tortoise coordinate x.
Note that for the Schwarzschild background the maximum of this potential, in terms

of r, is given by [28]

r0 =
3M
2

1
�(� + 1)

[

�(� + 1) −
(
1 − s2

)
+
(

�2(� + 1)2 +
14
9
�(� + 1)

(
1 − s2

)
+
(
1 − s2

)2
)1/2

]

.

(3.7)

The choice of coordinates is somewhat arbitrary and in the next section (for SdS) we
will see how an alternative choice leads to a simpler solution. Firstly, consider the change of
variable:

ξ = 1 − 2M
r
, (3.8)

with 0 ≤ ξ < 1. In terms of ξ, our radial equation then becomes

d2ψ

dξ2
+

1 − 3ξ
ξ(1 − ξ)

dψ

dξ
+

[
4M2ω2

ξ2(1 − ξ)4
− �(� + 1)

ξ(1 − ξ)2
− 1 − s2
ξ(1 − ξ)

]

ψ = 0. (3.9)
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To accommodate the out-going wave boundary condition ψ → eiωx =
eiω(r+2M ln(r/2M−1)) as (x, r) → ∞ in terms of ξ (which is the limit ξ → 1) and the regular
singularity at the event horizon (ξ → 0), we define

ψ(ξ) = ξ−2iMω(1 − ξ)−2iMωe2iMω/(1−ξ)χ(ξ), (3.10)

where the Coulomb power law is included in the asymptotic behaviour (cf. [6] (5)). The
radial equation then takes the following form:

χ′′ = λ0(ξ)χ′ + s0(ξ)χ, (3.11)

where

λ0(ξ) =
4Miω

(
2ξ2 − 4ξ + 1

) − (1 − 3ξ)(1 − ξ)
ξ(1 − ξ)2

,

s0(ξ) =
16M2ω2(ξ − 2) − 8Miω(1 − ξ) + �(� + 1) +

(
1 − s2)(1 − ξ)

ξ(1 − ξ)2
.

(3.12)

Note that primes of χ denote derivatives with respect to ξ.
Using these expressions we have tabulated several QNM frequencies and compared

them to the WKB method of [28] and the CFM of [6] in Table 1. For completeness Table 1
also includes results from an approximate semianalytic third-order WKB method [28]. More
accurate semianalytic results with better agreement to Leaver’s method can be obtained by
extending the WKB method to 6th order [10] and indeed in Section 5 we use this to compare
with the AIM for results where the CFM has not been tabulated.

It might also be worth mentioning that a different semianalytic perturbative approach
has recently been discussed by Dolan and Ottewill [29], which has the added benefit of easily
being extended to any order in a perturbative scheme.

3.2. The De-Sitter Case

We have presented the QNMs for Schwarzchild gravitational perturbations in Table 1
however, to further justify the use of this method, it is instructive to consider some more
general cases. As such, we will now consider the Schwarzschild de Sitter (SdS) case, where
we have the same WKB-like wave equation and potential as in the radial equation earlier,
though now

f(r) = 1 − 2M
r

−Λ
r2

3
, (3.13)

where Λ > 0 is the cosmological constant. Interestingly the choice of coordinates we use here
leads to a simpler AIM solution, because there is no Coulomb power law tail; however, in the
limit Λ = 0 we recover the Schwarzschild results. Note that although it is possible to find an
expression for the maximum of the potential in the radial equation, for the SdS case, it is the
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Table 1: QNMs to 4 decimal places for gravitational perturbations (s = 2) where the fifth column is taken
from [28]. Note that the imaginary part of the n = 0 and � = 2 result in [28] has been corrected to agree with
[6]. [∗]Note also that if the number of iterations in the AIM is increased, to say 50, then we find agreement
with [6] accurate to 6 significant figures.

� n ωLeaver ωAIM (after 15 iterations) ωWKB

2

0 0.3737–0.0896i [∗] 0.3737–0.0896i 0.3732–0.0892i

(<0.01%)(<0.01%) (−0.13%)(0.44%)[∗]

1 0.3467–0.2739i 0.3467–0.2739i 0.3460–0.2749i

(<0.01%)(<0.01%) (−0.20%)(−0.36%)

2 0.3011–0.4783i 0.3012–0.4785i 0.3029–0.4711i

(0.03%)(−0.04%) (0.60%)(1.5%)

3 0.2515–0.7051i 0.2523–0.7023i 0.2475–0.6703i

(0.32%)(0.40%) (−1.6%)(4.6%)

3

0 0.5994–0.0927i 0.5994–0.0927i 0.5993–0.0927i

(<0.01%)(<0.01%) (−0.02%)(0.0%)

1 0.5826–0.2813i 0.5826–0.2813i 0.5824–0.2814i

(<0.01%)(<0.01%) (−0.03%)(−0.04%)

2 0.5517–0.4791i 0.5517–0.4791i 0.5532–0.4767i

(<0.01%)(<0.01%) (0.27%)(0.50%)

3 0.5120–0.6903i 0.5120–0.6905i 0.5157–0.6774i

(<0.01%)(−0.03%) (0.72%)(1.9%)

4 0.4702–0.9156i 0.4715–0.9156i 0.4711–0.8815i

(0.28%)(<0.01%) (0.19%)(3.7%)

5 0.4314–1.152i 0.4360–1.147i 0.4189–1.088i

(1.07%)(0.43%) (−2.9%) (5.6%)

4

0 0.8092–0.0942i 0.8092–0.0942i 0.8091–0.0942i

(<0.01%)(<0.01%) (−0.01%)(0.0%)

1 0.7966–0.2843i 0.7966–0.2843i 0.7965–0.2844i

(<0.01%)(<0.01%) (−0.01%)(−0.04%)

2 0.7727–0.4799i 0.7727–0.4799i 0.7736–0.4790i

(<0.01%)(<0.01%) (0.12%)(0.19%)

3 0.7398–0.6839i 0.7398–0.6839i 0.7433–0.6783i

(<0.01%)(<0.01%) (0.47%) (0.82%)

4 0.7015–0.8982i 0.7014–0.8985i 0.7072–0.8813i

(−0.01%)(−0.03%) (0.81%)(1.9%)

solution of a cubic equation, which for brevity we refrain from presenting here. In our AIM
code we use a numerical routine to find the root to make the code more general.

In the SdS case it is more convenient to change coordinates to ξ = 1/r [1], which leads
to the following master equation (cf. (3.3)):

d2ψ

dξ2
+
p′

p

dψ

dξ
+

[
ω2

p2
− �(� + 1) +

(
1 − s2)(2Mξ − (

4 − s2)(Λ/6ξ2))

p

]

ψ = 0, (3.14)
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where we have defined

p = ξ2 − 2Mξ3 − Λ
3

=⇒ p′ = 2ξ(1 − 3Mξ). (3.15)

It may be worth mentioning that for SdS we can express [1]

eiωx = (ξ − ξ1)iω/2κ1(ξ − ξ2)iω/2κ2(ξ − ξ3)iω/2κ3 (3.16)

in terms of the roots of f(r), where ξ1 is the event horizon and ξ2 is the cosmological horizon
(and κn is the surface gravity at each ξn). This is useful for choosing the appropriate scaling
behaviour for QNM boundary conditions.

Based on the pervious equation an appropriate choice for QNMs is to scale out the
divergent behaviour at the cosmological horizon (note that this is opposite to the case
presented in [1], where they define the QNMs as solution with boundary conditions ψ(x) ∝
e∓iωx as x → ±∞, for eiwx time dependence):

ψ(ξ) = eiωxu(ξ), (3.17)

which implies

pu′′ +
(
p′ − 2iω

)
u′ −

[

�(� + 1) +
(
1 − s2

)(

2Mξ −
(
4 − s2

) Λ
6ξ2

)]

u = 0 (3.18)

in term of ξ. Furthermore, based on the scaling in (3.17), the correct QNM condition at the
horizon ξ1 implies

u(x) = (ξ − ξ1)−iω/κ1χ(x), (3.19)

where

κ1 =
1
2
df

dr

∣
∣
∣
∣
r→ r1

=Mξ21 −
1
3
Λ
ξ1
, (3.20)

with ξ1 = 1/r1, and r1 is the smallest real solution of f(r) = 0, implying p = 0. The differential
equation then takes the standard AIM form:

χ′′ = λ0(ξ)χ′ + s0(ξ)χ, (3.21)
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where

λ0(ξ) = −1
p

[

p′ − 2iω
κ1(ξ − ξ1) − 2iω

]

,

s0(ξ) =
1
p

[

�(� + 1) +
(
1 − s2

)(

2Mξ −
(
4 − s2

) Λ
6ξ2

)

+
iω

κ1(ξ − ξ1)2
(
iω

κ1
+ 1

)

+
(
p′ − 2iω

) iω

κ1(ξ − ξ1)

]

.

(3.22)

Using these equations, we present in Table 2 results for SdS with s = 2.
Identical results were generated by the AIM and CFM, both after 50 iterations. Though

results are presented for n = 1, 2, 3, and � = 2, 3 modes only, the AIM is robust enough to be
applied to any other case where like the Λ = 0 case, agreement with other methods in more
extreme parameter choices would only require further iterations.

As far as we are aware only [30] (who used a semianalytic WKB approach) has
presented tables for general spin fields for the SdS case. We have also compared our results to
those in [30] for the s = 0, 1 cases and find identical results (to a given accuracy in the WKB
method).

