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We obtain the expressions for sectional curvature, holomorphic sectional curvature, and
holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite Kaehler
manifold. We discuss the boundedness of holomorphic sectional curvature of GCR-lightlike
submanifolds of an indefinite complex space form. We establish a condition for a GCR-lightlike
submanifold of an indefinite complex space form to be null holomorphically flat. We also obtain
some characterization theorems for holomorphic sectional and holomorphic bisectional curvature.

1. Introduction

The study of CR submanifolds of Kaehler manifolds was initiated by Bejancu [1], as a
generalization of totally real and complex submanifolds and further developed by [2–7]. The
CR structures on real hypresurfaces of complex manifolds have interesting applications to
relativity. Penrose [8] discovered a correspondence, called Penrose correspondence, between
points of a Minkowski space and projective lines of a certain real hypersurfaces in a
complex projective space, which is an interesting means of passing from the geometry of
a Minkowski space to the geometry of a CR manifold. Duggal [9, 10] studied the geometry
of CR submanifolds with Lorentzian metric and obtained their interaction with relativity.
The theory of lightlike submanifolds has interaction with some results on Killing horizon,
electromagnetic, and radition fields and asymptotically flat spacetimes (for detail see
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chapters 7, 8, and 9 of [11]). Thus due to the significant applications of CR structures in
relativity and growing importance of lightlike submanifolds in mathematical physics and
relativity, Duggal and Bejancu [11] introduced the notion of CR-lightlike submanifolds
of indefinite Kaehler manifolds which have direct relation with physically important
asymptotically flat space time which further lead to Twistor theory of Penrose and Heaven
theory of Newman. Moreover, they concluded that, contrary to the CR-non degenerate
submanifolds, CR-lightlike submanifolds do not include invariant (complex) and totally
real lightlike submanifolds. Therefore, Duggal and Sahin [12] introduced SCR-lightlike
submanifolds of indefinite Kaehler manifold which contain complex and totally real subcases
but there was no inclusion relation between CR and SCR cases. Later on, Duggal and Sahin
[13] introduced GCR-lightlike submanifolds of indefinite Kaehler manifolds, which behaves
as an umbrella of invariant (complex), screen real and CR-lightlike submanifolds and also
studied the existence (or nonexistence) of this new class in an indefinite space form. R. Kumar
et al. [14] studied geodesic GCR-lightlike submanifolds of indefinite Kaehler manifolds and
obtained some characterization theorems for a GCR-lightlike submanifold to be a GCR-
lightlike product.

Since sectional curvature offers a lot of information concerning the intrinsic geometry
of Riemannian manifolds, therefore in this paper, we obtain the expressions for sectional
curvature, holomorphic sectional curvature, and holomorphic bisectional curvature of a
GCR-lightlike submanifold of an indefinite Kaehler manifold. In [15], Kulkarni showed that
the boundedness of the sectional curvature on a semi-Riemannian manifold implies the
constancy of the sectional curvature. In [16], Bonome et al. showed that the boundedness
of the holomorphic sectional curvature on indefinite almost Hermitian manifolds leads to
the space of pointwise constant holomorphic sectional curvature. Therefore in Section 4, we
discuss the boundedness of holomorphic sectional curvature of GCR-lightlike submanifolds
of an indefinite complex space form. In Section 5, we established a condition for a GCR-
lightlike submanifold of an indefinite complex space form to be null holomorphically flat.
We also obtain some characterization theorems on holomorphic sectional and holomorphic
bisectional curvature.

2. Lightlike Submanifolds

Let (M,g) be a real (m + n)-dimensional semi-Riemannian manifold of constant index q

such that m,n ≥ 1, 1 ≤ q ≤ m + n − 1, (M,g) an m-dimensional submanifold of M
and g the induced metric of g on M. If g is degenerate on the tangent bundle TM of M,
then M is called a lightlike submanifold of M (see [11]). For a degenerate metric g on
M, TM⊥ is a degenerate n-dimensional subspace of TxM. Thus both TxM and TxM

⊥ are
degenerate orthogonal subspaces but no longer complementary. In this case, there exists a
subspace Rad TxM = TxM∩TxM⊥ which is known as radical (null) subspace. If the mapping
Rad TM : x ∈ M → Rad TxM defines a smooth distribution on M of rank r > 0, then the
submanifold M of M is called an r-lightlike submanifold and Rad TM is called the radical
distribution on M.

Screen distribution S(TM) is a semi-Riemannian complementary distribution of
Rad(TM) in TM, that is

TM = Rad TM ⊥ S(TM), (2.1)
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and S(TM⊥) is a complementary vector subbundle to Rad TM in TM⊥. Let tr(TM) and
ltr(TM) be complementary (but not orthogonal) vector bundles to TM in TM|M and to
Rad TM in S(TM⊥)⊥, respectively. Then we have

tr(TM) = ltr(TM) ⊥ S
(
TM⊥

)
, (2.2)

TM|M = TM ⊕ tr(TM) = (Rad TM ⊕ ltr(TM)) ⊥ S(TM) ⊥ S
(
TM⊥

)
. (2.3)

For a quasi-orthonormal fields of frames on TM, we have the following.

Theorem 2.1 (see [11]). Let (M,g, S(TM), S(TM⊥)) be an r-lightlike submanifold of a semi-
Riemannian manifold (M,g). Then there exists a complementary vector bundle ltr (TM) ofRad TM
in S(TM⊥)⊥ and a basis of Γ( ltr (TM)|u) consisting of smooth section {Ni} of S(TM⊥)⊥|u, where u
is a coordinate neighborhood of M such that

g
(
Ni, ξj

)
= δij , g

(
Ni,Nj

)
= 0, for any i, j ∈ {1, 2, . . . , r}, (2.4)

where {ξ1, . . . , ξr} is a lightlike basis of Γ(Rad(TM)).

