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We construct a toy model of spacetime deformation-induced inertia effects, in which we prescribe
to each and every particle individually a new fundamental constituent of hypothetical 2D, so-
called master space (MS), subject to certain rules. The MS, embedded in the background 4D-
spacetime, is an indispensable companion to the particle of interest, without relation to every
other particle. The MS is not measurable directly, but we argue that a deformation (distortion
of local internal properties) of MS is the origin of inertia effects that can be observed by us. With
this perspective in sight, we construct the alternative relativistic theory of inertia. We go beyond
the hypothesis of locality with special emphasis on distortion of MS, which allows to improve
essentially the standard metric and other relevant geometrical structures referred to a noninertial
frame in Minkowski spacetime for an arbitrary velocities and characteristic acceleration lengths.
Despite the totally different and independent physical sources of gravitation and inertia, this
approach furnishes justification for the introduction of the weak principle of equivalence (WPE),
that is, the universality of free fall. Consequently, we relate the inertia effects to the more general
post-Riemannian geometry.

1. Introduction

Governing the motions of planets, the fundamental phenomena of gravitation and inertia
reside at the very beginning of the physics. More than four centuries passed since the famous
far-reaching discovery of Galileo (in 1602–1604) that all bodies fall at the same rate [1], which
led to an early empirical version of the suggestion that gravitation and inertia may somehow
result from a single mechanism. Besides describing these early gravitational experiments,
Newton in Principia Mathematica [2] has proposed a comprehensive approach to studying the
relation between the gravitational and inertial masses of a body. In Newtonian mechanics,
masses are simply placed in absolute space and time, which remain external to them. That
is, the internal state of a Newtonian point particle, characterized by its inertial mass, has
no immediate connection with the particles’ external state in absolute space and time,
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characterized by its position and velocity. Ever since, there is an ongoing quest to understand
the reason for the universality of the gravitation and inertia, attributing to the WPE, which
establishes the independence of free-fall trajectories of the internal composition and structure
of bodies. In other words, WPE states that all bodies at the same spacetime point in a given
gravitational fieldwill undergo the same acceleration. However, the nature of the relationship
of gravity and inertia continues to elude us and, beyond the WPE, there has been little
progress in discovering their true relation. Such interesting aspects, which deserve further
investigations, unfortunately, have attracted little attention in subsequent developments.
Only hypothesis, which in some extent relates inertia andmatter, is theMach principle, see for
example, [3–15], but in the same time it is a subject to many uncertainties. The Mach’s ideas
on inertial induction were proposed as the theoretical mechanism for generating the inertial
forces felt during acceleration of a reference frame. The ensuing problem of the physical origin
of inertial forces ledMach to hypothesize that inertial forces were to be of gravitational origin,
occurring only during acceleration relative to the fixed stars. In this model the ratio of inertial
to gravitational mass will depend on the average distribution of mass in the universe, in
effect making gravitational constant a function of the mass distribution in the universe. The
general relativity (GR), which preserves the idea of relativity of all kinds of motion, is built
on the so-called strong principle (SPE) that the only influence of gravity is through the metric
and can thus (apart from tidal effects) be locally, approximately transformed away by going
to an appropriately accelerated reference frame. Despite the advocated success of GR, it is
now generally acknowledged, however, that what may loosely be termed Mach principle
is not properly incorporated into GR. In particular, the origin of inertia remains essentially
the same as in Newtonian physics. Brans thorough analysis [4–6] has shown that no extra
inertia is induced in a body as a result of the presence of other bodies. Various attempts at the
resolution of difficulties that are encountered in linkingMachs principle with Einsteins theory
of gravitation have led to many interesting investigations. For example, by [14] is shown
that the GR can be locally embedded in a Ricci-flat 5D manifold such that every solution
of GR in 4D can be locally embedded in a Ricci-flat 5D manifold and that the resulting
inertial mass of a test particle varies in space time. Anyhow, the difficulty is brought into
sharper focus by considering the laws of inertia, including their quantitative aspects. That
is, Mach principle and its modifications do not provide a quantitative means for computing
the inertial forces. At present, the variety of consequences of the precision experiments from
astrophysical observations makes it possible to probe this fundamental issue more deeply
by imposing the constraints of various analyses. Currently, the observations performed in
the Earth-Moon-Sun system [16–35], or at galactic and cosmological scales [36–41], probe
more deeply both WPE and SPE. The intensive efforts have been made, for example, to clear
up whether the rotation state would affect the trajectory of test particle. Shortly after the
development of the work by [22], in which is reported that, in weighing gyros, it would
be a violation of WPE, the authors of [23–26] performed careful weighing experiments
on gyros with improved precision but found only null results which are in disagreement
with the report of [22]. The interferometric free-fall experiments by [27, 28] again found
null results in disagreement with [22]. For rotating bodies, the ultraprecise Gravity Probe
B experiment [29–34], which measured the frame-dragging effect and geodetic precession on
four quartz gyros, has the best accuracy. GP-B serves as a starting point for the measurement
of the gyrogravitational factor of particles, whereas the gravitomagnetic field, which is
locally equivalent to a Coriolis field and generated by the absolute rotation of a body, has
been measured too. This, with its superb accuracy, verifies WPE for unpolarized bodies to
an ultimate precision—a four-order improvement on the noninfluence of rotation on the