It may be worth mentioning that a set of three-term recurrence relations was derived
in [13] for the CFM, valid for electromagnetic and gravitational perturbations (s = 1, 2),
while for s = 0 this reduces to a five-term recurrence relation. However, for the AIM
we can treat the s = 0, 1, 2 perturbations on an equal footing; see [13] for more details.
Typically n Gaussian Elimination steps are required to reduce an n + 3 recurrence to a 3-term
continued fraction; for example, for Reissner-Nördtrom see [31] and for higher-dimensional
Schwarzschild backgrounds see [32] (for an application of the CFM to higher-dimensional
asymptotic QNMs see [33]). However, all that is necessary in the AIM is to factor out the
correct asymptotic behaviour at the horizon(s) and infinity (we showed this for higher-
dimensional scalar spheroids in [34]).

3.3. The Spin-Zero Anti-de-Sitter Case

There are various approaches to finding QNMs for the SAdS case (an eloquent discussion is
given in the appendix of [35], see also [36, 37]). One approach is that of Horowitz andHubeny
[38], which uses a series solution chosen to satisfy the SAdS QNM boundary conditions. This
method can easily be applied to all perturbations (s = 0, 1, 2). The other approach is to use
the Frobenius method of Leaver [6], but instead of developing a continued fraction the series
must satisfy a boundary condition at infinity, such as a Dirichlet boundary condition [1].

The AIM does not seem easy to apply to metrics where there is an asymptotically anti-
de-Sitter background, because for general spin, s, the potential at infinity is a constant and
hence would include a combination of ingoing and outgoing waves, leading to a sinusoidal
dependence [39]. However, for the scalar spin zero (s = 0) case, the potential actually blows
up at infinity and is effectively a bound state problem. In this case the AIM can easily be
applied as we show here in after.
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Table 2: QNMs to 6 signifcant figures for Schwarzschild de Sitter gravitational perturbations (s = 2) for
� = 2 and � = 3 modes. We only present results for the AIM method, because the results are identical
to those of the CFM after a given number of iterations (in this case 50 iterations for both methods). The
n = 1, 2 modes can be compared with the results in [30] for s = 2.

Λ (� = 2) n = 1 n = 2 n = 3

0 0.373672–0.0889623i 0.346711–0.273915i 0.301050–0.478281i

0.02 0.338391–0.0817564i 0.318759–0.249197i 0.282732–0.429484i

0.04 0.298895–0.0732967i 0.285841–0.221724i 0.259992–0.377092i

0.06 0.253289–0.0630425i 0.245742–0.189791i 0.230076–0.319157i

0.08 0.197482–0.0498773i 0.194115–0.149787i 0.187120–0.250257i

0.09 0.162610–0.0413665i 0.160789–0.124152i 0.157042–0.207117i

0.10 0.117916–0.0302105i 0.117243–0.0906409i 0.115876–0.151102i

0.11 0.0372699–0.00961565i 0.0372493–0.0288470i 0.0372081–0.0480784i

Λ (� = 3) n = 1 n = 2 n = 3

0 0.599443–0.0927030i 0.582644–0.281298i 0.551685–0.479093i

0.02 0.543115–0.0844957i 0.530744–0.255363i 0.507015–0.432059i

0.04 0.480058–0.0751464i 0.471658–0.226395i 0.455011–0.380773i

0.06 0.407175–0.0641396i 0.402171–0.192807i 0.392053–0.322769i

0.08 0.317805–0.0503821i 0.315495–0.151249i 0.310803–0.252450i

0.09 0.261843–0.0416439i 0.260572–0.124969i 0.257998–0.208412i

0.10 0.189994–0.0303145i 0.189517–0.0909507i 0.188555–0.151609i

0.11 0.0600915–0.00961888i 0.0600766–0.0288567i 0.0600469–0.0480945i

Let us consider the scalar wave equation in SAdS spacetime, where Λ = −3/R2, and
R is the AdS radius. The master equation takes the same form as for the graviational case,
except that the potential becomes

V =
(

1 − 2
r
+ r2

)(
2
r3

+ 2
)

=
2(r − 1)

(
r2 + r + 2

)(
r3 + 1

)

r4
. (3.23)

Here for simplicity we have taken the AdS radius R = 1, the mass of the black hole M = 1,
and the angular momentum number l = 0. Hence the horizon radius r+ equals 1. Thus, with
this choice we can compare with the data in Table 3.2 on page 37 of [40] (see Table 3).

To implement the AIM we first look at the asymptotic behavior of ψ. As r → r+ = 1,
the potential V goes to zero. In addition,

ψ ∼ e±i[(ω/4) ln(r−1)] ∼ (r − 1)±iω/4 ∼
(

1 − 1
r

)±iω/4
. (3.24)

For QNMs we choose the out-going (into the black hole) boundary condition. That is,

ψ ∼ e−iωx ∼
(

1 − 1
r

)−iω/4
. (3.25)
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Table 3: Comparison of the first few QNMs to 6 significant figures for Schwarzschild anti-de-Sitter scalar
perturbations (s = 0) for � = 0 modes with r+ = 1. The second column corresponds to data [40] using
the Horowitz and Hubeny (HH) method [38], while the third column is for the AIM using 70 iterations.
[∗] Note the mismatch for the real part of the n = 3 mode in [40]; we have confirmed this using the
Mathematica notebook provided in [24].

n HH method AIM

0 2.7982–2.6712i 2.79823–2.67121i

1 4.75849–5.03757i 4.75850–5.03757i

2 6.71927–7.39449i 6.71931–7.39450i

3 8.68223[∗]–9.74852i 8.68233–9.74854i

4 10.6467–12.1012i 10.6469–12.1013i

5 12.6121–14.4533i 12.6125–14.4533i

6 14.5782–16.8049i 14.5788–16.8050i

7 16.5449–19.1562i 16.5457–19.1563i

On the other extreme of our space, r → ∞, the potential goes to infinity. This is a
crucial difference from the case of gravitational perturbations. In that case, the potential goes
to a constant. However, in the scalar case, as r → ∞, ψ ∼ (1/r)±

√
2+1/2, and to implement the

Dirichlet boundary condition, we take

ψ ∼
(
1
r

)1/2+
√
2

. (3.26)

For the AIM one possible choice of variables is

ξ = 1 − 1
r
, (3.27)

and we see that to accommodate the asymptotic behaviour of the wavefunction we should
take

ψ = ξ−iω/4(1 − ξ)
√
2+1/2χ. (3.28)

Finally, after some work we find that the scalar perturbation equation is

χ′′ = λ0(ξ)χ′ + s0(ξ)χ, (3.29)
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where

λ0 = −
−iωq + 2

[
−4 + 2

(
9 + 4

√
2
)
ξ −

(
21 + 10

√
2
)
ξ2 + 4

(
2 +

√
2
)
ξ3
]

2ξq
,

s0 =
1

16ξq2
{
4iω

[
9 + 8

√
2 − 2

(
7 + 5

√
2
)
ξ +

(
6 + 4

√
2
)
ξ2
]
q +ω2(−1 + ξ)2

×
(
−40 + 41ξ − 20ξ2 + 4ξ3

)
− 4

[
4 − 5ξ + 2ξ2

]

×
[
−8

(
3 + 2

√
2
)
+ 8

(
10 + 7

√
2
)
ξ−

(
91 + 64

√
2
)
ξ2 +

(
34 + 24

√
2
)
ξ3
]}
,

(3.30)

and q = (−4 + 9ξ − 7ξ2 + 2ξ3). Using the AIM we find the results presented in Table 3.

4. Reissner-Nordström Black Holes

The procedure for obtaining the quasinormal frequencies of Reissner-Nordström black holes
in four-dimensional spacetime is similar to that of our earlier cases. Startingwith the Reissner-
Nordström metric,

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dθ2 + r2sin2θdφ2, (4.1)

where f(r) = (1 − 1/r + Q2/r2) and |Q| ≤ 1/2 is the charge of the black hole. If
we consider perturbations exterior to the event horizon, the perturbation equations of
the Reissner-Nordström (charged and nonrotating) geometry can be separated into two
pairs of Schrödinger-like equations, which describe the even- and odd-parity oscillations,
respectively [20–23]. They are given by

(
d2

dx2
− ρ2 − V (±)

i

)

Z
(±)
i = 0, (4.2)

where (+) corresponds to even- and (−) to odd-parity modes:

V
(−)
i (r) =

Δ
r5

(

Ar − qj + 4Q2

r

)

,

V
(+)
i (r) = V (−)

i (r) + 2qj
d

dx

(
Δ

r2
[
(l − 1)(l + 2)r + qj

]

)

,

(4.3)

for i = j = 1, 2 (i /= j), where

dr

dx
=

Δ
r
, (4.4)
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Δ = r2 − r +Q2 ≡ (r − r+)(r − r−),

A = l(l + 1),

q1 =
1
2

[

3 +
√

9 + 16Q2(l − 1)(l + 2)
]

,

q2 =
1
2

[

3 −
√

9 + 16Q2(l − 1)(l + 2)
]