Let ∇ be the Levi-Civita connection onM, then, according to the decomposition (2.3),
the Gauss and Weingarten formulas are given by the following:

∇XY = ∇XY + h(X,Y ), ∇XU = −AUX +∇⊥
XU, (2.5)

for any X,Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX} and {h(X,Y ),∇⊥
XU} belong

to Γ(TM) and Γ(tr(TM)), respectively. Here ∇ is a torsion-free linear connection on M, h is
a symmetric bilinear form on Γ(TM) which is called second fundamental form, and AU is a
linear a operator onM and known as shape operator.

According to (2.2) considering the projection morphisms L and S of tr(TM) on
ltr(TM) and S(TM⊥), respectively, then Gauss and Weingarten formulas become

∇XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∇XU = −AUX +Dl
XU +Ds

XU, (2.6)

where we put hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), Dl
XU = L(∇⊥

XU), Ds
XU =

S(∇⊥
XU). As hl and hs are Γ(ltr(TM)) valued and Γ(S(TM⊥)) valued, respectively, therefore

they are called the lightlike second fundamental form and the screen second fundamental
form on M. In particular,

∇XN = −ANX +∇l
XN +Ds(X,N), ∇XW = −AWX +∇s

XW +Dl(X,W), (2.7)

where X ∈ Γ(TM),N ∈ Γ(ltr(TM)), and W ∈ Γ(S(TM⊥)). Using (2.6) and (2.7), we obtain

g(hs(X,Y ),W) + g
(
Y,Dl(X,W)

)
= g(AWX,Y ), (2.8)

g(Ds(X,N),W) = g(AWX,N), (2.9)

for any X ∈ Γ( TM),W ∈ Γ(S(TM⊥)), and N,N ′ ∈ Γ(ltr(TM)).
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Let P be the projection morphism of TM on S(TM), then, using (2.1), we can induce
some new geometric objects on the screen distribution S(TM) on M as follows:

∇XPY = ∇∗
XPY + h∗(X, PY ), ∇Xξ = −A∗

ξX +∇∗t
Xξ, (2.10)

for anyX,Y ∈ Γ(TM) and ξ ∈ Γ( Rad TM), where {∇∗
XPY,A

∗
ξ
X} and {h∗(X, PY ),∇∗t

Xξ} belong
to Γ(S(TM)) and Γ( Rad TM), respectively. Using (2.6) and (2.10), we obtain

g
(
hl(X, PY ), ξ

)
= g

(
A∗

ξX, PY
)
, g(h∗(X, PY ),N) = g(ANX, PY ), (2.11)

for any X,Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) andN ∈ Γ(ltr(TM)).
Denote by R and R the curvature tensors of ∇ and ∇, respectively, then by straightfor-

ward calculations ([11]), we have

R(X,Y )Z = R(X,Y )Z +Ahl(X,Z)Y −Ahl(Y,Z)X +Ahs(X,Z)Y

−Ahs(Y,Z)X +
(
∇Xh

l
)
(Y,Z) −

(
∇Yh

l
)
(X,Z)

+Dl(X, hs(Y,Z)) −Dl(Y, hs(X,Z)) + (∇Xh
s)(Y,Z)

− (∇Yh
s)(X,Z) +Ds

(
X, hl(Y,Z)

)
−Ds

(
Y, hl(X,Z)

)
,

(2.12)

where

(∇Xh
s)(Y,Z) = ∇s

Xh
s(Y,Z) − hs(∇XY,Z) − hs(Y,∇XZ) (2.13)

(
∇Xh

l
)
(Y,Z) = ∇l

Xh
l(Y,Z) − hl(∇XY,Z) − hl(Y,∇XZ). (2.14)

Then Codazzi equation is given, respectively, by the following:

(
R(X,Y )Z

)⊥
=
(
∇Xh

l
)
(Y,Z) −

(
∇Yh

l
)
(X,Z)

+Dl(X, hs(Y,Z)) −Dl(Y, hs(X,Z)) + (∇Xh
s)(Y,Z)

− (∇Yh
s)(X,Z) +Ds

(
X, hl(Y,Z)

)
−Ds

(
Y, hl(X,Z)

)
.

(2.15)

Barros and Romero [17] defined indefinite Kaehler manifolds as follows.

Definition 2.2. Let (M,J, g) be an indefinite almost Hermitian manifold and∇ the Levi-Civita
connection on M, with respect to an indefinite metric g. Then M is called an indefinite
Kaehler manifold if J is parallel, with respect to ∇, that is

J2 = −I,
(
∇XJ

)
Y = 0, g(JX, JY ) = g(X,Y ) ∀X,Y ∈ Γ

(
TM

)
. (2.16)
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3. Generalized Cauchy-Riemann Lightlike Submanifolds

Definition 3.1. Let (M,g, S(TM)) be a real lightlike submanifold of an indefinite Kaehler man-
ifold (M,g, J), thenM is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold
if the following conditions are satisfied.

(A) There exist two subbundles D1 and D2 of Rad(TM) such that

Rad(TM) = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ S(TM). (3.1)

(B) There exist two subbundles D0 and D′ of S(TM) such that

S(TM) =
{
JD2 ⊕D′} ⊥ D0, J(D0) = D0, J

(
D′) = L1 ⊥ L2, (3.2)

where D0 is a nondegenerate distribution on M, L1 and L2 are vector bundle of ltr(TM) and
S(TM)⊥, respectively.