Advances in Mathematical Physics 3

trajectory, and ultraprecision on the rotational equivalence [35]. Moreover, the theoretical
models may indicate cosmic polarization rotations which are being looked for and tested in
the CMB experiments [40]. To look into the future, measurement of the gyrogravitational
ratio of particle would be a further step, see [41] and references therein, towards probing
the microscopic origin of gravity. Also, the inertia effects in fact are of vital interest for the
phenomenological aspects of the problem of neutrino oscillations; see, for example, [42–56].
All these have evoked the study of the inertial effects in an accelerated and rotated frame.
In doing this, it is a long-established practice in physics to use the hypothesis of locality for
extension of the Lorentz invariance to accelerated observers in Minkowski spacetime [57, 58].
This in effect replaces the accelerated observer by a continuous infinity of hypothetical
momentarily comoving inertial observers along its wordline. This assumption, as well as its
restricted version, so-called clock hypothesis, which is a hypothesis of locality only concerned
about the measurement of time, is reasonable only if the curvature of the wordline could
be ignored. As long as all relevant length scales in feasible experiments are very small in
relation to the huge acceleration lengths of the tiny accelerations we usually experience, the
curvature of the wordline could be ignored and that the differences between observations
by accelerated and comoving inertial observers will also be very small. In this line, in 1990,
Hehl and Ni proposed a framework to study the relativistic inertial effects of a Dirac particle
[59], in agreement with [60–62]. Ever since this question has become a major preoccupation
of physicists; see, for example, [63–84]. Even this works out, still, it seems quite clear that
such an approach is a work in progress, which reminds us of a puzzling underlying reality
of inertia and that it will have to be extended to describe physics for arbitrary accelerated
observers. Beyond the WPE, there is nothing convincing in the basic postulates of physics for
the origin and nature of inertia to decide on the issue. Despite our best efforts, all attempts
to obtain a true knowledge of the geometry related to the noninertial reference frames of
an arbitrary observer seem doomed, unless we find a physical principle the inertia might refer
to, and that a working alternative relativistic theory of inertia is formulated. Otherwise one
wanders in a darkness. The problem of inertia stood open for nearly four centuries, and
the physics of inertia is still an unknown exciting problem to be challenged and allows
various attempts. In particular, the inertial forces are not of gravitational origin within GR
as it was proposed by Einstein in 1918 [85], because there are many controversies to question
the validity of such a description [57, 58, 60–91]. The experiments by [87–90], for example,
tested the key question of anisotropy of inertia stemming from the idea that the matter in our
galaxy is not distributed isotropically with respect to the earth, and hence if the inertia is due
to gravitational interactions, then the inertial mass of a body will depend on the direction
of its acceleration with respect to the direction towards the center of our galaxy. However,
these experiments do not found such anisotropy of mass. The most sensitive test is obtained
in [88, 89] from a nuclear magnetic resonance experiment with an Li7 nucleus of spin I = 3/2.
Themagnetic field was of about 4700 gauss. The south direction in the horizontal plane points
within 22 degrees towards the center of our galaxy, and 12 hours later this same direction
along the earth’s horizontal plane points 104 degrees away from the galactic center. If the
nuclear structure of Li7 is treated as a single P3/2 proton in a central nuclear potential, the
variation Δm of mass with direction, if it exists, was found to satisfy Δm/m ≤ 10−20. This is
by now very strong evidence that there is no anisotropy of mass which is due to the effects
of mass in our galaxy. Another experimental test [91] using nuclear-spin-polarized 9Be+ ions
also gives null result on spatial anisotropy and thus supporting local Lorentz invariance. This
null result represents a decrease in the limits set by [88–90] on a spatial anisotropy by a factor
of about 300. Finally, another theoretical objection is that if the curvature of Riemannian space
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is associated with gravitational interaction, then it would indicate a universal feature equally
suitable for action on all the matter fields at once. The source of the curvature as conjectured
in GR is the energy-momentum tensor of matter, which is rather applicable for gravitational
fields but not for inertia, since the inertia is dependent solely on the state of motion of
individual test particle or coordinate frame of interest. In case of accelerated motion, unlike
gravitation, the curvature of spacetime might arise entirely due to the inertial properties of
the Lorentz-rotated frame of interest, that is, a “fictitious gravitation” which can be globally
removed by appropriate coordinate transformations [57]. This refers to the particle of interest
itself, without relation to other systems or matter fields.