,

(4.5)

and ρ = −iω. Here ω is the frequency, l the angular momentum parameter, and r− and r+ the
radii of the inner and outer (event) horizons of the black hole, respectively. Note that r+ = 1
and r− = 0 at the Schwarzschild limit (Q = 0); r+ = r− = 1/2 at the extremal limit (Q = 1/2).
Here the tortoise coordinate is given by

x =
∫
r2

Δ
dr = r +

r2+
r+ − r− ln(r − r+) − r2

r+ − r− ln(r − r−), (4.6)

which ranges from −∞ at the event horizon to +∞ at spatial infinity.
The QNMs of the Reissner-Nordström black holes are ordinarily accompanied by the

emission of both electromagnetic and gravitational radiation, except at the Schwarzschild
limit [31, 41]. Equation (4.2) corresponds to purely gravitational perturbations for the radial
wave functions Z(±)

2 and purely electromagnetic perturbations for Z(±)
1 at the Schwarzschild

limit. Chandrasekhar [42] has shown that the solutions Z(+)
i for the even-parity oscillations

and Z(−)
i for the odd-parity oscillations have the following relationship:

[
A(A − 2) − 2ρqj

]
Z

(+)
i =

{

A(A − 2) +
2q2jΔ

r3
[
(A − 2)r + qj

]

}

Z
(−)
i + 2qj

dZ
(−)
i

dx
, (4.7)

so one can just consider solutions for a specific parity, as in the Schwarzschild case, to
understand the property of the black hole. Since the formalism of the effective potential
V

(−)
i in the odd-parity equation is much simpler than V

(+)
i in the even-parity equation, it

is customary to compute the QNMs for the odd-parity modes.
Note that the mass M of the Reissner-Nordström black hole has been scaled to

2M = 1, so its quasinormal frequencies are uniquely determined by the chargeQ, the angular
momentum l, and the overtone number n of the mode.

The following procedure is similar to that in Section 3. At first we change r to the
variable x in (4.2) for the odd-parity mode. From (4.4) we have

d

dx
=

Δ
r2

d

dr
, (4.8)

d2

dx2
=
(
Δ
r2

)(
r − 2Q2

r3

)
d

dr
+
(
Δ
r2

)2 d2

dr2
. (4.9)
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Substituting (4.9) into (4.2) for the odd-parity mode, we get

(
Δ
r2

)2 d2

dr2
Z

(−)
i +

(
Δ
r2

)(
r − 2Q2

r3

)
d

dr
Z

(−)
i −

[
ρ2 + V (−)

i

]
Z

(−)
i = 0. (4.10)

Considering the QNM boundary conditions in the Reissner-Nordström case

Z
(−)
i −→

⎧
⎨

⎩

e−iωx, x −→ −∞,

eiωx, x −→ +∞,
(4.11)

and incorporating this into the radial wave function Z
(−)
i , we have a form involving the

asymptotic behaviour [31]:

Z
(−)
i = e−ρrr−1(r − r−)1−ρ−ρr

2
+/(r+−r−)(r − r+)ρr

2
+/(r+−r−)χZi(r). (4.12)

Differentiating (4.12) one and two times with respect to r, we have

Z
(−)
i,r ≡ d

dr
Z

(−)
i = e−ρrr−1(r − r−)1−ρ−ρr

2
+/(r+−r−)(r − r+)ρr

2
+/(r+−r−)(χZi,r + ΓZχZi

)
,

Z
(−)
i,rr = e

−ρrr−1(r − r−)1−ρ−ρr
2
+/(r+−r−)(r − r+)ρr

2
+/(r+−r−)

[
χZi,rr + 2ΓZχZi,r +

(
Γ2Z + ΓZ,r

)
χZi

]
,

(4.13)

where ΓZ is defined by

ΓZ = −ρ − 1
r
+

(
1 − ρ)(r+ − r−) − ρr2+
(r+ − r−)(r − r−) +

ρr2+
(r+ − r−)(r − r+) .

(4.14)

Substituting (4.13) into (4.10), we obtain

(
Δ
r2

)2

χZi,rr +

[

2ΓZ
(
Δ
r2

)2

+
(
Δ
r2

)(
r − 2Q2

r3

)]

χZi,r

+

{(
Δ
r2

)2(
Γ2Z + ΓZ,r

)
+
(
Δ
r2

)(
r − 2Q2

r3

)

ΓZ −
[
ρ2 + V (−)

i

]
}

χZi = 0.

(4.15)

For the same reason as in Section 3, here we change the variable r to ξ by the definition
ξ = 1 − r+/r, which ranges from 0 at the event horizon to 1 at spatial infinity. Thus we have

d

dr
=

(1 − ξ)2
r+

d

dξ
,

d2

dr2
=

(1 − ξ)4
r2+

d2

dξ2
− 2

(1 − ξ)3
r2+

d

dξ
.

(4.16)
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Substituting (4.16) into (4.15), and rewriting the equation in the AIM form, we obtain

χZi,ξξ = λZi(ξ)χZi,ξ + sZi(ξ)χZi , (4.17)

where

λZi(ξ) =
2

1 − ξ − 2r+ΓZ
(1 − ξ)2

− r+ − 2Q2(1 − ξ)
Δ(1 − ξ)2

,

sZi(ξ) =
r6+

[
ρ2 + V (−)

i

]

Δ2(1 − ξ)8
− r+ΓZ
Δ(1 − ξ)4

[
r+ − 2Q2(1 − ξ)

]
− r2+Γ

2
Z

Δ(1 − ξ)4
− r+ΓZ,ξ
(1 − ξ)2

,

ΓZ = −ρ − 1 − ξ
r+

+

[(
1 − ρ)(r+ − r−) − ρr2+

]
(1 − ξ)

(r+ − r−)[r+ − r−(1 − ξ)] +
ρr+(1 − ξ)
(r+ − r−)ξ ,

V
(−)
i = Δ

(1 − ξ)5
r5+

[
Ar+
1 − ξ − qj + 4Q2(1 − ξ)

r+

]

,

Δ =
r+ξ[r+ − r−(1 − ξ)]

(1 − ξ)2
.

(4.18)

The numerical results to four decimal places are presented in Tables 4, 5, and 6.
They are compared with ρLeaver and ρWKB from [31] and [41], respectively. The quasinormal
frequencies appear as complex conjugate pairs in ρ; we list only the ones with Im(ρ) > 0.
Note that we arrange ρ as (Im(ρ),Re(ρ)). In Table 6 the quasinormal frequencies obtained by
the WKB method are not available. It is apparent that the quasinormal frequencies obtained
by the AIM are very accurate except for n = 2 in the extremal case Q = 1/2 in Tables 4 and 6.

The QNMs of l = 2 and i = 2 in Table 4 reduce to the purely gravitational QNMs in
the Schwarzschild case at Q = 0, while the QNMs of l = 2 and i = 1 in Table 5 reduce to the
purely electromagnetic QNMs at Q = 0.

Some comments on the higher (n = 2) overtones for the Reissner-Nordström black
hole for the extremal limit (Q = 1/2) are perhaps necessary. In general, much like the CFM
the AIM begins to break down for larger overtones, requiring more iterations. However, near
the extremal limit (Q = 1/2) the horizons become degenerate and the singularity structure of
the corresponding differential (radial) equation changes [43] (the number of singular points
is different in the nonextremal and the extremal cases) and causes the current implementation
of the AIM (cf. (4.12)) to break down. Thus, we see in Tables 4–6 that for Q = 0.495 some of
the values have large errors when compared to the CFM.

5. Kerr Black Holes

A rotating black hole carrying angular momentum is described by the Kerr metric (in Boyer-
Lindquist coordinates) as

ds2 = −
(
1 − r

Σ

)
dt2 − 2ar sin2θ

Σ
dt dφ +

Σ
Δ
dr2Σdθ2 +

(

r2 + a2 +
a2r sin2θ

Σ

)

sin2θdφ, (5.1)
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Table 4: Reissner-Nordström quasinormal frequency parameter values (ρ = −iω) for the fundamental
(n = 0) and two lowest overtones for l = 2 and i = 2.

n Q ρLeaver ρAIM ρWKB

0 0 (0.7473, −0.1779) (0.7473, −0.1779)
(<0.01%)(<0.01%)

(0.7463, −0.1784)
(−0.13%)(−0.28%)

0 0.2 (0.7569, −0.1788) (0.7569, −0.1788)
(<0.01%)(<0.01%)

(0.7558, −0.1793)
(−0.15%)(−0.28%)

0 0.4 (0.8024, −0.1793) (0.8024, −0.1793)
(<0.01%)(<0.01%)

(0.8011, −0.1797)
(−0.16%)(−0.22%)

0 0.495 (0.8586, −0.1685) (0.8586, −0.1685)
(<0.01%)(<0.01%)

(0.8566, −0.1706)
(−0.23%)(−1.25%)

1 0 (0.6934, −0.5478) (0.6934, −0.5478)
(<0.01%)(<0.01%)

(0.6920, −0.5478)
(−0.20%)(−0.37%)

1 0.2 (0.7035, −0.5503) (0.7035, −0.5502)
(<0.01%)(0.02%)

(0.7020, −0.5522)
(−0.21%)(−0.36%)

1 0.4 (0.7538, −0.5499) (0.7538, −0.5499)
(<0.01%)(<0.01%)

(0.7510, −0.5525)
(−0.37%)(−0.47%)

1 0.495 (0.8070, −0.5140) (0.8067, −0.5164)
(−0.04%)(0.47%)

(0.8068, −0.5287)
(0.01%)(−2.21%)

2 0 (0.6021, −0.9566) (0.6021, −0.9566)
(<0.01%)(<0.01%)

(0.6059, −0.9421)
(0.63%)(1.52%)

2 0.2 (0.6129, −0.9599) (0.6128, −0.9599)
(0.02%)(<0.01%)

