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This paper is mainly a review concerning singular perturbation methods by means of Lie group
analysis which has been presented by the author. We make use of a particular type of approximate
Lie symmetries in those methods in order to construct reduced systems which describe the long-
time behavior of the original dynamical system. Those methods can be used in analyzing not
only ordinary differential equations but also difference equations. Although this method has been
mainly used in order to derive asymptotic behavior, when we can find exact Lie symmetries, we
succeed in construction of exact solutions.

1. Introduction

While the Lie group analysis has played an important role in construction of particular
solutions of differential equations in terms of their symmetries [1, 2], it has been shown that
the Lie group analysis is also an effective approach for obtaining the asymptotic behavior of
systems. About a few decades ago, a method which provides asymptotic behavior of solu-
tions of nonlinear parabolic partial differential equations in terms of the self-similarity of the
system was presented [3]. The method was generalized in terms of the Lie symmetry group,
which is referred to as the renormalization group symmetry; and a systematic manner was
constructed for finding asymptotic solutions [4]. On the other hand, a practical methodwhich
introduced an idea of asymptotic Lie symmetry was presented and has succeeded in deriving
asymptotic behavior of reaction diffusion equations and some other nonlinear differential
equations [5, 6].

It has been shown that the Lie group analysis can also be applied in order to obtain
asymptotic behavior in perturbation problems [7–9]. In this paper, we summarize and review
the systematic procedure to derive an asymptotic behavior of perturbed dynamical systems
by means of the Lie group analysis. This method is especially useful to a particular type of
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singular perturbation problems in which the naive expansion with respect to the perturbation
parameter includes diverging terms, conventionally called secular terms, which give rise to
inconsistency with long-time behavior of the solution. One of the differences of the method
from the ordinary Lie group analysis is the point that we consider Lie groups which act not
only on the variables but also on the parameters which are constants in terms of dynamics.
Because we know solutions of the unperturbed system in perturbation problems in general,
if we can find such a Lie symmetry group admitted by a perturbed system that acts also
on the perturbation parameter, we succeed in the construction of solutions of the perturbed
system by generating from the solution of the unperturbed system with the group. Although
it is often impossible to find an exact Lie symmetry group, by finding a Lie symmetry group
which keeps the system approximately invariant, we can derive dynamical systems which
describe asymptotic behavior, what is called the reduced equation in the field of singular
perturbation theory.

This paper is organized as follows. In Section 2, we shortly review the concepts con-
cerning Lie symmetry group and the procedure to construct solutions of differential equa-
tions. In Section 3, we see the method to derive asymptotic behavior of a particular kind of
singular perturbation problems described by ordinary differential equations. In Section 4, the
method is extended in order to apply to singular perturbation problems described by differ-
ence systems. In Section 5, we see a few simple examples in which we can find an exact Lie
symmetry; therefore we can construct an exact solution of the system. In the last section, we
summarize this paper and give some discussion about the validity of the method from the
viewpoint of approximation of the solution.

2. Lie Symmetry Group of Dynamical Systems

We briefly summarize the Lie group analysis for ordinary differential equations. For detail,
see the reference [1, 2], for example. Let us consider an nth order ordinary differential
equation such as

F(t, z, z1, . . . , zn) = 0, (2.1)

where t ∈ R is the independent variable, z ∈ C
n are dependent variables, and zk := dkz/dtk.

Let

X = τ(t, z)∂t + φ(t, z)∂z (2.2)

be an infinitesimal generator of a Lie group symmetry which leaves the system (2.1) invari-
ant. Then the infinitesimal generator satisfies the infinitesimal criterion for invariance of the
system, that is,

X ∗[F(t, z, z1, . . . , zn)]|F=0 = 0, (2.3)
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where X ∗ is the prolongation of the infinitesimal generator defined by

X ∗ := X + φ1∂z1 + φ2∂z2 + · · · ,

φk := Dtφ
k−1 − zkDtτ,

Dt := ∂t + z1∂z + z2∂z1 + · · · .