Then the tangent bundle TM of M is decomposed as TM = D ⊥ D′, where
D = Rad(TM) ⊕ D0 ⊕ JD2. M is called a proper GCR-lightlike submanifold if
D1 /= {0}, D2 /= {0}, D0 /= {0}, and L2 /= {0}. LetQ,P1 and P2 be the projections onD, J(L1) = M1,
and J(L2) = M2, respectively. Then, for any X ∈ Γ(TM), we have

X = QX + P1X + P2X, (3.3)

applying J to (3.3), we obtain

JX = TX +wP1X +wP2X, (3.4)

and we can write (3.4) as follwos:

JX = TX +wX, (3.5)

where TX and wX are the tangential and transversal components of JX, respectively. Simi-
larly,

JV = BV + CV, (3.6)

for any V ∈ Γ(tr(TM)), where BV and CV are the sections of TM and tr(TM), respectively.
Applying J to (3.5) and (3.6), we get

T2 = −I − Bω, C2 = −I −ωB. (3.7)



6 Advances in Mathematical Physics

Differentiating (3.4) and using (2.6), (2.7), and (3.6), we have

Ds(X,wP1Y ) = −∇s
XwP2Y +wP2∇XY − hs(X, TY ) + Chs(X,Y ), (3.8)

Dl(X,wP2Y ) = −∇l
XwP1Y +wP1∇XY − hl(X, TY ) + Chl(X,Y ). (3.9)

Using Kaehlerian property of ∇with (2.7), we have the following lemmas.

Lemma 3.2. Let M be a GCR-lightlike submanifold of an indefinite Kaehlerian manifold M. Then
one has

(∇XT)Y = AwYX + Bh(X,Y ),
(∇t

Xw
)
Y = Ch(X,Y ) − h(X, TY ), (3.10)

where X,Y ∈ Γ(TM) and

(∇XT)Y = ∇XTY − T∇XY,
(∇t

Xw
)
Y = ∇t

XwY −w∇XY. (3.11)

Lemma 3.3. Let M be a GCR-lightlike submanifold of an indefinite Kaehlerian manifold M. Then
one has

(∇XB)V = ACVX − TAVX,
(∇t

XC
)
V = −wAVX − h(X,BV ), (3.12)

where X ∈ Γ(TM), V ∈ Γ(tr(TM)), and

(∇XB)V = ∇XBV − B∇t
XV,

(∇t
XC

)
V = ∇t

XCV − C∇t
XV. (3.13)

4. Holomorphic Sectional Curvature of a GCR-Lightlike Submanifold

Let M be a complex space form of constant holomorphic curvature c. Then the curvature
tensor R ofM(c) is given by the following:

R(X,Y )Z =
c

4
{
g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

− g(JX,Z)JY + 2g(X, JY )JZ
}
,

(4.1)
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for X,Y,Z vector fields on M. Using (4.1) and (2.12), we obtain

g(R(X,Y )Z,W) =
c

4
{
g(Y,Z)g(X,W) − g(X,Z)g(Y,W) + g(JY,Z)g(JX,W)

−g(JX,Z)g(JY,W) + 2g(X, JY )g(JZ,W)
} − g

(
Ahl(X,Z)Y,W

)

+ g
(
Ahl(Y,Z)X,W

) − g
(
Ahs(X,Z)Y,W

)
+ g

(
Ahs(Y,Z)X,W

)

− g
((

∇Xh
l
)
(Y,Z),W

)
+ g

((
∇Yh

l
)
(X,Z),W

)
− g

(
Dl(X, hs(Y,Z)),W

)

+ g
(
Dl(Y, hs(X,Z)),W

)
.

(4.2)

Using (2.8) in (4.2), we obtain

g(R(X,Y )Z,W) =
c

4
{
g(Y,Z)g(X,W) − g(X,Z)g(Y,W) + g(JY,Z)g(JX,W)

−g(JX,Z)g(JY,W) + 2g(X, JY )g(JZ,W)
} − g

(
Ahl(X,Z)Y,W

)

+ g
(
Ahl(Y,Z)X,W

) − g(hs(Y,W), hs(X,Z)) + g(hs(X,W), hs(Y,Z))

− g
((

∇Xh
l
)
(Y,Z),W

)
+ g

((
∇Yh

l
)
(X,Z),W

)
.

(4.3)

Then the sectional curvature KM(X,Y ) = g(R(X,Y )Y,X) of M determined by orthonormal
vectors X and Y of Γ(D0 ⊕M2) and given by the following:

KM(X,Y ) =
c

4

{
1 + 3g(X, JY )2

}
− g

(
Ahl(X,Y )Y,X

)
+ g

(
Ahl(Y,Y )X,X

)

− g(hs(Y,X), hs(X,Y )) + g(hs(X,X), hs(Y, Y )).
(4.4)

Corollary 4.1. Let M be a GCR-lightlike submanifold of an indefinite Complex space form M(c).
Then sectional curvature ofM is given by KM(X,Y ) = (c/4){1 + 3g(X, JY )2}, if

(i) M2 defines a totally geodesic foliation inM,

(ii) D0 defines a totally geodesic foliation inM,

(iii) M is totally geodesic inM.

Definition 4.2. The holomorphic sectional curvature H(X) = g(R(X, JX)JX,X) of M deter-
mined by a unit vector X ∈ Γ(D0) is the sectional curvature of a plane section {X, JX}.