(0.6164, −0.9458)
(0.57%)(1.47%)

2 0.4 (0.6703, −0.9531) (0.6703, −0.9531)
(<0.01%)(<0.01%)

(0.6717, −0.9455)
(0.21%)(0.80%)

2 0.495 (0.7078, −0.8872) (0.8350, −0.8347)
(17.97%)(5.92%)

(0.7344, −0.9135)
(2.66%)(−2.96%)

with

Δ = r2 + a2 − 2Mr ≡ (r − r−)(r − r+),

Σ = r2 + a2cos2θ,
(5.2)

where a is the Kerr rotation parameter with 0 ≤ a ≤ M, M being included as a general
black hole mass. The horizons r− and r+ are again the inner and the outer (event) horizons,
respectively. Teukolsky [19] showed that the perturbation equations in the Kerr geometry
are separable, where the separated equations for the angular wave function sSlm(θ) and the
radial wave function R(r) are given by

[(
1 − u2

)
S,u

]

,u
+

[

a2ω2u2 − 2aωsu + s+ sAlm − (m + su)2

1 − u2
]

sSlm = 0, (5.3)

ΔR, rr + (s + 1)(2r − 1)R,r +K(r)R = 0, (5.4)
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Table 5: Reissner-Nordström quasinormal frequency parameter values (ρ = −iω) for the fundamental
(n = 1) and two lowest overtones for l = 2 and i = 1.

n Q ρLeaver ρAIM ρWKB

0 0 (0.9152, −0.1900) (0.9152, −0.1900)
(<0.01%)(<0.01%)

(0.9143, −0.1901)
(−0.10%)(−0.05%)

0 0.2 (0.9599, −0.1929) (0.9599, −0.1929)
(<0.01%)(<0.01%)

(0.9590, −0.1930)
(−0.09%)(−0.05%)

0 0.4 (1.1403, −0.1984) (1.1403, −0.1981)
(<0.01%)(0.15%)

(1.1395, −0.1980)
(−0.07%)(−0.20%)

0 0.495 (1.3855, −0.1773) (1.3855, −0.1773)
(<0.01%)(<0.01%)

(1.3850, −0.1783)
(−0.04%) (−0.56%)

1 0 (0.8731, −0.5814) (0.8731, −0.5814)
(<0.01%)(<0.01%)

(0.8717, −0.5819)
(−0.16%)(−0.09%)

1 0.2 (0.9200, −0.5894) (0.9200, −0.5894)
(<0.01%)(<0.01%)

(0.9186, −0.5897)
(−0.15%)(−0.05%)

1 0.4 (1.1100, −0.6021) (1.1100, −0.6021)
(<0.01%)(<0.01%)

(1.1081, −0.6014)
(−0.17%)(0.12%)

1 0.495 (1.3573, −0.5350) (1.3573, −0.5350)
(<0.01%)(<0.01%)

(1.3579, −0.5423)
(0.04%)(−1.36%)

2 0 (0.8024, −1.0032) (0.8024, −1.0032)
(<0.01%)(<0.01%)

(0.8046, −0.9917)
(0.27%)(1.15%)

2 0.2 (0.8530, −1.0143) (0.8530, −1.0143)
(<0.01%)(<0.01%)

(0.8548, −1.0037)
(0.21%)(1.05%)

2 0.4 (1.0582, −1.0263) (1.0582, −1.0263)
(<0.01%)(<0.01%)

(1.0568, −1.0181)
(−0.13%)(0.80%)

2 0.495 (1.3019, −0.9024) (1.3019, −0.9024)
(<0.01%)(<0.01%)

(1.3141, −0.9222)
(0.94%)(−2.19%)

where we have the following function:

K(r) =
1
Δ

{(
r2 + a2

)2
ω2 − 2amωr + a2m2 + is

[
am(2r − 1) −ω

(
r2 − a2

)]}

+2isωr − a2ω2− sAlm.

(5.5)

In u = cos θ, s is the spin weight, sAlm is the spin-weighted separation constant for the
angular equation, and m is another angular momentum parameter. For completeness the
evaluation of the separation constant sAlm using the AIM is discussed in Appendix A.

In order to use the AIMwe need to solve for the angular solution in the radial equation.
However, for nonzero s the effective potential of the radial equation is in general complex.
A straight forward application of the AIM does not give the correct answer. In fact a similar
problem occurs in both numerical [44] and WKB [7–9]methods. For this reason we will look
at each of the spin cases (0, 1/2, 2) separately in the following subsections.
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Table 6: Reissner-Nordström quasinormal frequency parameter values (ρ = −iω) for the fundamental
(n = 1) and two lowest overtones for l = 1 and i = 1.

n Q ρLeaver ρAIM

0 0 (0.4965, −0.1850) (0.4965, −0.1850)
(<0.01%)(<0.01%)

0 0.2 (0.5238, −0.1883) (0.5238, −0.1883)
(<0.01%)(<0.01%)

0 0.4 (0.6470, −0.1965) (0.6470, −0.1965)
(<0.01%)(<0.01%)

0 0.495 (0.8428, −0.1742) (0.8428, −0.1742)
(<0.01%)(<0.01%)

1 0 (0.4290, −0.5873) (0.4292, −0.5873)
(<0.01%) (0.05%)

1 0.2 (0.4598, −0.5953) (0.4598, −0.5953)
(<0.01%)(<0.01%)

1 0.4 (0.5980, −0.6107) (0.5980, −0.6107)
(<0.01%)(<0.01%)

1 0.495 (0.7979, −0.5293) (0.7978, −0.5280)
(0.01%)(0.25%)

2 0 (0.3496, −1.0504) (0.3495, −1.0504)
(0.03%)(<0.01%)

2 0.2 (0.3832, −1.0596) (0.3832, −1.0596)
(<0.01%)(<0.01%)

2 0.4 (0.5340, −1.0660) (0.5340, −1.0659)
(<0.01%)(<0.01%)

2 0.495 (0.7104, −0.9055) (0.6248, −1.0574)
(−12.05%)(−16.78%)

5.1. The Spin-Zero Case

Because the AIM works better on a compact domain, we define a new variable y = 1 − r+/r,
which ranges from 0 at the event horizon (r = r+) to 1 at spatial infinity. It is then necessary
to incorporate the boundary conditions, expressed in the new compact domain, where

R(r) =
(
r2 + a2

)−1/2
ψ(r) (5.6)

is

ψ
(
y
)
=
(

1 − r−
r+

(
1 − y)

)−iσ−
y−σ+(1 − y)−r+ωeiω(r+/(1−y))χ(y). (5.7)

By making the change of coordinates and change of function, (5.7) takes the following form:

χ
(
y
)
= λ0

(
y
)
+ s0

(
y
)
, (5.8)
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where

λ0 = −2 1
g

dg
dy

− 1
f

df
dy

,

s0 = − 1
g

d2g

dy2
− 1
f

df
dy

× 1
g

dg
dy

− 1
f2

(
ω2 − V ∣

∣
r=r+(1−y)−1

)
.

(5.9)

As aforementioned, we have defined

f =
(

Δ
r2 + a2

dy
dr

)∣
∣
∣
∣
r=r+(1−y)−1

,

g =
(
1 − y)−2iω

(

1 − r−
r+

(
1 − y)

)iσ−
y−iσ+eiωr+(1−y)

−1
,

(5.10)

where Δ = r2 + a2 − 2Mr,

σ± =
1

r+ − r−
[(
r2± + a

2
)
ω + am

]
, (5.11)

and a is again our rotation parameter. Equation (5.8) is now in the correct form to use the
AIM for QNM frequency calculations. Note that the potential V is

V = − 1
Δ

((
K − 2

(
r2 + a2

))2 −Δλ
)

, (5.12)

where the angular separation constant is defined via λ = Al,m + a2ω2 − 2amω. (Even though
the radial and angular equations are coupled via the separation constant, 0Al,m, we are able
to find excellent agreement with the CFM by starting from the Schwarzschild (a = 0) result
for our initial guess of the Kerr (a/= 0) QNM solution using FindRoot in Mathematica in our
AIM code (at least for a ≤ 1)).

Presented in Tables 7 and 8 are the QNM frequencies for the scalar perturbations of
the Kerr black hole with the two extreme (minimum and maximum) values of the angular
momentum per unit mass, that is, a = 0.00 and a = 0.80. m was set to 0, while l was given
values of 0, 1, and 2 and n varied accordingly.

Included in Table 7 are the numerically determined QNM frequencies published by
Leaver in 1985 [6]. The percentages bracketed under each QNM frequency via the AIM are
the percentage differences between the calculated value and the numerical value published
by Leaver. With the exceptions of the QNM frequencies for l = 0, n = 0, and l = 2, n = 2,
the AIM values correspond to the CFM up to four decimal places and even those anomalies
differ by less than 0.30%, proving, at least in this case that the AIM is a precise semianalytical
technique.