(2.4)

The infinitesimal criterion (2.3) is a linear differential equation in terms of τ and φ, which
is referred to as the determining equation. By solving this equation, we find an infinitesimal
generator of a Lie symmetry group admitted by the system. In terms of the infinitesimal
generator, a solution of the system, f(t, z) = 0, which satisfies the Lie equation,

X
[
f(t, z)

]∣∣
F=0 = 0, (2.5)

is referred to as an invariant solution.

3. Singular Perturbation in Ordinary Differential Equations

In this section, we consider perturbation problems governed by ordinary differential equa-
tions. This section mainly follows reference [10]. We consider ordinary differential equations
which are written as

ż = Λz + εg(z), (3.1)

where z ∈ C
n are dependent valuables, t ∈ R is the independent valuable, the overdot denotes

the first derivative with respect to t, g : C
n → C

n, and Λ is an n × n matrix. ε represents a
small real parameter referred to as the perturbation parameter. To make the notation clear,
we consider differential equations such that Λ is a diagonal matrix whose components are
written as Λij =: λiδij . Even if Λ cannot be diagonalized, the procedure presented here can be
applied [11].

First, let us see that the perturbed system (3.1) may exhibit a singular perturbation
problem where the naive expansion with respect to perturbation parameter of the system
includes diverging term in short time which is not appropriate to describe the long-time
behavior of the solution. Let

z(t; ε) :=
∞∑

k=0

εkz(k)(t) (3.2)

be the naive expansion of the system (3.1). Then, with direct substitution of this expansion
into the both sides of (3.1), and equating the same order of ε, we obtain the recursive equa-
tions for z(k) as follows:

ż(0) = Λz(0), (3.3)

ż(i) = Λz(i) + g(i−1)
(
z(0), . . . , z(i−1)

)
, (i = 1, 2, . . .), (3.4)



4 Advances in Mathematical Physics

where we have set

g

( ∞∑

k=0

εkz(k)(t)

)

:=
∞∑

k=0

εkg(k)
(
z(0), . . . , z(k−1)

)
. (3.5)

We consider the case that each component of g(z) consists of a polynomial, that is to say, g(z)
is given by

g(z) =
∑

p

Cpz
p, (3.6)

where Cp ∈ C
n, p ∈ N

n and zp :=
∏n

k=1z
pk
k
. Because the unperturbed solution z(0)(t) is

z(0)(t) = eΛtz0, (3.7)

then the differential equation for z(1) becomes

ż(1) = Λz(1) + g
(
z(0)
)

= Λz(1) +
∑

p

Cpe(λ·p)tz0.
(3.8)

The first order of the naive expansion becomes

z
(1)
i =

∑

p s.t.
λ·p−λi=0

Cp,ite(λ·p)tz
p

0 +
∑

p s.t.
λ·p−λi /= 0

Cp,i

λ · p − λi
e(λ·p)tzp0 , (3.9)

where λ · p :=
∑n

j=1 λjpj . We see that the nonlinear terms which satisfy λ · p − λi = 0 lead to the
terms which are proportional to t in the first order in the naive expansion. We can see with
straightforward calculation in a similar manner that the higher-order terms, z(n), include the
terms proportional to tn. Such terms are called the resonant terms or the secular terms, and
the condition which gives rise to such secular terms, λ · p − λi = 0, is called the resonance
condition. For example, in perturbed harmonic oscillators, where all of the eigenvalues of the
linear system are pure imaginary, the secular terms induce the rapid increase of the appro-
ximate solution in a short time; thus the behavior is extremely different from that of the exact
solution. This kind of problems in which the naive expansion includes the divergent terms
which should not be included to describe the asymptotic behavior is known as one of the
types of singular perturbation problem.