Then using (2.11) and (4.4), for a unit vector field X ∈ Γ(D0), we get

H(X) = c − g
(
hl(X, JX), h∗(JX,X)

)
+ g

(
hl(JX, JX), h∗(X,X)

)

− g(hs(JX,X), hs(X, JX)) + g(hs(X,X), hs(JX, JX)).
(4.5)
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From (3.8), for any X,Y ∈ Γ(D0), we have

hs(X, JY ) = wP2∇XY + Chs(X,Y ), (4.6)

and further using (3.7) and (4.6), we have

hs(JX, JY ) = wP2∇JXY −wBhs(X,Y ) − hs(X,Y ). (4.7)

Hence using (4.6) and (4.7) in (4.5), we obtain the expression for holomorphic sectional
curvature as follows:

H(X) = c − g
(
hl(X, JX), h∗(JX,X)

)
+ g

(
hl(JX, JX), h∗(X,X)

)
− ‖wP2∇XX‖2

− ‖Chs(X,X)‖2 + g
(
hs(X,X), wP2∇JXX

)
+ ‖Bhs(X,X)‖2 − ‖hs(X,X)‖2.

(4.8)

Theorem 4.3. Let M be a GCR-lightlike submanifold of an indefinite complex space form M(c). If
M is totally geodesic inM(c), thenH(X) ≤ c, for any unit vector field X ∈ Γ(D0).

Proof. Using the hypothesis in (4.8), we getH(X) = c−‖wP2∇XX‖2. Hence the result follows.

Theorem 4.4 (see [13]). Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold
M, then the distribution D is integrable if and only if h(X, JY ) = h(Y, JX), for any X,Y ∈ Γ(D).

Theorem 4.5. LetM be a GCR-lightlike submanifold of an indefinite complex space formM(c), and
D0 is integrable, thenH(X) ≤ c for any unit vector field X ∈ Γ(D0).

Proof. Since D0 is integrable therefore using Theorem 4.4, we have h(JX, JY ) = −h(X,Y ), for
any unit vector field X ∈ Γ(D0). Therefore, from (4.5), we obtain

H(X) = c − g
(
hl(X, JX), h∗(JX,X)

)
− g

(
hl(X,X), h∗(X,X)

)

− ‖hs(X, JX)‖2 − ‖hs(X,X)‖2 ≤ c.

(4.9)

Theorem 4.6. A GCR-lightlike submanifold of an indefinite complex space form M(c) is D0-totally
geodesic if and only if

(i) D0 is integrable,

(ii) H(X) = c, for any unit vector field X ∈ Γ(D0).

Proof. Proof follows from (4.9).
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Theorem 4.7 (see [13]). Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold
M. Then the distribution D defines a totally geodesic foliation in M if and only if Bh(X,Y ) = 0, for
any X,Y ∈ Γ(D).

Theorem 4.8. LetM be a GCR-lightlike submanifold of an indefinite complex space formM(c), and
D0 defines a totally geodesic foliation inM, thenH(X) ≤ c, for any unit vector field X ∈ Γ(D0).

Proof. SinceD0 defines a totally geodesic foliation inM, therefore by definition∇XX ∈ Γ(D0),
this implies that h∗(X,X) = 0. Also by using Theorem 4.7, we have Bh(X,X) = 0, for any
X ∈ Γ(D0); hence, (4.8) becomes H(X) = c − 2‖Chs(X,X)‖2 and the result follows.

Definition 4.9. The horizontal distribution D is called parallel with respect to the induced
connection ∇ on M if ∇XY ∈ D for any X ∈ Γ(TM) and Y ∈ Γ(D).

Theorem 4.10. LetM be aGCR-lightlike submanifold of an indefinite complex space formM(c) and
D0 is parallel, with respect to ∇, thenH(X) ≤ c, for any unit vector field X ∈ Γ(D0).

Proof. Since D0 is parallel, with respect to the induced connection ∇ on M, therefore ∇∗
XY ∈

Γ(D0) and h∗(X,Y ) = 0, for any X ∈ Γ(TM) and Y ∈ Γ(D0). Hence, from (4.8), we obtain
H(X) = c+‖Bhs(X,X)‖2−‖hs(X,X)‖2−‖Chs(X,X)‖2, and then by using (3.6), we getH(X) =
c − 2‖Chs(X,X)‖2. Hence the result is complete.

Lemma 4.11. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold M. If the
distribution D0 defines a totally geodesic foliation inM, thenM is D0-geodesic.

Proof. By the definition of GCR-lightlike submanifold, M is D0-geodesic if g(hl(X,Y ), ξ) =
g(hs(X,Y ),W) = 0, for any X,Y ∈ Γ(D0), ξ ∈ Γ(Rad(TM)), and W ∈ Γ(S(TM⊥)). Since
D0 defines a totally geodesic foliation in M, therefore g(hl(X,Y ), ξ) = g(∇XY, ξ) = 0 and
g(hs(X,Y ),W) = g(∇XY,W) = 0. Hence, the assertion follows.

Theorem 4.12. Let M be a GCR-lightlike submanifold of an indefinite complex space form M(c). If
D0 defines a totally geodesic foliation inM, thenH(X) = c, for any unit vector field X ∈ Γ(D0).

Proof. The result follows directly using Lemma 4.11 and (4.8).

