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In the semiclassical regime, we obtain a lower bound for the counting function of resonances cor-
responding to the perturbed periodic Schrödinger operator P(h) = −Δ + V (x) +W(hx). Here V is
a periodic potential,W a decreasing perturbation and h a small positive constant.

1. Introduction

The quantum dynamics of a Bloch electron in a crystal subject to external electric field, which
varies slowly on the scale of the crystal lattice, is governed by the Schrödinger equation

P(h) = −Δ + V (x) +W(hx). (1.1)

Here V is periodic with respect to the crystal lattice Γ ⊂ R
n, and it models the electric potential

generated by the lattice of atoms in the crystal. The potentialW is a decreasing perturbation
and h a small positive constant.

There has been a growing interest in the rigorous study of the spectral properties of
Bloch electrons in the presence of slowly varying external perturbations (see [1–11]).

Since the work of Peierls [10] and Slater [11], it is well known that, if h is sufficiently
small, then solutions of P(h) are governed by the “semiclassical” Hamiltonian

H
(
y, η

)
= λ

(
η +A

(
y
))

+ V
(
y
)
. (1.2)
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Here λ(k) is one of the “band functions” describing the Floquet spectrum of the unperturbed
Hamiltonian

P0 = −Δx + V (x). (1.3)

One argues that for suitable wave packets, which are spread over many lattice spacings, the
main effect of a periodic potential on the electron dynamics consists in changing the disper-
sion relation from the free kinetic energy Efree(k) = |k|2 to the modified kinetic energy λ(k)
given by the Bloch band.

The problem of resonances has been examined in [12] for the one-dimensional case
and in [13] for the general case. In particular, a similar reduction to (1.2) for resonances has
been obtained in [13].

This paper continues our previous works [13, 14] on the resonances and the eigenval-
ues counting function for P(h). In [14], Dimassi and Zerzeri obtained a local trace formula for
resonances. As a consequence, they obtained an upper bound for the number of resonances
of P(h) in any h-independent complex neighborhood of some energy E. The purpose of this
paper is to give a lower bound for the number of resonances of P(h).

In the case where V = 0, it is known that, for 0 < E in the analytic singular support
(from now on sing suppa for short) of the distribution dρ0 ∗ μ, then the operator P(h) = −Δ+
W(hx) has at least CΩh

−n resonances in any h-independent complex neighborhood Ω of E
(see, e.g., [15]). Here

μ(t) =
∫

{x∈Rn; W(x)>t}
dx,

ρ0(t) = (2π)−nvol(B(0, 1))(max(t, 0))n/2.

(1.4)

Using the explicit formula of ρ0 we see that the analytic singular support of the distrib-
utions μ and dρ0 ∗ μ coincide.

In the case where V /= 0 the situation is different. Following Theorem 1.6 in [14] and
Lemma 2.1 of the next section, we have to change ρ0 by

ρ(λ) :=
1

(2π)n
∑

j≥1

∫

{k∈E∗; λj (k)≤λ}
dk, (1.5)

which is the integrated density of states corresponding to the nonperturbed Hamiltonian P0
(see Section 2).

If λj(k) is a simple eigenvalue near some point e0, then λj(k) is a smooth function, and
if e0 = λj(k) is a critical value, we expect in general that e0 will belong to the analytic singular
support of ρ(λ). In particular, we expect that near every point e ∈ e0 + sing suppa(μ) there
exists at least Ch−n, C > 0, resonances.

Multiple eigenvalues (λj(k0) = λj+1(k0) = e0) can also give rise to singularities of ρ(λ)
and then lead to the existence of resonances near e0 + sing suppa(μ).

The purpose of this paper is to describe all these situations. Some results of this paper
are announced without proofs in [16].

The paper is organized as follows: in the next section, we introduce some notations
and state some technical lemmas. In Section 3 we give an upper bound for resonances near
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singularities of the density of states measure ρ generated by a band crossing. In Section 4 we
give an upper bound for resonances near the edge of bands.