Lie group theory can be applied to derive reduced systemswhich govern the long-time
dynamics of the original system to those singular perturbation problems. For the perturbed
system (3.1), let

X := ∂ε + τ(t, z; ε)∂t + φ(t, z; ε) · ∂z (3.10)
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be an infinitesimal generator of a Lie group which admits the system (3.1). Note that the
group we consider here acts not only on the independent and dependent variables but also
on the constant perturbation parameter ε. The reason why the coefficient of ∂ε is assumed to
be 1 is shown in reference [9]. The first prolongation of the infinitesimal generator X ∗ is writ-
ten as

X∗ = X + φż(t, z; ε) · ∂ż,
φż(t, z, ż; ε) := (∂t + ż · ∂z)φ(t, z; ε) − ż(∂t + ż · ∂z)τ(t, z; ε).

(3.11)

Then the infinitesimal criterion for invariance is given by

X ∗[ż −Λz − εg(z)
]∣∣

ż=Λz+εg(z) = 0. (3.12)

Let us find those symmetries which satisfy τ = 0 for simplicity. Then (3.12) reads

[∂t + (Λz) · ∂z −Λ]φ − g − ε
[
φ · ∂zg − g · ∂zφ

]
= 0, (3.13)

which is the determining equation for φ. Expanding φ(t, z; ε) =
∑∞

k=0 ε
kφ(k)(t, z), we obtain

the recursive equations for {φ(k)} as follows:

Lφ(0) = g, (3.14)

Lφ(i) = φ(i−1) · ∂zg − g · ∂zφ(i−1), (i = 1, 2, . . .), (3.15)

where Lf := [∂ε + (Λz) · ∂z − Λ]f for arbitrary function f . Solving these recursive equations
from the lowest order, we obtain the infinitesimal generator of the Lie symmetry group, X.
Then, we construct the solution invariant under this Lie symmetry group. Such a solution
z = z(t; ε) follows what is called the Lie equation:

X[z − z(t; ε)]|z=z(t;ε) = 0, (3.16)

which reads

∂z

∂ε
(t; ε) = φ(t, z(t; ε); ε). (3.17)

In solving this equation, we use the solution of the unperturbed system as the boundary con-
dition at ε = 0, that is,

z(t; 0) = z(0) = eΛtz0 (3.18)

for a constant z0 determined from the initial condition of the unperturbed system. Thus, we
obtain the solution of the system z(t; ε). If we solve the determining equation up to finite
order, the solution obtained through this procedure is an approximate solution.
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To proceed the calculation more, set the nonlinear polynomial terms g(z) as (3.6), that
is,

g(z) =
∑

p

Cpz
p. (3.19)

The recursive equation of the lowest order becomes

Lφ(0)(t, z) =
∑

p

Cpz
p. (3.20)

Making use of the fact that zp is eigenfunction of L for arbitrary p, namely,

Lzp =
(
λ · p − λi

)
zp, (3.21)

we immediately find a solution of (3.20). Particularly, for those terms in g(z) which satisfy
λ · p − λ = 0, named the resonance condition in the context of singular perturbation theory,
the corresponding eigenfunction of L is a zero eigenfunction. Therefore, in the case that g(z)
includes such terms, terms proportional to tzp appear in φ(0). Thus, the ith component of φ(0)

is obtained as

φ
(0)
i (t, z) =

∑

p s.t.
λ·p−λi=0

Cp,itz
p +

∑

p s.t.
λ·p−λi /= 0

Cp,i

λ · p − λi
zp, (i = 1, 2, . . . , n). (3.22)

The group-invariant solution z = z(t; ε) for this approximate Lie symmetry group follows:

∂z(t; ε)
∂ε

= φ(0) (t, z(t; ε); ε). (3.23)

Now, because we are interested in the asymptotic behavior of the system, consider the case
t � 1. Then, the Lie equation is reduced to

∂zi(t; ε)
∂ε

=
∑

p s.t.
λ·p−λi=0

Cp,itz
p, (3.24)

which reads

∂zi(τ)
∂τ

=
∑

p s.t.
λ·p−λi /= 0

Cp,iz
p. (3.25)

Here, we have introduced a slowly changing variable τ := εt. The fact that this reduced
equation is a differential equation whose independent variable is the slowly changing time
indicates that this equation describes asymptotic behavior of the system. As discussed in
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the last section, it has been shown that the diverging secular terms in the naive expansion are
included to the solution of this reduced equation.