In Table 8, all three values were calculated in this work, even though published values
are available for the third-order WKB(J), at least graphically, where numerical values using
the CFM were taken from [45, 46]. Since the WKB(J) is a generally accepted semianalytical
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Table 7: The QNM frequencies for the Scalar Perturbations of the Kerr Black Hole, with a = 0.00, that is,
the Schwarzschild limit (M = 1, m = 0). Numerical data via the CFM were taken from [45, 46], where the
AIM was set to run at 15 iterations.

l n Numerical Third-order WKB(J) Sixth-order WKB(J) AIM

0 0 0.1105–0.1049i 0.1046–0.1001i 0.1105–0.1008i 0.1103–0.1046i

(−5.34%, 9.82%) (<0.01%, −2.91%) (−0.18%, –0.29%)

1
0 0.2929–0.0977i 0.2911–0.0989i 0.2929–0.0978i 0.2929–0.0977i

(−0.61%, 1.23%) (<0.01%, 0.10%) (<0.01%, <0.01%)

1 0.2645–0.3063i 0.2622–0.3074i 0.2645–0.3065i 0.2645–0.3063i

(−0.87%, 0.36%) (<0.01%, 0.07%) (<0.01%, <0.01%)

2

0 0.4836–0.0968i 0.4832–0.0968i 0.4836–0.0968i 0.4836–0.0968i

(−0.08%, <0.01%) (<0.01%, <0.01%) (<0.01%, <0.01%)

1 0.4639–0.2956i 0.4632–0.2958i 0.4638–0.2956i 0.4639–0.2956i

(−0.15%, 0.07%) (−0.02%, <0.01%) (<0.01%, <0.01%)

2 0.4305–0.5086i 0.4317–0.5034i 0.4304–0.5087i 0.4306–0.5086i

(0.28%, −1.02%) (−0.02%, 0.02%) (0.02%, <0.01%)

Table 8: The QNM frequencies for the Scalar Perturbations of the Kerr Black Hole, with a = 0.80 (M = 1,
m = 0). Numerical data via the CFM taken from [45, 46], where the AIM was set to run at 15 iterations.

l n Numerical Third-order WKB(J) Sixth-order WKB(J) AIM

0 0 0.1145–0.0957i 0.1005–0.1007i 0.1211–0.0897i 0.1141–0.0939i

(−12.2%, 5.22%) (5.76%, −6.23%) (−0.35%, −1.88%)

1
0 0.3067–0.0901i 0.3029–0.0891i 0.3053–0.0893i 0.3052–0.0892i

(−1.24%, −1.11%) (−0.46%, −0.89%) (−0.49%, −1.00%)

1 0.2820–0.2783i 0.2758–0.2779i 0.2821–0.2755i 0.2817–0.2756i

(−2.20%, −0.14%) (0.04%, −1.01%) (−0.11%, −0.97%)

2

0 0.5071–0.0897i 0.5035–0.0885i 0.5041–0.0886i 0.5041–0.0886i

(−0.71%, −1.34%) (−0.59%, −1.23%) (−0.59%, −1.23%)

1 0.4906–0.2722i 0.4866–0.2693i 0.4885–0.2690i 0.4885–0.2689i

(−0.82%, −1.07%) (−0.43%, −1.18%) (−0.43%, −1.21%)

2 0.4609–0.4634i 0.4585–0.4570i 0.4607–0.4581i 0.4606–0.4579i

(−0.52%, −1.38%) (−0.04%, −1.14%) (−0.06%, −1.19%)

technique for QNM frequency calculations, the percentages below the AIM values are the
differences to the sixth-order WKB(J) values. Only in the case of l = 0 and n = 0 does the
AIM QNM frequency significantly differ from the sixth-order WKB(J) value. Note that in an
upcoming work, further values will be presented for values of a = 0.20, a = 0.40, and a = 0.60,
with the same variations of l and nwithM = 1 [47].

5.2. The Spin-Half Case

For the spin-1/2 case we would like to know how the AIM can be used to derive an
appropriate form of the Dirac equation in this spacetime background using the basis set-
up by four null vectors which are the basis of the Newman-Penrose formalism; for further
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details see [47]. That is, in the Kerr background we adopt the following vectors as the null
tetrad:

lj =
1
Δ

(
Δ,−ρ2, 0,−aΔsin2θ

)
,

nj =
1
2ρ2

(
Δ, ρ2, 0,−aΔsin2θ

)
,

mj =
1√
2ρ

(
ia sin θ, 0,−ρ2,−i

(
r2 + a2

)
sin θ

)
,

lj =
1
Δ

(
r2 + a2,Δ, 0, a

)
,

nj =
1√
2ρ

(
r2 + a2,−Δ, 0, a

)
,

mj =
1√
2ρ

(

ia sin θ, 0, 1,−i 1
sin θ

)

,

(5.13)

wheremj andm
j are nothing but complex conjugates ofmj andmj , respectively.

It is clear that the basis vectors basically become derivative operators when these are
applied as tangent vectors to the function ei(ωt+mφ). Therefore we can write

�l = D = D0, �n = D∗ = − Δ
2ρ2

D†
0, �m = δ =

1√
2ρ

L†
0,

−→
m = δ∗ =

1√
2ρ∗

L0, (5.14)

where

Dn = ∂r + i
K

Δ
+ 2n

r −M
Δ

,

D†
n = ∂r − iKΔ + 2n

r −M
Δ

,

Ln = ∂θ +Q + n cot θ,

L†
n = ∂θ −Q + n cot θ,

(5.15)

and K = (r2 + a2)ω + am with Q = aω sin θ +mcsc θ.
The spin coefficients can be written as a combination of basis vectors in the Newman-

Penrose formalismwhich are now expressed in terms of the elements of different components
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of the Kerr metric. So by combining these different components of basis vectors in a suitable
manner we get the spin coefficients as

κ = σ = λ = ν = ε = 0,

ρ̃ = − 1
ρ∗
, β =

cotθ

2
√
2ρ∗

, π =
ia sin θ√
2
(
ρ∗

)2 ,

τ = − ia sin θ√
2ρ2

, μ = − Δ
2ρ∗ρ2

, γ = μ +
r −M
2ρ2

,

α = π − β∗.

(5.16)

Using the aformentioned definitions, and by choosing f1 = ρ∗F1, g2 = ρG2, f2 = F2, and
g1 = G1 (where F1,2 and G1,2 are a pair of spinors), the Dirac equation reduces to

D0f1 +
1√
2
L1/2f2 = 0,

ΔD†
1/2f2 −

√
2L†

1/2f1 = 0,

D0g2 − 1√
2
L†

1/2f1 = 0,

ΔD†
1/2g1 +

√
2L1/2g2 = 0.

(5.17)

We separate the Dirac equation into radial and angular parts by choosing

f1(r, θ) = R−1/2(r)S−1/2(θ), f2(r, θ) = R1/2(r)S1/2(θ),

g1(r, θ) = R1/2(r)S−1/2(θ), g2(r, θ) = R−1/2(r)S1/2(θ).
(5.18)

Replacing these fj and gj (j = 1, 2) and using λ as the separation constant, we get

L1/2S1/2 = −λS−1/2,

L†
1/2S−1/2 = λS1/2,

(5.19)

Δ1/2D0R−1/2 = λΔ1/2R1/2,

Δ1/2D†
0Δ

1/2R1/2 = λR−1/2,
(5.20)

where 21/2R−1/2 is redefined as R−1/2.
Equations (5.19) and (5.20) are the angular and radial Dirac equation respectively,

in a coupled form with the separation constant λ [42]. Decoupling (5.19) gives the eigen-
value/angular equation for spin-half particles as

[
L1/2L†

1/2 + λ
2
]
S−1/2 = 0, (5.21)
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and S1/2 satisfies the adjoint equation (obtained by replacing θ by π − θ). (Note that
this angular equation is that given by (5.3) for s = 1/2 and hence using the method
in Appendix A, we could solve this numerically). Decoupling (5.20) then gives the radial
equation for spin-half particles as

[
ΔD†

1/2D0 − λ2
]
R−1/2 = 0, (5.22)

and Δ1/2R1/2 satisfies the complex-conjugate equation. Furthermore, unlike the case of a
scalar particle, a spin-half particle is not capable of extracting energy from a rotating black
hole; that is, there is no Penrose Process (superradiance) equivalent scenario [47].

Returning now to the AIM, recall that it will work better on a compact domain, where
we define a new variable y2 = 1 − r+/r, which ranges from 0 at the event horizon (r = r+) to
1 at spatial infinity. It is then necessary to incorporate the boundary conditions, expressed in
the new compact domain, where

ψ
(
y
)
=
(

1 − r−
r+

(
1 − y2

))−1/2−iσ−(
y2

)1/2−σ+(
1 − y2

)−r+ω
eiω(r+/(1−y

2))χ
(
y
)
, (5.23)

where we have defined

ψ =
√
ΔR1/2 + R−1/2, (5.24)

ψ satisfies the WKB(J)-like equation:

d2ψ

dy2
+
(
ω2 − V

)
ψ = 0 (5.25)

with potential

V = λ2
Δ

K
2
+ λ

d

dx

(√
Δ

K

)

, (5.26)

and K = K/ω = (r2 + a2) + am/ω (for more details see [47]).
By making the change of coordinates and change of functions, our equation takes the

following form:

χ
(
y
)
= λ0

(
y
)
+ s0

(
y
)
, (5.27)

where as in Section 5.1 we have

λ0 = −2 1
g

dg
dy

− 1
f

df
dy

,

s0 = − 1
g

d2g

dy2
− 1
f

df
dy

× 1
g

dg
dy

− 1
f2

(

ω2 − V
∣
∣
∣
r=r+(1−y2)−1

)

.

(5.28)
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Presented in Tables 9 and 10 are the QNM frequencies for the spin-half perturbations
of the Kerr black hole with the two extreme values of the angular momentum per unit mass,
that is, a = 0.00 and a = 0.80, m was set to 0, while l was given values of 0, 1, and 2 and n
varied accordingly.