2. Preliminaries

Let Γ = ⊕ni=1Zai be the lattice generated by the basis a1, a2, . . . , an, ai ∈ R
n. The dual lattice Γ∗ is

defined as the lattice generated by the dual basis {a∗1, a∗2, . . . , a∗n} determined by ai ·a∗j = 2πδij ,
i, j = 1, 2, . . . , n. Let E be a fundamental domain for Γ, and let E∗ be a fundamental domain
for Γ∗. If we identify opposite edges of E (resp., E∗), then it becomes a flat torus denoted by
T = R

n/Γ (resp., T
∗ = R

n/Γ∗).
Let V be a real valued potential, C∞ and Γ-periodic. For k in R

n, we define

P0(k) = (Dx + k)
2 + V (x) (2.1)

as an unbounded operator on L2(T) with domain H2(T). The Hamiltonian P0(k) is semi-
bounded and self-adjoint. Since the resolvent of (Dx +k)

2 is compact, the resolvent of P0(k) is
also compact, and therefore P0(k) has a complete set of (normalized) eigenfunctionsΦn(·, k) ∈
H2(T∗), n ∈ N, called Bloch functions. The corresponding eigenvalues accumulate at infinity,
and we enumerate them according to their multiplicities:

λ1(k) ≤ λ2(k) ≤ · · · . (2.2)

Since e−ixγ
∗
H0(k)eixγ

∗
= H0(γ∗ + k), the band function λn(k) is periodic with respect to Γ∗.

The function λn(k) is called a band function, and the closed intervals Λn := λn(T∗) are called
bands.

Standard perturbation theory shows that λn(k) is a continuous function of k and is real
analytic in a neighborhood of any k such that

λn−1(k) < λn(k) < λn+1(k). (2.3)

We fix λ in the spectrum of the unperturbed operator P0. We make the following hypothesis
on the spectrum of the unperturbed Schrödinger operator.

(H1) For all k0 with λi(k0) = λ, the eigenvalue λi(k0) is simple and dkλi(k0)/= 0.

Now, let us recall some well-known facts about the density of states associated with
P0. The density of states measure ρ is defined as follows:

ρ(λ) :=
1

(2π)n
∑

j≥1

∫

{k∈E∗; λj (k)≤λ}
dk, (2.4)

where E∗ is a fundamental domain of R
n/Γ∗. Since the spectrum of P0 is absolutely continu-

ous, the measure ρ is absolutely continuous with respect to the Lebesgue measure dλ. Thus,
the density of states of P0, ∂ρ/∂λ is locally integrable.
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We now consider the perturbed periodic Schrödinger operator:

P(h) := P0 +W(hx), (2.5)

where W ∈ C∞(Rn;R). We assume that there exist positive constants a and C such that W
extends analytically to Γ(a) := {z ∈ C

n; |I(z)| ≤ a〈R(z)〉} and

|W(z)| ≤ C〈z〉−ñ, uniformly on z ∈ Γ(a), ñ > n, (2.6)

where 〈z〉 = (1+ |z|2)1/2. Here R(z),I(z) denote, respectively, the real part and the imaginary
part of z.

This assumption allows us to define the resonances of P(h) by the spectral deformation
method (see [17]). We follow essentially the presentation of [13].

Let v ∈ C∞(Rn;Rn) be Γ∗-periodic. For t ∈ R, we introduce the spectral deformation
family Ut defined by for all u ∈ S:

Utu(r) := F−1
h

{(
J1/2t (Fhu)(vt(k))

)}
(r), ∀x ∈ R

n, (2.7)

where vt(k) = k − tv(k) and Jt(k) its Jacobian. Here Fh is the semiclassical Fourier transform:

[Fhu](ξ) :=
∫

Rn

e−(i/h)xξu(x)dx, ∀u ∈ S(Rn). (2.8)

Consider, for t ∈ R, the family of unitarily equivalent operators

P1(t, h) := UtP1(h)U−1
t . (2.9)

It was established in [13, Proposition 2.8] that P1(t, h) extends to an analytic type-A family of
operators onD(t0) := {t ∈ C; |t| < t0}with domainH2(Rn). Moreover, under the assumptions
(H1) and (2.6), there exists a neighborhood Ω̃ of z0 and a small positive constant η such that,
for t ∈ D(t0) with It > 0, the spectrum of P1(t, h) in Ωt := {z ∈ Ω̃; Iz > −ηIt} consists of
discrete eigenvalues of finite multiplicities that lie in the lower half plane (see [13, formula
(4.9)]). These eigenvalues are t-independent under small variations of It > 0 and are called
resonances. We will denote the set of resonances by Res(P(h)).