5. Null Holomorphically Flat GCR-Lightlike Submanifold

Let x ∈ M andU be a null vector of TxM. A plane π of TxM is called a null plane directed by
U if it containsU, gx(U,V ) = 0, for any V ∈ π , and there exists V0 ∈ π such that gx(V0, V0)/= 0.
Following Beem-Ehrlich [18], the null sectional curvature of π , with respect to U and ∇, as a
real number, is defined as follows:

KU(π) =
gx

(
R(V,U)U,V

)

gx(V, V )
, (5.1)

where V is an arbitrary non null vector in π . ClearlyKU(π) is independent of V but depends
in a quadratic fashion on U.
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Consider u ∈ M and a null plane π of TuM directed by ξu ∈ Rad(TM), then the null
sectional curvature of π , with respect to ξu and ∇, as a real number is defined as

Kξu(π) =
gu(R(Vu, ξu)ξu, Vu)

gu(Vu, Vu)
, (5.2)

where Vu is an arbitrary non-null vector in π .
LetM be aGCR-lightlike submanifold of an indefinite complex space formM(c) then

using (4.3), the null sectional curvature of π , with respect to ξ, is given by the following:

Kξ(π) =
1

g(V, V )
{
g
(
Ahl(ξ,ξ)V, V

) − g
(
Ahl(V,ξ)ξ, V

)
+ g(hs(V, V ), hs(ξ, ξ))

− g(hs(ξ, V ), hs(V, ξ)) − g
((

∇V h
l
)
(ξ, ξ), V

)
+ g

((
∇ξh

l
)
(V, ξ), V

)}
.

(5.3)

Then, using (2.11), we obtain

Kξ(π) =
1

g(V, V )

{
g
(
h∗(V, V ), hl(ξ, ξ)

)
− g

(
h∗(ξ, V ), hl(V, ξ)

)
+ g(hs(V, V ), hs(ξ, ξ))

− g(hs(ξ, V ), hs(V, ξ)) − g
((

∇V h
l
)
(ξ, ξ), V

)
+ g

((
∇ξh

l
)
(V, ξ), V

)}
.

(5.4)

We know that a plane π is called holomorphic if it remains invariant under the action
of the almost complex structure J , that is, if π = {Z, JZ}. The sectional curvature associated
with the holomorphic plane is called the holomorphic sectional curvature, denoted by H(π)
and given by H(π) = R(Z, JZ,Z, JZ)/g(Z,Z)2. The holomorphic plane π = {Z, JZ} is
called null or degenerate if and only if Z is a null vector. A manifold (M,g, J) is called null
holomorphically flat if the curvature tensor R satisfies (see [19]).

R
(
Z, JZ,Z, JZ

)
= 0, (5.5)

for all null vectors Z. Put g(R(X,Y )Z,W) = R(X,Y,Z,W), then, from (5.4), we obtain

R
(
ξ, Jξ, ξ, Jξ

)
= g

(
h∗(ξ, ξ), hl

(
Jξ, Jξ

))
− g

(
h∗
(
Jξ, ξ

)
, hl

(
ξ, Jξ

))

+ g
(
hs(ξ, ξ), hs

(
Jξ, Jξ

))
− g

(
hs
(
Jξ, ξ

)
, hs

(
ξ, Jξ

))

− g
((

∇ξh
l
)(

Jξ, Jξ
)
, ξ
)
+ g

((
∇Jξh

l
)(

ξ, Jξ
)
, ξ
)
.

(5.6)

Definition 5.1 (see [20]). A lightlike submanifold (M,g) of a semi-Riemannian manifold
(M,g) is said to be a totally umbilical in M if there is a smooth transversal vector field
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H ∈ Γ(tr(TM)) on M, called the transversal curvature vector field of M, such that, for
X,Y ∈ Γ(TM),

h(X,Y ) = Hg(X,Y ). (5.7)

Using (2.6), it is clear that M is a totally umbilical if and only if on each coordinate
neighborhood u there exist smooth vector fields Hl ∈ Γ(ltr(TM)) and Hs ∈ Γ(S(TM⊥)) such
that

hl(X,Y ) = Hlg(X,Y ), hs(X,Y ) = Hsg(X,Y ), Dl(X,W) = 0, (5.8)

for X,Y ∈ Γ(TM) andW ∈ Γ(S(TM⊥)). A lightlike submanifold is said to be totally geodesic
if h(X,Y ) = 0, for any X,Y ∈ Γ(TM). Therefore, in other words, a lightlike submanifold is
totally geodesic if Hl = 0 and Hs = 0.

Let M be a totally umbilical lightlike submanifold, then, using above definition, we
have h(Jξ, Jξ) = Hg(Jξ, Jξ) = Hg(ξ, ξ) = 0 and h(ξ, Jξ) = Hg(ξ, Jξ) = 0, for any
ξ ∈ Γ(Rad(TM)). Thus, from (5.6), we have the following theorem.

Theorem 5.2. Let M be a GCR-lightlike submanifold of an indefinite complex space form M(c). If
M is totally umbilical lightlike submanifold in M(c), thenM is null holomorphically flat.

Moreover, from (5.6), it is clear that the expression of R(ξ, Jξ, ξ, Jξ) is expressed in
terms of screen second fundamental forms of M, thus GCR-lightlike submanifold M of an
indefinite complex space form M(c) is null holomorphically flat ifM is totally geodesic.

6. Holomorphic Bisectional Curvature of a GCR-Lightlike Submanifold

Definition 6.1. The holomorphic bisectional for the pair of unit vector fields {X,Y} on M is
given byH(X,Y ) = g(R(X, JX)JY, Y ).

Theorem 6.2. Let M be a mixed totally geodesic GCR-lightlike submanifold of an indefinite Kaehler
manifold M with D0 parallel distribution. Then H(X,Z) = 0, for any unit vector fields X ∈ Γ(D0)
and Z ∈ Γ(M2).