Included in Table 9 are the numerically determined QNM frequencies published
by Jing and Pan [48]. Even though the WKB method has been used to calculate the
Schwarzschild limit QNM frequencies before [27], the sixth-order WKB values and AIM
values are novel to this work and will be explored more fully in [47]. The percentages
bracketed under each QNM frequency is the percentage difference between the calculated
value and the numerical value published by Jing and Pan [48].

As expected, since there are additional correction terms, the sixth-order WKB QNM
frequencies are closer to the numerical values than the third-order WKB values. While the
AIM does not prove as accurate in its calculation of the spin-half QNM frequencies as it did
with the scalar values (both for 15 iterations), none of the differences between the AIM values
and the numerical values exceed 0.30%, except for when l = 2 and n = 2 (better accuracy can
be achieved by increasing the number of iterations).

Similarly in Table 10 are the numerically determined QNM frequencies published by
Jing and Pan [48]. Both the third- and sixth-order WKB values along with the AIM values are
novel to this work and will also be explored more fully in [47]. The percentages bracketed
under each QNM frequency are the percentage differences between the calculated value and
the numerical value published by Jing and Pan, at least for l = 0 and l = 1. For l = 2, the
AIM values are compared to the sixth-order WKB values. As already noted, since there
are additional correction terms, the sixth-order WKB QNM frequencies are closer to the
numerical values than the third-order WKB values. Again the AIM does not appear to be as
precise in calculating the QNM frequencies for spin-half perturbations of the Kerr black hole
as it was for the scalar perturbations (at least for 15 iterations). As we mentioned, additional
tables and plots of these Kerr processes will constitute a future work [47].

5.3. The Spin-Two Case

As we have mentioned earlier, the radial equation for nonzero spin s is in general complex.
In fact, it does not even reduce to the Regge-Wheeler and Zerilli equations when the rotation
parameter is a → 0. Detweiler [44] has found a way to overcome this problem, where he
defined a new function

X = Δs/2
(
r2 + a2

)1/2
[

α(r)R + β(r)Δs+1dR

dr

]

. (5.29)

If the functions α(r) and β(r) are required to satisfy

α2 − α′βΔs+1 + αβ′Δs+1 − β2Δ2s+1K = constant, (5.30)

then it can be shown that the radial equation in (5.4) becomes

d2X

dx2
− VX = 0, (5.31)
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Table 9: The QNM frequencies for the spin half perturbations of the Kerr black hole, with a = 0.00, that
is, the Schwarzschild limit (M = 1,m = 0). Numerical data via the CFM were taken from [48], where the
AIM was set to run at 15 iterations.

l n Numerical Third-order WKB Sixth-order WKB AIM

0 0 0.1830–0.0970i 0.1765–0.1001i
(−3.55%, 3.20%)

0.1827–0.0949i
(−0.16%, −2.16%)

0.1830–0.0969i
(<0.01%, −0.10%)

1 0 0.3800–0.0964i 0.3786–0.0965i
(−0.37%, 0.10%)

0.3801–0.0964i
(0.03%, <0.01%)

0.3800–0.0964i
(<0.01%, <0.01%)

1 0.3558–0.2975i 0.3536–0.2987i
(−0.62%, 0.40%)

0.3559–0.2973i
(0.03%, −0.07%)

0.3568–0.2976i
(0.28%, 0.03%)

2
0 0.5741–0.0963i 0.5737–0.0963i

(−0.07%,<0.01%)
0.5741–0.0963i

(<0.01%, <0.01%)
0.5741–0.0963i

(<0.01%, <0.01%)

1 0.5570–0.2927i 0.5562–0.2930i
(−0.14%, 0.10%)

0.5570–0.2927i
(<0.01%, <0.01%)

0.5573–0.2928i
(0.05%, 0.03%)

2 0.5266–0.4997i 0.5273–0.4972i
(0.13%, −0.50%)

0.5265–0.4997i
(−0.02%, <0.01%)

0.5189–0.5213i
(−1.46%, 4.32%)

Table 10: The QNM frequencies for the spin half perturbations of the Kerr black hole, with a = 0.80 (M =
1,m = 0). Numerical data via the CFMwere taken from [48], where the AIMwas set to run at 15 iterations.

l n Numerical Third-order WKB(J) Sixth-order WKB(J) AIM

0 0 0.1932–0.0891i 0.1883–0.0896i
(−2.54%, 0.56%)

0.1914 –0.0865i
(−0.93%, −2.92%)

0.1920–0.0872i
(−0.62%, −2.13%)

1 0 0.3993–0.0893i 0.3956–0.0881i
(−0.93%, −1.34%)

0.3967–0.0880i
(−0.65%, −1.46%)

0.3965–0.0880i
(−0.70%, −1.46%)

1 0.3789–0.2728i 0.3751–0.2701i
(−1.00%, −0.99%)

0.3777–0.2687i
(−0.32%, −1.50%)

0.3764 – 0.2517i
(−0.66%, −7.73%)

2
0 0.5984–0.0881i 0.5987–0.0881i 0.5987–0.0882i

(<0.01%, 0.11%)

1 0.5844–0.2669i 0.5855–0.2667i 0.5846–0.2644i
(−0.15%, −0.86%)

2 0.5600–0.4512i 0.5609–0.4517i 0.6023–0.4260i
(7.38%, −5.70%)

where

V =
ΔU

(r2 + a2)2
+G2 +

dG

dx
,

G =
s(2r − 1)
2(r2 + a2)

+
rΔ

(r2 + a2)2
,

U = K +
2α′ +

(
β′Δs+1)′

βΔs
,

x = r +
r+

r+ − r− ln(r − r+) − r−
r+ − r− ln(r − r−).

(5.32)
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As Detweiler has indicated, it is possible to choose the functions α(r) and β(r) so that the
resulting effective potential V (r) is real and has the following form:

V =
ρ2Δ

(r2 + a2)2

{
f
(
f + 2

)

g + bΔ
− bΔ
ρ4

+

[
κρΔ − (

g ′Δ − gΔ′)][κρg − b(g ′Δ − gΔ′)]

ρ2
(
g + bΔ

)(
g − bΔ)2

}

+

[
ramΔ

ωρ(r2 + a2)2

]2

− Δ
r2 + a2

d

dr

[
ramΔ

ωρ(r2 + a2)2

]

− Y 2

(r2 + a2)2
,

(5.33)

where

g = fρ2 + 3ρ
(
r2 + a2

)
− 3r2Δ,

ρ = r2 + a2 − am

ω
,

κ = ±
{
9 − 2f

[(
a2 − am

ω

)
(5f + 6) − 12a2

]
+ 2bf

(
f + 2

)}1/2
,

(5.34)

b = ±3
(
a2 − am

ω

)
, (5.35)

Y = am −
(
r2 + a2

)
ω,

f = A + a2ω2 − 2amω.
(5.36)

When the Kerr rotation parameter a approaches zero, the potential V in (5.33) coincides
with the Regge-Wheeler potential for negative κ and coincides with the Zerilli potential
for positive κ. Here we choose κ to be negative, where the choice of the sign in (5.35) is
determined by the sign ofm [7–9, 44].

The QNM boundary conditions for X are

X −→
⎧
⎨

⎩

e−ikx x −→ −∞,

eiωx x −→ ∞,
(5.37)

where

k = ω − am

r+
. (5.38)

Hence, we write

X = eiωrriω/(r+−r−)
[
(r − r+)r+
(r − r−)r−

]−ik/(r+−r−)
χG. (5.39)
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Substituting this into (5.31), we have

χG,rr +

[

2ΓG +
r2 − a2

Δ(r2 + a2)

]

χG,r +

⎡

⎣Γ2G + ΓG,r +
ΓG

(
r2 − a2)

Δ(r2 + a2)
−
(
r2 + a2

Δ

)2

V

⎤

⎦χG = 0,

(5.40)

where

ΓG = iω +
iω

r(r+ − r−) −
ikr

Δ
. (5.41)

As we did earlier, we define the variable ξ = 1 − r+/r which has a compact domain 0 < ξ < 1.
Equation (5.40) can then be written in the AIM form:

χG,ξξ = λG(ξ)χG,ξ + sG(ξ)χG, (5.42)

where

λG =
2

1 − ξ − r+

(1 − ξ)2
[

2ΓG +
1
Δ
r2+ − a2(1 − ξ)2
r2+ + a2(1 − ξ)2

]

,

sG =
r2+

(1 − ξ)4

⎧
⎨

⎩

[
r2+ + a

2(1 − ξ)2
Δ(1 − ξ)2

]2

V − ΓG
Δ
r2+ − a2(1 − ξ)2
r2+ + a2(1 − ξ)2

− Γ2G

⎫
⎬

⎭
− r+

(1 − ξ)2
ΓG,ξ.

(5.43)

The results for the gravitational (spin-two) case are presented in Tables 11 and 12.
In general the error in the separation constant is smaller than that of the quasinormal
frequencies. As for the quasinormal frequencies the error in the Kerr case is larger than
that of either the Schwarzschild or the Reissner-Nordström cases, where this is due to
our consideration of the angular and the radial equations simultaneously. The number of
iterations that can be performed in the code is relatively small: much like the number of
continued fractions in the CFM is typically smaller due to the coupling between radial and
angular equations.