To see this fact concretely, let us consider the following differential equation which is
a perturbed harmonic oscillator known as the Rayleigh equation:

ü + u = ε

(
u̇ − 1

3
u̇3
)
. (3.26)

Under a transformation (u, u̇) �→ (z, z) = (u + iu̇, u − iu̇), this dynamical system reads

ż = −iωz + ε

[
1
2
(z − z) +

1
24

(z − z)3
]
,

ż = iωz − ε

[
1
2
(z − z) +

1
24

(z − z)3
]
.

(3.27)

Because the second equation is the complex conjugate of the first one, it is enough to consider
only the first equation in the following. In the same manner shown above, we can calculate
the infinitesimal generator of the approximate Lie symmetry group and obtain φ up to the
lowest order with respect to ε as follows:

φ(0)(t, z) =
1
2
tz − 1

8
t|z|2z +

1
4
iz +

1
48

iz3 − 1
16

i|z|2z − 1
96

iz3. (3.28)

The solution invariant under this approximate Lie symmetry group satisfies the Lie equation
as follows:

∂z(t; ε)
∂ε

=
1
2
tz − 1

8
t|z|2z +

1
4
iz +

1
48

iz3 − 1
16

i|z|2z − 1
96

iz3. (3.29)

In order to see the long-time behavior, we consider the case of t � 1. Then, the Lie equation
is reduced to

∂z(t; ε)
∂ε

=
1
2
tz − 1

8
t|z|2z. (3.30)

Introducing τ := εt and with the transformation (z, z) �→ (A, θ) ∈ R
2 such that

A := |z|, θ :=
i
2
Log
(
z

z

)
, (3.31)

we obtain

dA
dτ

=
A

2

(

1 − A2

4

)

,

dθ
dτ

= 0.

(3.32)
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This result indicates that the nonlinear perturbation induces the change of the amplitude of
the oscillation andmakes the system limit-cycle oscillator in which the asymptotic behavior is
described by the differential equation for A; and the amplitude converges 2 in the long-time
limit as a consequence.

4. Singular Perturbation in Discrete Dynamical Systems

We consider systems governed by difference equations. Lie group analysis has been devel-
oped also in discrete systems thus far [12]. On the other hand, here we can avoid any
difficulty in discretizing Lie groups in the derivation of the asymptotic behavior of this system
as shown in the following. This section mainly follows reference [8].

We consider a general type of 2D symplectic map (un, vn) �→ (un+1, vn+1), un, vn ∈ R as
follows:

un+1 = un + vn+1,

vn+1 = vn + aun + εg(un),
(4.1)

where a ∈ R is a constant coefficient, ε ∈ R is a small perturbation parameter, and g : R → R

is a nonlinear function of un in general. There occurs the same kind of singular perturbation
problem in difference equations as what we have observed in the preceding section for
ordinary differential equations, which means that secular terms which are proportional to
n emerge in the naive expansion with respect to ε.

Remember that the Lie symmetry groups we have found for ordinary differential
equations in the preceding section do not include the action on t, which is discretized variable
here. Therefore, as long as we consider autonomous systems as this 2D symplectic map, we
can directly applied the method for ordinary differential equations to the systems considered
here.

The difference equation is written as

(
un+1

vn+1

)

=

(
a + 1 1

a 1

)(
un

vn

)

+

(
εg(un)

εg(un)

)

. (4.2)

With the transformation of variables such that the linear part is diagonalized, that is,

(
zn

zn

)

=

⎛

⎜⎜⎜
⎝

1
2 cos(ω/2)

i
exp(iω/2)
2 sinω cosω

1
2 cos(ω/2)

−i exp(−iω/2)
2 sinω cosω

⎞

⎟⎟⎟
⎠

(
un

vn

)

,

⇐⇒
(
un

vn

)