For f ∈ C∞
0 (R), we set

〈
μ, f

〉
=
∫
[
f(W(x)) − f(0)]dx, (2.10)

〈
ω, f

〉
=

1
(2π)n

∑

j≥1

∫

E∗

∫

Rn
x

[
f
(
W(x) + λj(k)

) − f(λj(k)
)]
dk dx, (2.11)
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For E > 0, let

ν+(E) :=
∫

{x∈Rn; W(x)≥E}
dx. (2.12)

Similarly, for E < 0, we set

ν−(E) :=
∫

{x∈Rn; W(x)≤E}
dx. (2.13)

Clearly, ν+(E) (resp., ν−(E)) is a decreasing function of E (resp., an increasing function of E)
and

μ|R± = − d

dE
ν±(E). (2.14)

Lemma 2.1. The distributions ω and μ are real valued of order ≤1. Moreover, inD′(R), one has

ω = dρ ∗ μ. (2.15)

Proof. Applying Taylor’s formula to the right-hand side of (2.10), we obtain

∣∣〈μ, f
〉∣∣ ≤ sup

∣∣f ′∣∣
∫
|W(x)|dx, (2.16)

which together with (2.6) imply that μ is a distribution of order ≤1, with

supp μ ⊂ [
inf W(x), sup W(x)

]
. (2.17)

Consequently, dρ ∗ μ is well defined in D′(R) and for all f ∈ C∞
0 (R), we have

〈
dρ ∗ μ, f〉 = 〈

dρ(t),
〈
μ, f(· + t)〉〉

= −
〈
ρ(t),

∫
[
f ′(W(x) + t) − f ′(t)

]
dx

〉

= − 1
(2π)n

∑
j

∫

E∗

∫∞

λj (k)

∫

Rn
x

[
f ′(W(x) + t) − f ′(t)

]
dx dt dk

=
1

(2π)n
∑

j

∫

E∗

∫

Rn
x

[
f
(
W(x) + λj(k)

) − f(λj(k)
)]
dx dk

=
〈
ω, f

〉
.

(2.18)

This ends the proof of the lemma.
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Let Ω be an open-bounded set in R
n, and let Ω̃ be a complex neighborhood of Ω. Let

x → ϕ(x) be analytic on Ω̃ and real valued for all x in Ω. Let us introduce the real function

I(e) :=
∫

{x∈Ω; ϕ(x)≤e}
dx. (2.19)

For e ∈ ϕ(Ω), we set

Σ(e) :=
{
x ∈ Ω; ϕ(x) = e

}
. (2.20)

Lemma 2.2. Let e0 ∈ ϕ(Ω), and let Σ(e), I(e) be as above. One assumes that

(i) ∇ϕ(x)/= 0 for all x ∈ Σ(e0),

(ii) ∂Ω ∩ Σ(e0) = ∅.

Then the function

I(e) :=
∫

{x∈Ω; ϕ(x)≤e}
dx (2.21)

is analytic near e0.

Proof. Let ε be a small positive constant such that ∇ϕ(x)/= 0 when x ∈ Σε(e0) := ϕ−1(]e0 − ε,
e0 + ε[). Without any loss of generality we may assume that ∂x1ϕ/= 0 for all x ∈ Σε(e0). By the
change of variableH : x → (ϕ(x), x2, . . . , xn) we have

∫

{x∈Σε(e0): ; ϕ(x)≤e}
dx =

∫

{x∈H(Σε(e0):); x1≤e}
Jac

(
H−1(x)

)
dx. (2.22)

Clearly the right-hand side of the above equality is analytic. Combining this with the fact that∫
{x∈Ω\Σε(e0): ; ϕ(x)≤e} dx is constant for e near e0 we get the lemma.

Lemma 2.3. If ϕ has a nondegenerate extremum at x0 with ϕ(x0) = e0 and if ∇ϕ(x)/= 0 for all x ∈
Σe0 \ {x0}, then

I(e) = f(e − e0) +H(±(e − e0))g
(√

±(e − e0)
)
, (2.23)

where f and g are analytic near zero and

g(t) ∼t→ 0
vol

(
Sn−1

)

n
√
detϕ′′(x0)

2n/2tn. (2.24)

HereH(t) is the Heaviside function and + (−) corresponds to a minimum (maximum, resp.).
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Proof. Here we only give a sketch of the proof. For the details we refer to [18]. Without any
loss of generality, we only consider the case of minimum. ByMorse lemma there exist a neigh-
borhoodU of x0, ε > 0 and a local analytic diffeomorphism D : Ω → B(0, ε) such that