Proof. LetX,Y ∈ Γ(D0) andZ ∈ Γ(M2) then, by using that hypothesis that the distributionD0

is a parallel, with respect to∇ onM, we have g(T∇XZ, Y ) = −g(∇XZ, TY ) = g(Z,∇XTY ) = 0.
Hence, the non degeneracy of the distribution D0 implies that

∇XZ ∈ Γ
(
D′), (6.1)
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for any Z ∈ Γ(M2). Now replacing Y by JX, respectively, in (2.15) and then taking
inner product with JZ, for any X ∈ Γ(D0) and Z ∈ Γ(M2), we get

H(X,Z) = g(hs(∇XJX,Z), JZ) − g(∇Xh
s(JX,Z), JZ) + g(hs(JX,∇XZ), JZ)

+ g
(∇JXh

s(X,Z), JZ
) − g

(
hs(∇JXX,Z

)
, JZ

) − g
(
hs(X,∇JXZ

)
, JZ

)

− g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
+ g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
.

(6.2)

Hence by using that M is mixed totally geodesic with (6.1), the assertion follows.

Theorem 6.3. In order that an indefinite complex space form M(c) may admit a mixed totally
geodesic GCR-lightlike submanifold M with parallel horizontal distribution D0, it is necessary that
c = 0.

Proof. Let X ∈ Γ(D0) and Z ∈ Γ(M2) be unit vector fields, then (4.1) implies that H(X,Z) =
−(c/2)g(X,X)g(Z,Z), then the non degeneracy of the distributions D0 and M2 with the
Theorem 6.2, we obtain c = 0. Hence, the result follows.

Lemma 6.4. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold M. Then we
have the following:

(i) if D′ defines a totally geodesic foliation inM then g(hs(D′, D0), JD′) = 0,

(ii) if D0 is a parallel distribution, with respect to ∇, then h(Z, JX) = Ch(Z,X) for any
X ∈ Γ(D0), Z ∈ Γ(M2).

Proof. (i) Let D′ define a totally geodesic foliation in M this implies that ∇XY = ∇XY ∈
Γ(D′) and h(X,Y ) = 0, for any X,Y ∈ Γ(D′). Therefore by using (3.10), we obtain AwYX =
−Bh(X,Y ) = 0. Let Z ∈ Γ(D0), then by using (2.8), we get 0 = g(AwYX,Z) = g(hs(X,Z), wY ).
Thus we have g(hs(D′, D0), JD′) = 0.

(ii) LetD0 is a parallel distribution with respect to the induced connection∇, therefore
∇XY ∈ Γ(D0), for any Y ∈ Γ(D0), X ∈ Γ(TM). Since M is Kaehler manifold, therefore for
Z ∈ Γ(M2) and X ∈ Γ(D0), we have ∇ZJX = J∇ZX. This implies that ∇ZJX + h(Z, JX) =
J∇ZX +Bh(Z,X) +Ch(Z,X), then by equating transversal components on both sides, we get
the result.

Theorem 6.5. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold M. If D0 is
parallel with respect to the induced connection ∇, and M2 defines a totally geodesic foliation in M,
then

H(X,Z) = g(h(JX,Z), J∇XZ) − g
(
h(X,Z), J∇JXZ

)
+ g

(
AJZJX,∇XZ

)

− g
(
AJZX,∇JXZ

)
+ 2‖Chs(X,Z)‖2,

(6.3)

for any unit vector fields X ∈ Γ(D0) and Z ∈ Γ(M2).
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Proof. Let X ∈ Γ(D0) and Z ∈ Γ(M2), then the equation of Codazzi (2.15) becomes

g
(
R(X, JX)Z, JZ

)
= g((∇Xh

s)(JX,Z), JZ) − g
((∇JXh

s)(X,Z), JZ
)

+ g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
− g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
.

(6.4)

By using (2.13) and (6.1)with the Lemma 6.4 (i), we obtain

H(X,Z) = g
(
∇s

JXh
s(X,Z), JZ

)
− g

(∇s
Xh

s(JX,Z), JZ
)

+ g
(
AJZJX,∇XZ

) − g
(
AJZX,∇JXZ

)

− g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
+ g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
.

(6.5)

Now by using (2.7) with the Lemma 6.4 (ii), we have

g
(∇s

Xh
s(JX,Z), JZ

)
= g

(
∇Xh

s(JX,Z), JZ
)

= −g(hs(JX,Z), J∇XZ) − ‖Chs(X,Z)‖2,
(6.6)

and similarly

g
(
∇s

JXh
s(X,Z), JZ

)
= −g(hs(X,Z), J∇JXZ

)
+ ‖Chs(X,Z)‖2. (6.7)

By using (2.7), we have

g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
= −g

(
hl(JX,Z), J∇XZ

)
, (6.8)

g
(
Ds

(
JX, hl(X,Z)

)
, JZ

)
= −g

(
hl(X,Z), J∇JXZ

)
. (6.9)

Hence by using (6.6)–(6.9) in (6.5), the result follows.

Definition 6.6 (see [13]). A GCR-lightlike submanifold M of an indefinite Kaehler manifold
M is called a GCR-lightlike product if both the distributionsD andD′ define totally geodesic
foliations inM.

Theorem 6.7 (see [14]). LetM be aGCR-lightlike submanifold of an indefinite Kaehler manifoldM.
Then,M is aGCR-lightlike product if and only if (∇XT)Y = 0, for anyX,Y ∈ Γ(D) orX,Y ∈ Γ(D′).