=

⎛

⎜⎜
⎝

exp
(
− iω

2

)
exp
(
iω
2

)

−2i sin
(ω
2

)
2i sin

(ω
2

)

⎞

⎟⎟
⎠

(
zn

zn

)

,

(4.3)
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we can rewrite the difference equation as

(
zn+1

zn+1

)

=

(
e−iω 0

0 eiω

)(
zn

zn

)

+ ε
g(un)
2 sinω

⎛

⎜⎜
⎝

i exp
(
− iω

2

)

−i exp
(
iω

2

)

⎞

⎟⎟
⎠, (4.4)

where a + 2 =: 2 cosω. Because we are particularly interested in the case that the dynamical
system exhibits periodic behavior corresponding to oscillation in continuous systems now,
we assume that the origin is an elliptic point, namely, −4 < a < 0. As is the case in ordinary
differential equations, since the second component of the above difference equation is the
complex conjugate of the first one, it is sufficient to consider only the equation of the first
component:

zn+1 = e−iωzn + ε
i exp(−iω/2)

2 sinω
g(un). (4.5)

Let us construct the singular perturbation method by means of the Lie group analysis.
Noting that the difference equation is an algebraic equation for zn, zn+1, zn and zn+1, let

X(n, zn, zn, zn+1, zn+1) = ∂ε + ηz(n, zn, zn)∂zn + ηz(n, zn, zn)∂zn

+ ηz(n + 1, zn+1, zn+1)∂zn+1 + ηz(n + 1, zn+1, zn+1)∂zn+1
(4.6)

be an infinitesimal generator of a Lie symmetry group which admits the difference equation.
We can show with straightforward calculation that

X(n, zn, zn, zn+1, zn+1) = ∂ε + η(n, zn, zn)∂zn + η(n, zn, zn)∂zn

+ η(n + 1, zn+1, zn+1)∂zn+1 + η(n + 1, zn+1, zn+1)∂zn+1 .
(4.7)

Here we simply write η := ηz. Then the infinitesimal criterion for invariance is given by

X(n, zn, zn, zn+1, zn+1)
[
zn+1 − e−iωzn − ε

i exp(−iω/2)
2 sinω

g(un)
]∣∣∣∣

(50)
= 0. (4.8)

In the same manner as that to the ordinary differential equations, we find an approximate Lie
symmetry group up to the lowest order with respect to ε. That is to say, we find a solution of

X(n, zn, zn, zn+1, zn+1)
[
zn+1 − e−iωzn − ε

i exp(−iω/2)
2 sinω

g(un)
]∣∣∣∣

zn+1=e−iωzn
= O(ε),

⇐⇒ η
(
n + 1, e−iωzn, eiωzn

)
− e−iωη(n, zn, zn) =

i exp(−iω/2)
2 sinω

g(un).

(4.9)
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By solving this equation, we obtain the infinitesimal generatorX of the Lie group admitted by
the difference equation. Using that infinitesimal generator, we construct the invariant solution
zn = zn(ε), which satisfies the Lie equation,

X[zn − zn(ε)]|zn=zn(ε) = 0, (4.10)

which reads

dzn(ε)
dε

= η
(
n, zn(ε), zn(ε)

)
. (4.11)

If we solve this equation under the boundary condition that

zn(ε = 0) = z
(0)
n , (4.12)

which denotes a solution of the unperturbed system, we obtain the approximate solution of
the system.

In order to proceed the calculation more, we set the nonlinear perturbation terms as

g(un) :=
∑

j

Aju
j
n, (4.13)

where Aj is a real constant. Then, the determining equation becomes

η
(
n + 1, e−iωzn, eiωzn

)
− e−iωη(n, zn, zn) =

i exp(−iω/2)
2 sinω

∑

l,m

Blm(ω)zlnzn
m, (4.14)

where

Blm(ω) = Al+m

(
l +m

l

)

exp
[−i(l −m)ω

2

]
. (4.15)

Unlike the case of ordinary differential equations, the solution of this determining equation
depends on whether ω/2π is a rational number or irrational number.