6. Doubly Rotating Kerr (A)DS Black Holes

Rotating black holes in higher dimensions were first discussed in the seminal paper byMyers
and Perry [49]. One of the unexpected results to come from this work was that some families
of solutions were shown to have event horizons for arbitrarily large values of their rotation
parameters. The stability of such black holes is certainly in question [50, 51], with numerical
evidence recently provided by Shibata and Yoshino [52, 53].

Another new feature of the Myers-Perry (MP) solutions is that they in general have
(D − 1)/2� spin parameters, making them more complex than the four-dimensional Kerr
solution. The first asymptotically nonflat five-dimensional MP metric was given in [54].
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Table 11: Spin-2 angular separation constants and Kerr gravitational quasinormal frequencies for the
fundamental mode corresponding to l = 2 andm = 0 compared with the CFM [6] (M = 1/2).

a ALeaver AAIM ωLeaver ωAIM

0 (4.0000, 0.0000) (4.0000, 0.0000)
(<0.01%)(<0.01%) (0.7473, −0.1779) (0.7413, −0.1780)

(−0.80%)(−0.06%)

0.1 (3.9972, 0.0014) (3.9973, 0.0014)
(<0.01%)(<0.01%) (0.7502, −0.1774) (0.7444, −0.1775)

(−0.77%, −0.06%)

0.2 (3.9886, 0.0056) (3.9887, 0.0056)
(<0.01%)(<0.01%) (0.7594, −0.1757) (0.7540, −0.1763)

(−0.71%)(−0.03%)

0.3 (3.9730, 0.0126) (3.9733, 0.0126)
(<0.01%)(<0.01%) (0.7761, −0.1720) (0.7715, −0.1722)

(−0.59%)(−0.12%)

0.4 (3.9480, 0.0223) (3.9482, 0.0222)
(<0.01%)(−0.45%) (0.8038, −0.1643) (0.8025, −0.1639)

(−0.16%)(0.24%)

0.45 (3.9304, 0.0276) (3.9303, 0.0280)
(<0.01%)(1.45%) (0.8240, −0.1570) (0.8250, −0.1591)

(0.12%)(−1.34%)

Subsequent generalizations to arbitrary dimensions were done in [55], and finally the most
general Kerr-(A)dS-NUT metric was found by Chen et al. [56].

In this section we review how the AIM can be used to solve the D ≥ 6 two-rotation
scalar perturbation equations (for more details on the metric and resulting separation see
[57]). The scalar field master equations are found to be [57]

0 =
1

rD−6
d

dr

(

rD−6Δr
dRr

dr

)

+

⎛

⎝
(r2 + a21)

2(r2 + a22)
2

Δr
ω̃2
r −

a21a
2
2j
(
j +D − 7

)

r2
− b1r2 − b2

⎞

⎠Rr,

(6.1)

0 =
(
ai
yi

)D−6 d

dyi

[(
yi
ai

)D−6
Δyi

dRθi

dyi

]

−
⎧
⎨

⎩

(
a21 − y2

i

)2(
a22 − y2

i

)2

Δyi

ω̃2
yi +

a21a
2
2j
(
j +D − 7

)

y2
i

+ b1y2
i − b2

⎫
⎬

⎭
Rθi ,

(6.2)

where

Δr =
(
1 + g2r2

)(
r2 + a21

)(
r2 + a22

)
− 2Mr7−D,

Δyi =
(
1 − g2y2

i

)(
a21 − y2

i

)(
a22 − y2

i

)
,

(6.3)
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Table 12: Spin-2 angular separation constants and Kerr gravitational quasinormal frequencies for the
fundamental mode corresponding to l = 2 andm = 1 compared with the CFM [6] (M = 1/2).

a ALeaver AAIM ωLeaver ωAIM

0 (4.0000, 0.0000) (4.0000, 0.0000)
(<0.01%)(<0.01%) (0.7473, −0.1779) (0.7413, −0.1780)

(−0.80%)(−0.06%)

0.1 (3.8932, 0.0252) (3.8937, 0.0250)
(−0.01%)(−0.89%) (0.7765, −0.1770) (0.7726, −0.1755)

(−0.51%, 0.86%)

0.2 (3.7676, 0.0532) (3.7681, 0.0526)
(0.01%)(−1.12%) (0.8160, −0.1745) (0.8143, −0.1726)

(−0.02%)(1.09%)

0.3 (3.6125, 0.0835) (3.6123, 0.0826)
(<0.01%)(−0.99%) (0.8719, −0.1693) (0.8722, −0.1674)

(0.03%)(1.00%)

0.4 (3.4023, 0.1122) (3.4011, 0.1110)
(−0.03%)(−1.00%) (0.9605, −0.1559) (0.9620, −0.1543)

(0.16%)(1.05%)

0.45 (3.2535, 0.1195) (3.2491, 0.1173)
(−0.03%)(−1.82%) (1.0326, −0.1396) (1.0376, −0.1369)

(0.48%)(1.97%)

the radial and angular frequencies are defined by

ω̃r = ω −
(
1 + g2r2

)
(

m1a1

r2 + a21
+

m2a2

r2 + a22

)

,

ω̃yi = ω −
(
1 − g2y2

i

)
(

m1a1

a21 − y2
i

+
m2a2

a22 − y2
i

)

,

(6.4)

and i = 1, 2. In the aformentioned g is the curvature of the spacetime satisfying Rμν = −3g2gμν
(e.g., see [56]), a1 and a2 are the two rotation parameters, and for later reference we define
ε = a2/a1.

Doubly rotating black holes are more complicated than simply rotating black holes (cf.
[58]), because two rotation planes lead to two coupled spheroids which are also needed for
the solution of the radial equation.

6.1. Radial Quasinormal Modes

For simplicity we will consider the flat case, setting g = 0, which leads to easier QNM
boundary conditions (cf. Schwarzschild to Schwarzschild-dS). These satisfy the boundary
condition that there are only waves ingoing at the black hole horizon and outgoing waves at
asymptotic infinity.

As we have shown with the previous examples, it is easier to work on a compact
domain and define the variable x = 1/r, so that infinity is mapped to zero and the outer
horizon stays at xh = 1/rh = 1. The domain of x will therefore be [0, 1]. Thus the QNM
boundary condition is translated into the statement that the waves move leftward at x = 0
and rightward at x = 1. We again choose the AIM point in the middle of the domain, that is,
at x = 1/2.
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In terms of x the radial equation in (6.1) becomes

0 = −xD−4 d
dx

(

−x8−DΔx
dR

dx

)

+

⎛

⎝

(
x−2 + a21

)2(
x−2 + a22

)2

Δx
ω̃2
x − a21a22j

(
j +D − 7

)
x2 − b1

x2
− b2

⎞

⎠R,

(6.5)

where Δx(x) ≡ Δr(r = 1/x) and ωx(x) ≡ ωr(r = 1/x).
After performing some asymptotic analysis, we find that for the solutions to satisfy

the QNM boundary conditions we must have

R ∼ (1 − x)iω̃hαhx(D−2)/2eiωx/xy(x), (6.6)

where

ω̃h ≡ ωx (x = 1),

αh ≡
(
1 + α21

)(
1 + α22

)

Δ′
x(x = 1)

.
(6.7)

We then substitute this anstaz into (6.5) and rewrite into the AIM form:

y′′ = λ0y′ + s0y. (6.8)

This final step can be performed in Mathematica, where the resulting expressions for λ0 and
s0 are fed into the AIM routine. The method we use to find thr QNMs proceeds in a fashion
similar to that used in [59, 60] (see also Section 5.3) except we use the AIM instead of the
CFM.

First we set the number of AIM iterations in both the eigenvalue andQNMcalculations
to sixteen. We start with the schwarzschild values (b1, b2, ω), that is, at the point (a1, a2) ∼ 0
and then increment a1 and a2 by some small value. We take the initial eigenvalues (b1, b2),
insert them into the radial equation (6.6), and then use the AIM to find the new QNM that is
closest to ω using the Mathematica routine FindRoot.

Taking this new value of omega, ω′, we insert it into the two angular equations (at the
same value of a1 and a2) and then solve using the AIM, searching closest to the pervious b1
and b2 values, thereby obtaining the new eigenvalues b′1 and b

′
2. We then repeat this process

with the new (ω′, b′1, b
′
2) as the starting point until the results converge and we have achieved

four decimal places of accuracy. When this occurs, we increment a1 and a2 again and repeat
the proces. In this way we are able to find the QNMs and along lines passing approximately
through the origin (i.e, starting from the near Scwharzschild values) in the (a1, a2) parameter
space.

As an example, we have plotted various values of ε = a2/a1(= 0, 0.2 , 0.4, 0.6, 0.8, 1)
against a1 and used an interpolating function to interpolate batween these values as shown
in Figure 1 (for further details see [57]).
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Figure 1: An example of the D = 6 fundamental (j,m1,m2, n1, n2) = (0, 0, 0, 0, 0) QNM. (a) is a plot of the
imaginary part and (b) is a plot of the real part.

7. Summary and Outlook

In this paper we have shown that the AIM can be used to calculate the radial QNMs of a
variety of black hole spacetimes. In particular, we have used it to calculate perturbations of
Schwarzschild (in asymptotically flat, de Sitter and anti-de-Sitter), RN, and Kerr (for spin
0, 1, and 2 perturbations) black holes in four dimensions. We argued that the method will be
of use in studies of extra dimensional black holes and gave an explicit example of this in the
case of the doubly rotating Myers Perry black hole.