∫

{x∈U; ϕ(x)≤e}
dx =

∫

{x∈B(0,ε); |x|2≤e−e0}{ }
Jac

(
D−1(x)

)
dx. (2.25)

By a simple calculus we show, using polar coordinates, that the integral of the r.h.s. is equal
toH(e − e0)g(√e − e0). On the other hand, since ∇ϕ(x)/= 0 for x ∈ Σe0 \ {x0}, it follows from
Lemma 2.2 that

∫

{x∈O\U; ϕ(x)≤e}
dx (2.26)

is analytic near e0. This ends the proof of the lemma.

3. Lower-Bound Near Singularities due to Band Crossing

Here we are interested in the C∞ singular support (which will be denoted by sing supp). Re-
call that x0 /∈ sing supp μ if and only if μ is C∞ near x0. The case of analytic singular support
can be treated similarly.

In this section we study resonances near singularities of ρ(λ) generated by a band
crossing. We will only consider the two-dimensional case. With similar assumptions, one can
treat the case n ≥ 2.

We assume that λj(k) is double eigenvalues λj−1(k0) < λj(k0) = e0 = λj+1(k0) < λj+2(k0)
and that for all k /= k0 such that λi(k) = e0, λi(k) is simple and ∇λi(k)/= 0.

Since P0(k) is analytic in k, this implies that, for |k − k0| ≤ δ (with δ small enough), the
span V (k), of the eigenvectors of P0(k) corresponding to eigenvalues in the set {e; |e−e0| ≤ δ},
has a basis ψj(x, k), ψj+1(x, k), which is orthonormal and real analytic in k. The restriction of
P0(k) to V (k) has the matrix

(
α(k) b(k)

b(k) β(k)

)

, (3.1)

which can be written

(
a(k) + c(k) b1(k) − ib2(k)
b1(k) + ib2(k) a(k) − c(k)

)

, (3.2)

where a(k) = α(k) + β(k)/2, c(k) = α(k) − β(k)/2, b1(k) and b2(k) are real valued. Next the
periodic potential is assumed to have the symmetry V (x) = V (−x). This symmetry is typical
of metals. This symmetry forces b(k) to be real valued (i.e., b2(k) = 0), (see [19]). Conse-
quently, near k0 we have

λj(k) = a(k) −
√
c2(k) + b21(k), λj+1(k) = a(k) +

√
c2(k) + b21(k). (3.3)
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We assume that ∇b1(k0), ∇c(k0) are independent. Since n = 2, (∇b1(k0),∇c(k0)) is a basis in
R

2. Set ∇a(k0) = α1∇b1(k0) + α2∇c(k0).

Lemma 3.1. Let ∇a(k0) = α1∇b1(k0) + α2∇c(k0) be as above. One assumes that

α21 + α
2
2 < 1. (3.4)

Then there exist an open connected neighborhood J of e0 and analytic functions f and g such that

ρ(e) = f(e) + (H(e − e0) −H(e0 − e))g(e), (3.5)

with

g ′′(e0)/= 0, ∀e ∈ J. (3.6)

Proof. To simplify the notation we assume that k0 = 0 and e0 = 0.
Let Ω be a neighborhood of k0 = 0. We introduce

(2π)nρ1(e) =
∫

{k∈Ω; λn(k)≤e}
dk +

∫

{k∈Ω; λn+1(k)≤e}
dk, (3.7)

so that

(2π)n
(
ρ(e) − ρ1(e)

)
=

∑

j/∈{n,n+1}

∫

{k∈E∗; λj (k)≤e}
dk +

∫

{k∈E∗\Ω; λn(k)≤e}
dk +

∫

{k∈E∗\Ω; λn+1(k)≤e}
dk.