In the case that ω/2π is an irrational number, terms proportional to zl+1n zn
l in the

polynomial g give rise to terms proportional to n in η(n, zn, zn). We obtain a solution of (4.9),

η(n, zn, zn) =
∑

l,m s.t. l−m=1

i exp(iω/2)Blm(ω)
2 sinω

nzlnzn
m

+
∑

l,m s.t. l−m/= 1

i exp(−iω/2)Blm(ω)
2 sinω

{
exp[−i(l −m)ω] − exp[−iω]

}zlnzn
m.

(4.16)
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The invariant solution under this symmetry group satisfies

dzn
dε

=
∑

l,m s.t. l−m=1

i exp(iω/2)Blm(ω)
2 sinω

nzlnzn
m

+
∑

l,m s.t. l−m/= 1

i exp(iω/2)Blm(ω)
2 sinω

{
exp[−i(l −m)ω] − exp[−iω]

}zlnzn
m.

(4.17)

In order to derive the long-time behavior of the system, we consider the case of n � 1. Then,
(4.17) is reduced to

dzn
dτ

=
i exp(iω/2)

2 sinω

∞∑

l=0

Bl+1 l(ω)|zn|2lzn

=
i

2 sinω

∞∑

l=0

A2l+1

(
2l + 1

l

)

|zn|2lzn.
(4.18)

Here τ := εn is introduced. Noting that d|zn|/dε = 0, we can obtain the solution as

zn(τ) = zn(0) exp

(

i
1

2 sinω

∞∑

l=0

A2l+1

(
2l + 1

l

)

R2lτ

)

, (4.19)

where R := |zn|.
On the other hand, in the case that ω/2π is a rational number, more terms in g induce

the resonance. They are the terms zlnz
m
n which satisfy l −m = 1 + kp for an integer k. Noting

this fact, we can obtain the asymptotic behavior in a similar manner; as a result, the reduced
equation becomes as follows:

dzn
dτ

= i
1

2 sinω

[
∑

l≥1,m≥0
A2l+mp−1

(
2l +mp − 1

l +mp

)

|zn|2(l−1)zmp+1
n

+
∑

l≥0,m≥1
A2l+mp−1

(
2l +mp − 1

l

)

|zn|2lznmp−1
]

.

(4.20)

It should be remarked that this system is a Hamilton systemwhose Hamiltonian is giv-
en by

H(zn, zn) =
∑

l≥0,m≥0
(l,m)/= (0,0)

[

iA2l+mp−1

(
2l +mp − 1

)
!

(
l +mp

)
! l!

|zn|2l
(
z
mp
n + zn

mp
)]

. (4.21)

This implies that the asymptotic behavior derived with this method holds the simplecticity
the original system has.
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Moreover, if we discuss the case that theω/2π is close to an irrational number enough,
in the same manner, we can give an explanation for the well-known Poincaré-Birkoff bifurca-
tion (see [8] for detail).

One of the characteristics of this method is that, although we originally consider a
system of difference equations, the asymptotic behavior is represented by differential equa-
tions, namely, the Lie equation. This may be a merit when we analyze discrete systems since,
in general, it is more easier to find a solution of a differential equation than a difference equa-
tion.

5. Construction of Exact Solutions

In the preceding sections, we have obtained asymptotic behavior, namely, the reduced equa-
tions which govern the long-time dynamics, by finding approximate Lie symmetry groups.
However, if we can find an exact Lie symmetry group, namely, an exact solution of the
determining equation, we succeed in construction of an exact solution. Here, we see two
such simple examples.

We consider the following ordinary differential equation:

v̇ = cv − vn, (5.1)

where c is a real parameter, v = v(t; c) is the real-valued dependent variable, n is an integer
which satisfies 2 ≤ n, and the overdot denotes the derivative with respect to the independent
variable t. As known well, this system exhibits a saddle-node bifurcation or a pitch-fork
bifurcation at c = 0 when n is even or odd, respectively.