We have hopefully demonstrated how the AIM can also be applied to radial QNMs
and not just to spheroidal eigenvalue problems [14, 34]. Given the fact that the AIM can be
used in both the radial and angular wave equations [34], we expect no problems in obtaining
QNMs for Kerr-dS black holes in four and higher dimensions. Note that this was only recently
accomplished via the CFM in [61] using Heun’s equation [62] to reduce the problem to a 3-
term recurrence relation. In higher dimensions a similar method was used for simply rotating
Kerr-AdS black holes [58].

It remains to be seen if the AIM can be tailored to handle asymptotic QNMs (see [63]
for an adapted version of the CFM). However, given the close relationship between the AIM
and the exact WKB approach [64], it might be possible to adapt the AIM to find asymptotic
QNMs [65–68] numerically or even semianalytically.

The AIM might be of some topical use, for example, in the angular spheroids/QNMs
needed in the phenomenology of Hawking radiation from spinning higher-dimensional black
holes; for a recent review, see [69]. We recently used a combination of all the techniques
discussed in this work to evaluate the angular eigenvalues, 0Akjm, for real c = aω, which
are needed for the tensor graviton emission rates on a simply rotating Kerr-de Sitter black
hole background in (n + 4)-dimensions [70] (also see [71]) and it might also be interesting to
find QNMs of doubly rotating Kerr-(A)dS black holes (for asymptotically flat Kerr see [57]).
Finally, attempting to solve the QNMs for all spins on the Schwarzschild-AdS background
via the AIM also seems an interesting problem.

As such we hope to have provided the reader with enough technical details and to
have addressed some of the possible questions to allow them to pursue the study of QNMs
with the AIM (source code and other information for some of the cases presented here can be
found on the AIM link at http://www-het.phys.sci.osaka-u.ac.jp/∼naylor/).
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Appendices

A. Angular Eigenvalues for Spin-Weighted Spheroidal Harmonics

As mentioned in Section 5.3, aside from radial QNMs, the AIM can also be applied to various
kinds of spin-weighted spheroidal harmonics, sSlm(θ); for example, see [60]. Therefore, in
this appendix, we briefly compare the AIM with the CFM for the four-dimensional spin-
weighted spheroids.

With the regular boundary conditions, the angular wave function can be written as [6]

S = eaωu(1 + u)(1/2)|m−s|(1 − u)(1/2)|m+s|χA(u). (A.1)

Putting this back into (5.3) and rewriting the equation in AIM form, we have

χA,uu = λA(u)χA,u + sA(u)χA, (A.2)

where

λA(u) =
2u

1 − u2 − 2N,

sA(u) =
1

1 − u2
[
(m + su)2

1 − u2 + 2aωsu + 2uN −
(
a2ω2u2 + s+ sAlm

)
]

−N2 −N,u,

N = aω +
|m − s|
2(1 + u)

− |m + s|
2(1 − u) .

(A.3)

These are the relevant equations for calculating the eigenvalues of the spheroidal harmonics
in the four-dimensional case. It was noticed in [14] that the AIM converges fastest at the
maximum of the potential, when the AIM is written in WKB form. In four dimensions this
occurs at x = 0 and is true for general spin-s as we have verified. Note that for higher-
dimensional generalizations it is not easy to explicitly find a maximum [34].

It may be worth mentioning that for the case where c = 0, an exact analytic solution of
the pervious equations leads to [60]

sAlm = l(l + 1) − s(s + 1). (A.4)

In the exact limit c = 0, the AIM recovers the result for spherical harmonics, (A.4) above,
while for the CFM taking c = 0 leads to singularities [60]; however for c � 1 we find
agreement with the CFM and (A.4).

For the purposes of consistency we have calculated (see Table 13) the 2Al1 eigenvalues
for the lowest l = 2, . . . , 7 modes to 10 significant figures and have also compared this
with the results of the CFM. In both the AIM and CFM larger l modes require more
iterations/recursions to achieve convergence in a given l eigenvalue to the required precision.
Care should be taken when comparing the number of iterations in the AIM with that of the
number of recursions in the CFM, because one iteration of the AIM is not equivalent to one
iteration of the CFM. In fact although we typically need to iterate the improved AIM on
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Table 13: Selected spin two eigenvalues, 2Alm, obtained from the AIM for a Kerr black hole with varying
values of c = aω and m = 1: the same number of iterations in the AIM, nA, and the number of recursions
in the CFM, nC, for c = 0.1, 0.8 at a working precision of 15 digit precision, where results are presented to
10 s.f.

l
c = 0.1

(nA = nC = 15,)
c = 0.8

(nA = 35, nC = 70)
c = −10i

(nA = 80, nC = 130 CFM)
c = 10

(nA = 75, nC = 145)

2 −0.1391483511 −1.462479552 (12.44128209,
0.8956143162) −101.8949078

3 5.929826236 5.247141863 (32.31138608,
1.302608040) −63.74900642

4 13.95640426 13.45636668 (51.27922784,
1.946041848) −30.35607486

5 23.96944247 23.54163307 (69.25750923,
3.012877154) −4.557015739

6 35.97681567 35.58524928 (85.86796852,
4.990079008) −2.555206382

7 9.98139515 49.61077286 (99.20081385,
6.801617108) 12.32203552

average a lesser number of times, the CFM is typically faster for smaller values of c. However,
for larger values of c both methods can be faster or slower.

The results of the first few l eigenvalues for different values of c = aω, withm = 1, are
presented in Table 13. As far as we are aware this is the first time tables of spin-2 spheroids
(for general complex c) have been presented using the AIM. Further results are presented in
Section 5.3 along with the radial QNMs for the spin two perturbations of the Kerr black hole
in Table 12.

B. Higher-Dimensional Scalar Spheroidal Harmonics with
Two Rotation Parameters

The two Equations (6.2), for i = 1, 2, . . ., are in fact the two-rotation generalization of the
higher-dimensional spheroidal harmonics (HSHs) studied in [59]. In this case, the existence
of two rotation parameters leads to a system of two coupled second-order ODEs. (For the
moment we are consideringω to be an independent parameter). In general, one would expect
that the generalizations of the HSHs to (D − 1)/2� rotation parameters would lead to even
larger systems of equations. While these systems would also be useful generally in studies of
MP black holes, here we will only focus on the two rotation case.

The angular equations can be written in the Sturm-Liouville form (assuming momen-
tarily that ω and b2 are real):

λw(ξi)Rθi(ξi) = − d

dξi

(

p(ξi)
d

dξi
Rθi(ξi)

)

+ q(ξi)Rθi(ξi) (B.1)
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with the weight function w1(ξi) = (1/4)ξ(D−5)/2
i , the eigenvalue λ = −b1, and

p(ξi) = ξ
(D−5)/2
i Δξi ,

q(ξi) =
1
4
ξ
(D−7)/2
i

⎛

⎝

(
a21 − ξi

)2(
a22 − ξi

)2

Δξi

ω̃2
ξi
+
a21a

2
2j
(
j +D − 7

)

ξi
− b2

⎞

⎠,

(B.2)

where Δξi and ω̃ξi are defined in the obvious way under the change of coordinates. Since
w(ξ) > 0, we can define the two norms:

N1(Rθ1) ∝
∫a21

a22

ξ
(D−5)/2
1 |Rθ1 |2dξ1,

N2(Rθ2) ∝
∫a22

0
ξ
(D−5)/2
2 |Rθ2 |2dξ2.

(B.3)

For further details see [57].
The regular solutions are found to be

R1 ∼
(
ξ1 − a22

)|m2|/2(
a21 − ξ1

)|m1|/2
Ψ1; ξ1 ∈

(
a22, a

2
1

)
,

R2 ∼ ξj/22

(
a22 − ξ2

)|m2|/2
Ψ2; ξ2 ∈

(
0, a22

)
.

(B.4)

Now for a given value of ω we can determine b1 and b2 simply by performing the improved
AIM [13] on both of the angular equations separately. This will result in two equations in the
two unknowns b1 and b2 which we can then be solved using a numerical routine such as the
built-in Mathematica functions NSolve or FindRoot. More specifically we rewrite (6.2) using
(B.4) and transform them into the AIM form:

d2Ψ1

dξ21
= λ01

dΨ1

dξ1
+ s01Ψ1,

d2Ψ2

dξ22
= λ02

dΨ2

dξ2
+ s02Ψ2.

(B.5)

The AIM requires that a special point be taken about which the λ0i and s0i coefficients are
expanded. As was shown in [34] different choices of this point can worsen or improve the
speed of the convergence. In the absence of a clear selection criterion we simply choose this
point conveniently in the middle of the domains:

ξ01 =
a21 + a

2
2

2
, ξ02 =

a22
2
. (B.6)

Some results are plotted in Figures 2 and 3. This method can now be used in the radial
QNM equation in Section 6.1.
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Figure 2: (Color online)D = 6, g = 0, (j,m1,m2, n1, n2) = (0, 1, 1, 0, 0): A plot of the eigenvalues for various
choices of ε ≡ a2/a1. Note that the dependence on a1 has been scaled into the other quantities.
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Figure 3: (Color Online) D = 6, ε ≡ a2/a1 = 1/2, (j,m1,m2, n1, n2) = (0, 1, 1, 0, 0): A plot of the eigenvalues
for ga1 = 0.5i, 0, 0.5, corresponding to de-Sitter, flat, and anti-deSitter spacetimes respectively. Note that
the dependence on a1 has been scaled into the other quantities.
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