(3.8)

Due to Lemma 2.2, the right-hand side of the above equalities is analytic near 0.
Since ∇b1(k0), ∇c(k0) are independent, there exist a neighborhood Ω of k0 = 0, ε > 0

and a local analytic diffeomorphism κ : Ω → B(0, ε) such that, with the change of variable
k → κ(k), we obtain

(2π)nρ1(e) =
∫

{|k|≤ε; G(k)+|k|≤e}
F(k)dk +

∫

{|k|≤ε; G(k)−|k|≤e}
F(k)dk, (3.9)

where G(k) = a(κ−1(k)) and F(k) = Jac(κ(k)) are analytic near k = 0 and ∇G(0) = (α1, α2).
Using polar coordinates and making the change r → −r, ω → −ω in the second inte-

gral, we get

(2π)nρ1(e) =
∫

S1

∫

{0≤r≤δ; G(rω)+r≤e}
F(rω)r dr dω −

∫

S1

∫

{−δ≤r≤0; G(rω)+r≤e}
F(rω)r dr dω,

(3.10)
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which can be written

(2π)nρ1(e) =
∫

S1

∫

{0≤r≤δ; G(rω)+r≤e}
F(rω)r dr dω +

∫

S1

∫

{−δ≤r≤0; G(rω)+r≥e}
F(rω)r dr dω − c0,

(3.11)

where c0 =
∫
S1

∫
{−δ≤r≤0} F(rω)rdrdω. Since

∂r(G(rω) + r)|r=0 = 〈∇G(0), ω〉 + 1 ≥ η > 0, (3.12)

uniformly on ω ∈ S1, there exist δ1, δ2 > 0 (independent on ω ∈ S1) such that Y : r → Y (r) =
G(rω) + r from ] − δ1, δ1[ into ] − δ2, δ2[ is an analytic diffeomorphism. Hence, for |e| small
enough

(2π)nρ1(e) + c0 =
∫

S1

∫

{t≥0; t≤e}
F
(
Y−1(t)ω

)Y−1(t)
Y ′(t)

dt dω

+
∫

S1

∫

{t≤0; t≥e}
F
(
Y−1(t)ω

)Y−1(t)
Y ′(t)

dt dω

= (H(e) −H(−e))g(e),

(3.13)

where

g(e) =
∫e

0

∫

S1
F
(
Y−1(t)ω

) Y ′(t)
Y−1(t)

dt dω. (3.14)

Using that

Y−1(0) = 0 (3.15)

we deduce g ′′(0) = F(0)
∫
S1 (〈∇G(0), ω〉 + 1)−2dω/= 0.

We denote by #A the number of elements of A, counted with their multiplicity. The
main result of this section is the following.

Theorem 3.2. Let λ, e0 ∈ σ(P0) with λ ∈ (e0 + sing supp(μ)). One assumes the following.

(i) The periodic potential V satisfies V (x) = V (−x).
(ii) There exists k0 ∈ R

n/Γ∗ such that λj−1(k0) < λj(k0) = e0 = λj+1(k0) < λj+2(k0).

(iii) For all k /∈ k0 + Γ∗ such that λi(k) = e0, the eigenvalue λi(k) is simple and ∇λi(k)/= 0.

(iv) The numbers (α1, α2) satisfy (3.4), and (λ − supp(μ)) ⊂ J . Here J is the interval given by
Lemma 3.1.

(v) λ satisfies (H1).
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Then for all h-independent complex neighborhoodsΩ of λ, there exist h0 = h(Ω) > 0 sufficient-
ly small and C = C(Ω) > 0 such that, for h ∈]0, h0[,

#{z ∈ Ω; z ∈ Res(P(h))} ≥ CΩh
−n. (3.16)

Proof. Without any loss of generality we may assume that e0 = 0. Set

K(·) := (H(·) −H(−·))g(·), (3.17)

where g(·) is the function given in Lemma 3.1.
The assumption that (λ − supp(μ)) ⊂ J ensures that, in the study of dρ ∗ μ near λ, one

only needs the value of ρ in J given by (3.4). More precisely, it implies that

ω(t) = dρ ∗ μ(t) = ρ ∗ dμ(t) = f ∗ dμ +K(·) ∗ dμ = (1) + (2), (3.18)

for t near λ.
Since f is smooth, the first term of the right-hand side of the above equation is also

smooth.
Clearly, it follows from assumption (2.6) and Lemma 2.2 that the sing supp(μ) is a dis-

crete set. Thus, the point λ is isolated in sing supp(μ). We recall that we have assumed that
e0 = 0.