Under the transformation of variables

(a, τ, u) :=
(
c−n, ct, cv

)
, (5.2)

the system reads

u̇ = u − aun, (5.3)

where the overdot denotes the derivative with respect to τ . In the same manner shown in the
preceding sections, we set the infinitesimal generator of a Lie symmetry group admitted by
the system as

X(τ, u;a) = α(τ, u;a)∂a + φ(τ, u;a)∂u. (5.4)

This also include the transformation of a constant parameter a. Using the first prolongation
of X,

X ∗ = X + φu̇(τ, u, u̇;a)∂u̇,

φu̇(τ, u, u̇; ε) := (∂τ + u̇∂u)φ(τ, u;a),
(5.5)
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the infinitesimal criterion for invariance of the system is written as

X ∗[u̇ − u + aun]|u̇=u−aun = 0, (5.6)

which reads

[
∂t + (u − aun)∂u − 1 + naun−1

]
φ + αun = 0. (5.7)

In terms of homogeneity, we can easily find the solution as

φ(τ, u;a) = − 1
n − 1

un,

α(τ, u;a) = 1.
(5.8)

Thus, we obtain an exact Lie symmetry group admitted by the system,

X(τ, u;a) = ∂a − 1
n − 1

un∂u. (5.9)

Then, the Lie equation corresponding to this group is given by

X[u − u(τ ;a)]|u=u(τ ;a) = 0,

u(τ ; 0) = u0eτ ,
(5.10)

which reads

∂u(τ ;a)
∂a

= − 1
n − 1

un(τ ;a),

u(τ ; 0) = u0eτ ,
(5.11)

where u0 := u(0; 0) is a constant. Then the solution follows that, for even n,

u(τ ;a) =
(
a + u

−(n−1)
0 e−(n−1)τ

)−1/(n−1)
, (5.12)

and odd n,

u(τ ;a) = ±
(
a + u

−(n−1)
0 e−(n−1)τ

)−1/(n−1)
. (5.13)

With the inverse transformation of (5.2), and introducing v0 as

u0 =: c
(
v
−(n−1)
0 − c−1

)−1/(n−1)
, (5.14)
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we obtain the solution of the original equation as follows: for even n,

v(t; c) =
[
c−1 +

(
v
−(n−1)
0 − c−1

)
e−(n−1)ct

]−1/(n−1)
, (5.15)

and, for odd n,

v(t; c) =

⎧
⎪⎪⎨

⎪⎪⎩

[
c−1 +

(
v
−(n−1)
0 − c−1

)
e−(n−1)ct

]−1/(n−1)
, v0 > 0,

−
[
c−1 +

(
v
−(n−1)
0 − c−1

)
e−(n−1)ct

]−1/(n−1)
, v0 < 0.

(5.16)

With straightforward calculation in the limit of t → ∞, we can easily confirm that this solu-
tion exhibits a saddle-node bifurcation and a pitch-fork bifurcation depending on n.

Next, we consider the following partial differential equation:

ut + cux − εf(u) = 0. (5.17)

Here, t and x are real independent variables, u(t, x) is the real-valued dependent variable, ε
is a constant parameter, and f is a real-valued function of u. Let

X(t, x, u; ε) = ∂ε + η(t, x, u; ε)∂u (5.18)

be the infinitesimal generator of a Lie group admitted by the system. Because its first prolong-
ation is

X ∗(t, x, u, ux, ut; ε) = X + ηut∂ut + ηux∂ux ,

ηux := (∂x + ux∂u)η,

ηut := (∂t + ut∂u)η,

(5.19)

the infinitesimal criterion for invariance is given by

X ∗ [ut + cux − εf(u)
]∣∣

ut+cux−εf(u) = 0, (5.20)

which reads

[
ηut + cηux − f(u) − εη∂uf(u)

]∣∣
ut+cux−εf(u) = 0,

⇐⇒ (∂t + c∂x)η − f(u) + ε
[
f(u)∂uη − η∂uf(u)

]
= 0.