14 Advances in Mathematical Physics

Theorem 6.8. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold M. If
(∇XT)Y = 0, for any X,Y ∈ Γ(TM), then

H(X,Z) = 2g(hs(JX,Z), Jhs(X,Z)), (6.10)

for any unit vector fields X ∈ Γ(D0) and Z ∈ Γ(M2).

Proof. Let (∇XT)Y = 0, then (3.10) implies that

AwYX + Bh(X,Y ) = 0, (6.11)

for any X,Y ∈ Γ(TM). Let Y ∈ Γ(D), X ∈ Γ(TM), then (6.11) gives

Bh(X,Y ) = 0. (6.12)

Let Z ∈ Γ(D′) and X ∈ Γ(D), then using (6.11) and (6.12), we obtain

AwZX = 0. (6.13)

Particularly choosing X ∈ Γ(D0) and Z ∈ Γ(M2) in (2.15), we get

g
(
R(X, JX)Z, JZ

)
= g((∇Xh

s)(JX,Z), JZ) − g
((∇JXh

s)(X,Z), JZ
)

+ g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
− g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
.

(6.14)

Since (∇XT)Y = 0 therefore, by using Theorem 6.7, the distributions D and D′ define totally
geodesic foliations in M. Then D′ defines totally geodesic foliation in M implies that for any
Z1, Z2 ∈ Γ(D′), we have ∇Z1Z2 ∈ Γ(D′). Therefore, using (3.10) and (3.11), we get AwZ2Z1 +
Bh(Z1, Z2) = 0. By taking inner product with X ∈ Γ(D0) and using (2.8), we get

g(hs(Z1, X), wZ2) = 0. (6.15)

Also, (3.11) implies that T∇XZ = 0, that is, ∇XZ ∈ Γ(D′). Therefore using (2.8), (2.13), (6.13),
and (6.15) in (6.14), we obtain

g
(
R(X, JX)Z, JZ

)
= g

(∇s
Xh

s(JX,Z), JZ
) − g

(
∇s

JXh
s(X,Z), JZ

)

+ g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
− g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
.

(6.16)

Now using (2.6), (2.7), (2.8), and (6.15), we have

g
(∇s

Xh
s(JX,Z), JZ

)
= g(Jhs(JX,Z), hs(X,Z)). (6.17)
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Similarly,

g
(
∇s

JXh
s(X,Z), JZ

)
= −g(Jhs(JX,Z), hs(X,Z)). (6.18)

Also using (2.7), we have

g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
= 0, g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
= 0. (6.19)

Hence, using (6.17)–(6.19) in (6.16), the result follows.

Lemma 6.9. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold such that
(∇XB)Y = 0. Then hs(JX,Z) ∈ Γ(L⊥

2 ) for any X ∈ Γ(D0), Z ∈ Γ(M2).

Proof. Since (∇XB)Y = 0, therefore, from (3.12) we have TAWX = 0, for any X ∈ Γ(TM) and
W ∈ Γ(L2), this implies that

AWX ∈ Γ
(
D′), (6.20)

for any W ∈ Γ(L2) and X ∈ Γ(TM). Since hs(JX,Z) ∈ Γ(S(TM⊥)), therefore, to prove that
hs(JX,Z) ∈ Γ(L⊥

2 ), it is sufficient to prove that g(hs(JX,Z),W) = 0, for any W ∈ Γ(L2).
Let X ∈ Γ(D0) and Z ∈ Γ(M2) such that W = wZ, we have g(∇UZ,X) = g(∇UZ,X) =
g(∇UJZ, JX) = −g(AJZU, JX) = g(JAJZU,X), then using (2.8) we obtain

g(hs(JX,Z),W) = −g(JAWZ,X) = −g(∇ZZ,X) = −g(T∇ZZ, TX). (6.21)

Since, from (3.10), we have T∇ZZ = −AwZZ −Bh(Z,Z), then using (6.20) in (6.21), the result
follows.

Theorem 6.10. Let M be a GCR-lightlike submanifold of an indefinite Kaehler manifold such that
(∇XB)Y = 0, then

H(X,Z) = 2g(Jhs(X,Z), hs(JX,Z)) − g
(
AJZ∇JXX,Z

)
+ g

(
AJZ∇XJX,Z

)
, (6.22)

for any unit vector fields X ∈ Γ(D0) and Z ∈ Γ(M2).

Proof. Let X ∈ Γ(D0) and Z ∈ Γ(M2), then, from (2.15) and (2.13), we obtain

g
(
R(X, JX)Z, JZ

)
= g

(∇s
Xh

s(JX,Z), JZ
) − g(hs(∇XJX,Z), JZ)

− g(hs(JX,∇XZ), JZ) − g
(
∇s

JXh
s(X,Z), JZ

)

+ g
(
hs(∇JXX,Z

)
, JZ

)
+ g

(
hs(X,∇JXZ

)
, JZ

)

+ g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
− g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
,

(6.23)
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using (6.20) in (2.9), we obtain

g
(
Ds

(
X, hl(JX,Z)

)
, JZ

)
= 0, g

(
Ds

(
JX, hl(X,Z)

)
, JZ

)
= 0. (6.24)

Now consider

g
(∇s

Xh
s(JX,Z), JZ

)
= −g

(
hs(JX,Z), J∇XZ

)
= g(hs(X,Z), Jhs(JX,Z)), (6.25)

and similarly

g
(
∇s

JXh
s(X,Z), JZ

)
= −g(hs(X,Z), Jhs(JX,Z)). (6.26)

Also using (2.8), we have

g(hs(∇XJX,Z), JZ) = g
(
AJZ∇XJX,Z

)
,

g
(
hs(∇JXX,Z

)
, JZ

)
= g

(
AJZ∇JXX,Z

)
.