Let χ ∈ C∞
0 (B(0, 1)) (resp., θ ∈ C∞

0 (B(λ, 1))) be equal to one near zero (resp., λ). Here
B(y, r) is the disc of center y and radius r. Set χε = χ(·/ε) and θε = θ(·/ε). We choose ε > 0
small enough such that

sing supp
(
μ
) ∩ supp θε = {λ}. (3.19)

To study the second term of the right-hand side of (3.18), we write it in the form

(2) = K(·)(1 − χε
) ∗ dμ +K(·)χε ∗ θεdμ +K(·)χε ∗ (1 − θε)dμ = (3) + (4) + (5). (3.20)

Since K(·)(1 − χε) is smooth the term (3) is also smooth. Using (3.19) and the fact that the
support of K(·)χε is small for ε � 1, we see that the term (5) is C∞ near λ.

Now, we claim that

sing supp(4) = {λ}. (3.21)

First, from a standard result on the singular support, we have

sing supp(4) ⊂ sing supp
(
K(·)χε

)
+ sing supp

(
θεdμ

)
= {λ}. (3.22)

Consequently, to prove the claim it suffices to show that (4) /∈ C∞
0 (R). We recall that (4) has a

compact support.



Advances in Mathematical Physics 11

A simple calculus and Lemma 3.1 yield

c
(
1 + |ξ|2

)−1 ≤
∣
∣
∣K̂(·)χε(ξ)

∣
∣
∣ ≤ C. (3.23)

Here f̂(ξ) is the Fourier transform of f . Consequently, θ̂εdμ ∈ S(R) if and only if (̂4) ∈ S(R),
where S(R) is the Schwartz space of C∞ function of rapid decrease.

On the other hand, (3.19) implies that θ̂εμ /∈ S(R). Combining this with the above
remarks we get the claim.

Summing up, we have proved that λ ∈ sing supp(ω = dρ ∗ μ).
Now, applying the following result of [14] we obtain Theorem 3.2.

Theorem 3.3 (see [14]). Let λ ∈ sing suppa(ω). Assume that λ satisfies (H1). Then for every h-in-
dependent complex neighborhood Ω̃ of λ, there exists h0 = h(Ω̃) sufficiently small andC = C(Ω̃) large
enough such that, for h ∈]0, h0[,

#
{
z ∈ Ω̃; z ∈ Res(P(h))

}
≥ C

(
Ω̃
)
h−n. (3.24)

Remark 3.4. Let e0 be a singularity of the integrated density of states, generated by a band
crossing. Theorem 3.2 shows that there is at least ∼ h−n resonances near e0 + t, where t is in
the singular support of the distribution μ defined by

μ(t) =
∫

{x∈Rn;W(x)>t}
dx. (3.25)

4. Lower Bound of the Counting Function near the Edges of Bands

In this section we study resonances generated by analytic singularities of ρ near the edge of
bands. The following result is a consequence of Lemma 2.3.

Lemma 4.1. Let e0 ∈ σ(P0). One assumes the following.

(i) If λj(k) = e0, then λj(k) is a simple eigenvalue ofH0(k).

(ii) There exist i0 and k0 such that λi0(k0) = e0, ∇λi0(k0) = 0, ±∂2λi0(k0) > 0 and∇λi0(k)/= 0,
for all k ∈ E∗, k /= k0.

(iii) For all k ∈ λ−1i {e0} with i /= i0, ∇λi(k)/= 0.

Then there exists an open connected neighborhood J of e0 such that

ρ(e) = f(e − e0) +H(±(e − e0))g
(√

±(e − e0)
)
, ∀e ∈ J, (4.1)

where f and g are analytic near zero and g(0) = 0, . . . , g(n−1)(0) = 0, g(n)(0)/= 0. Here, +(−) corre-
sponds to a local minimum (maximum, resp.).

Now, repeating the arguments in the proof of Theorem 3.2 and using Lemma 4.1, we
obtain the following.
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Theorem 4.2. Let e0, λ ∈ σ(P0) with λ ∈ (e0 + sing suppa(μ)). One assumes the following.

(i) λ satisfies (H1),

(ii) e0 satisfies the assumptions of Lemma 4.1,

(iii) (λ − supp(μ)) ⊂ J . Here J is the interval given by Lemma 4.1.

Then for all h-independent complex neighborhoodsΩ of λ, there exist h0 = h(Ω) > 0 sufficiently small
and C = C(Ω) > 0 such that, for h ∈]0, h0[,

#{z ∈ Ω; z ∈ Res(P(h))} ≥ CΩh
−n. (4.2)

Remark 4.3. Notice that the assumptions (iv) in Theorem 3.2 and (iii) in Theorem 4.2 are sat-
isfied if ‖W‖∞ is small.
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