(5.21)

We can immediately find a solution, that is,

η(t, x, u; ε) = tf(u). (5.22)



Advances in Mathematical Physics 15

Thus, we obtain the infinitesimal generator of an exact Lie symmetry group,

X = ∂ε + tf(u)∂u. (5.23)

The solution invariant under this group satisfies the Lie equation:

X[u − u(t, x)]|u=u(t,x) = 0, (5.24)

which reads

∂u(t, x)
∂ε

= tf(u(t, x)). (5.25)

Then, the corresponding particular solution u = u(t, x) satisfies

∫u(t,x)

u0

du′

f(u′)
= tε. (5.26)

Here, u0 denotes a solution of the differential equation when ε = 0. Let us consider a simple
case, namely, f(u) = un. Then, we obtain a solution

u(t, x) =
u0(x − ct)

[
1 − εtu0(x − ct)n−1

]1/(n−1) . (5.27)

Here, we have used the fact that the original system in the case of ε = 0 has solutions which
satisfies u = u0(x − ct).

Although the above two examples are not perturbation problems, finding Lie groups
which act also on constant parameters plays a role in the construction of an exact solution of
differential equations. These examples are simple enough to obtain the solution by means
of ordinary quadrature. However, it is possible that the manner presented here is useful
in finding a solution of more complex systems because the determining equation is always
linear differential equation and the Lie equation is always a first-order ordinary equation. We
need to make it clear that to what kind of dynamical systems we can effectively apply this
method in the future.

6. Summary and Discussion

We have reviewed methods to derive an asymptotic behavior of dynamical systems which
exhibit singular perturbation problem by means of Lie symmetry group. Main characteristics
of this method are summarized into two points. (1) We consider Lie groups which also
act on constant parameters. (2) We try to find an approximate Lie symmetry group and
obtain the reduced dynamics as the Lie equation. As a result, the reduced equations which
describe the asymptotic behavior of slowly changing quantities are derived. The quantities
are constants in the unperturbed system. As we have seen in the procedure, the secular terms
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are eliminated so that the symmetry of the dynamical system is approximately maintained.
This method can be applied to systems of difference equations where the same kind of
singular perturbation problems occurs. In particular cases that we can find a Lie group which
admits the system exactly, we succeed in construction of exact solutions.

It seems that construction of solutions with this method consists of more complicated
procedure than solving original problems because we have to solve differential equations
twice: one of them is the differential equation which the infinitesimal generator of the Lie
group symmetry satisfies, namely, the determining equation, and the other is the differential
equations which the invariant solution satisfies, namely, the Lie equation. However, this
method makes the calculation clear since the Lie group analysis always ensure that (1) the
determining equation is always linear differential equation and (2) the Lie equation is always
first-order differential equation. Moreover, as we have seen, the solution of the determining
equation can be easily found in the case that the nonlinear perturbed terms are polynomial
because of the homogeneity. In general, when we construct the perturbation solution, we
should solve some recursive equation. This method provides more clear recursive equation
for finding the Lie symmetry group, (3.15), compared with the recursive equations for the
construction of a naive expansion because of the complicated form of the function g(k) in
(3.4). This clear procedure is helpful to find an exact Lie symmetry group and, therefore, to
find an exact solution of systems.

Numerous kinds of singular perturbation methods have been developed thus far.
Examples include the renormalization group method [11, 13, 14], the normal form method
[15], center manifold reduction [16], the multiple time-scale method [15] the averaging
method [17], the canonical perturbation theory [18], and geometric singular perturbation
theory [19]. All of those methods as well as the method presented in this paper result in the
same reduced equation, (3.25). With themethod presented in this paper, we can prove that the
reduced equations surely describe the asymptotic behavior well [10], that is to say, it is proved
that the solution of the reduced equation is exactly the sum of the terms which diverge most
rapidly among terms appearing in the naive expansion. For systems of difference equations,
although the proof has not been summarized yet, we can easily see in the same way that the
corresponding fact also holds.
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