(6.27)

Using (6.20) in (2.8), we have

g(hs(JX,∇XZ), JZ) = 0, g
(
hs(X,∇JXZ

)
, JZ

)
= 0. (6.28)

Thus using (6.24)–(6.28) in (6.23), the result follows.

Theorem 6.11. LetM be a mixed foliateGCR-lightlike submanifold of an indefinite Kaehler manifold
M, and S(TM) is parallel distribution, with respect to the induced connection ∇, then

H(X,Z) = 2g
(
AJZJX, JAJZX

)
, (6.29)

for any unit vector fields X ∈ Γ(D0) and Z ∈ Γ(M2).

Proof. SinceM is mixed foliate therefore for anyX ∈ Γ(D0) andZ ∈ Γ(M2), Codazzi equation
(2.15) and (2.13), imply that

H(X,Z) = g(hs(∇XJX,Z), JZ) + g(hs(JX,∇XZ), JZ)

− g
(
hs(∇JXX,Z

)
, JZ

) − g
(
hs(X,∇JXZ

)
, JZ

)
.

(6.30)

Since using (2.8) and the hypothesis, we have g(AJZX, JW) = 0 and g(AJZX, Jξ) =
g(hs(X, Jξ), JZ) = g(∇XJξ, JZ) = −g(ξ,∇XZ) = 0. Therefore, by the definition of a GCR-
lightlike submanifold, we have

AJZX ∈ Γ(D). (6.31)
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Thus, using (2.7), (2.8), and (6.31)with the hypothesis, we obtain

g(hs(JX,∇XZ), JZ) = g
(
AJZJX,∇XZ

)
= g

(
JAJZJX, J∇XZ

)

= g
(
AJZJX, JAJZX

) − g
(
AJZJX, JDl(X, JZ)

)

= g
(
AJZJX, JAJZX

)
.

(6.32)

Similarly, we obtain

g
(
hs(X,∇JXZ

)
, JZ

)
= g

(
AJZX, JAJZJX

)
,

g
(
hs(∇JXX,Z

)
, JZ

)
= g

(
AJZZ,∇JXX

) − g
(
∇JXX,Dl(JZ,Z)

)
,

g(hs(∇XJX,Z), JZ) = g
(
AJZZ,∇XJX

) − g
(
∇XJX,Dl(JZ,Z)

)
.

(6.33)

Thus, (6.30) becomes

H(X,Z) = 2g
(
AJZJX, JAJZX

) − g
(
AJZZ,∇JXX

)
+ g

(
∇JXX,Dl(JZ,Z)

)

+ g
(
AJZZ,∇XJX

) − g
(
∇XJX,Dl(JZ,Z)

)
.

(6.34)

Since the distribution D is integrable, therefore ∇JXX − ∇XJX = [X, JX] = X′ ∈ Γ(D), then
(6.34) becomesH(X,Z) = 2g(AJZJX, JAJZX)−g(AJZZ,X

′) +g(X′, Dl(JZ,Z)). Hence, using
the hypothesis and (2.8), the result follows.
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Mass, USA, 1983.

[8] R. Penrose, “Physical space-time and nonrealizable CR-structures,” Proceedings of Symposia in Pure
Mathematics, vol. 39, pp. 401–422, 1983.

[9] K. L. Duggal, “CR-Structures and Lorentzian Geometry,” Acta Applicandae Mathematicae, vol. 7, no. 3,
pp. 211–223, 1986.

[10] K. L. Duggal, “Lorentzian geometry of CR submanifolds,” Acta Applicandae Mathematicae, vol. 17, no.
2, pp. 171–193, 1989.

[11] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, vol.
364 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1996.

[12] K. L. Duggal and B. Sahin, “Screen Cauchy Riemann lightlike submanifolds,” Acta Mathematica Hun-
garica, vol. 106, no. 1-2, pp. 125–153, 2005.

[13] K. L. Duggal and B. Sahin, “Generalized Cauchy-Riemann lightlike submanifolds of Kaehler
manifolds,” Acta Mathematica Hungarica, vol. 112, no. 1-2, pp. 107–130, 2006.

[14] R. Kumar, S. Kumar, and R. K. Nagaich, “GCR-lightlike product of indefinite Kaehler manifolds,”
ISRN Geometry, vol. 2011, Article ID 531281, 13 pages, 2011.

[15] R. S. Kulkarni, “The values of sectional curvature in indefinite metrics,” Commentarii Mathematici
Helvetici, vol. 54, no. 1, pp. 173–176, 1979.

[16] A. Bonome, R. Castro, E. Garcı́a-Rı́o, and L. M. Hervella, “On the holomorphic sectional curvature
on an indefinite Kähler manifold,” Comptes Rendus de l’Académie des Sciences I, vol. 315, no. 11, pp.
1183–1187, 1992.

[17] M. Barros and A. Romero, “Indefinite Kähler manifolds,” Mathematische Annalen, vol. 261, no. 1, pp.
55–62, 1982.

[18] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, vol. 67, Marcel Dekker, New York, NY, USA,
1981.

[19] A. Bonome, R. Castro, E. Garcı́a-Rı́o, L. M. Hervella, and Y. Matsushita, “Null holomorphically flat
indefinite almost Hermitianmanifolds,” Illinois Journal of Mathematics, vol. 39, no. 4, pp. 635–660, 1995.

[20] K. L. Duggal and D. H. Jin, “Totally umbilical lightlike submanifolds,” Kodai Mathematical Journal, vol.
26, no. 1, pp. 49–68, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Advances in

Mathematical Physics

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Combinatorics

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