On the other hand, a general way to deform the spacetime metric with constant
curvature has been explicitly posed by [92–94]. The problem was initially solved only for 3D
spaces, but consequently it was solved also for spacetimes of any dimension. It was proved
that any semi-Riemannian metric can be obtained as a deformation of constant curvature
matric, this deformation being parameterized by a 2-form. A novel definition of spacetime
metric deformations, parameterized in terms of scalar field matrices, is proposed by [95].
In a recent paper [96], we construct the two-step spacetime deformation (TSSD) theory which
generalizes and, in particular cases, fully recovers the results of the conventional theory
of spacetime deformation [92–95]. All the fundamental gravitational structures in fact—
the metric as much as the coframes and connections—acquire the TSSD-induced theoretical
interpretation. The TSSD theory manifests its virtue in illustrating how the curvature and
torsion, which are properties of a connection of geometry under consideration, come into
being. Conceptually and techniquewise this method is versatile and powerful. For example,
through a nontrivial choice of explicit form of a world-deformation tensor, which we have at
our disposal, in general, we have a way to deform that the spacetime displayed different
connections, which may reveal different post-Riemannian spacetime structures as a corollary,
whereas motivated by physical considerations, we address the essential features of the theory
of teleparallel gravity-TSSD-GR‖ and construct a consistent TSSD-U4 Einstein-Cartan (EC)
theory, with a dynamical torsion. Moreover, as a preliminary step, in the present paper
we show that by imposing different appropriate physical constraints upon the spacetime
deformations, in this framework we may reproduce the term in the well-known Lagrangian
of pseudoscalar-photon interaction theory, or terms in the Lagrangians of pseudoscalar
theories [41, 97–101], or in modification of electrodynamics with an additional external
constant vector coupling [102, 103], as well as in case of intergrand for topological invariant
[104] or in case of pseudoscalar-gluon coupling occurred in QCD in an effort to solve the
strong CP problem [105–107]. Next, our purpose is to carry out some details of this program
to probe the origin and nature of the phenomenon of inertia. We ascribe the inertia effects to
the geometry itself but as having a nature other than gravitation. In doing this, we note that
aforementioned examples pose a problem for us that physical space has intrinsic geometrical
and inertial properties beyond 4D spacetime derived from the matter contained therein.
Therefore, we should conceive of two different spaces: one would be 4D background space-
time, and another one should be 2D so-called master space (MS), which, embedded in the
4D background space, is an indispensable individual companion to the particle, without
relation to the other matter. That is, the key to our construction procedure is an assignment
in which we prescribe to each and every particle individually a new fundamental constituent
of hypothetical MS, subject to certain rules. In the contrary to Mach principle, the particle has
to live with MS companion as an intrinsic property devoid of any external influence. The geometry
of MS is a new physical entity, with degrees of freedom and a dynamics of its own. This
together with the idea that the inertia effects arise as a deformation (distortion of local
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internal properties) of MS is the highlights of the alternative relativistic theory of inertia (RTI),
whereas we build up the distortion complex (DC), yielding a distortion of MS, and show
how DC restores the world-deformation tensor, which still has to be put in [96] by hand.
Within this scheme, the MS was presumably allowed to govern the motion of a particle
of interest in the background space. In simple case, for example, of motion of test particle
in the free 4D Minkowski space, the suggested heuristic inertia scenario is reduced to the
following: unless a particle was acted upon by an unbalanced force, the MS is being flat.
This causes a free particle in 4D Minkowski space to tend to stay in motion of uniform speed
in a straight line or a particle at rest to tend to stay at rest. As we will see, an alteration
of uniform motion of a test particle under the unbalanced net force has as an inevitable
consequence of a distortion of MS. This becomes an immediate cause of arising both the
universal absolute acceleration of test particle and associated inertial force in M4 space. This,
we might expect, holds on the basis of an intuition founded on past experience limited to low
velocities, and these two features were implicit in the ideas of Galileo and Newton as to the
nature of inertia. Thereby the major premise is that the centrifugal endeavor of particles to
recede from the axis of rotation is directly proportional to the quantity of the absolute circular
acceleration, which, for example, is exemplified by the concave water surface in Newton’s
famous rotating bucket experiments. In other words, it takes force to disturb an inertia
state, that is, to make an absolute acceleration. In this framework, the relative acceleration
(in Newton’s terminology) (both magnitude and direction), to the contrary, cannot be the
cause of a distortion of MS and, thus, it does not produce the inertia effects. The real inertia
effects, therefore, can be an empirical indicator of absolute acceleration. The treatment of
deformation/distortion of MS is instructive because it contains the essential quantitative
elements for computing the relativistic inertial force acting on an arbitrary observer. On the
face of it, the hypothesis of locality might be somewhat worrisome, since it presents strict
restrictions, replacing the distorted MS by the flat MS. Therefore, it appears natural to go
beyond the hypothesis of locality with spacial emphasis on distortion of MS. This, we might
expect, will essentially improve the standard metric, and so forth, referred to a noninertial
system of an arbitrary observer in Minkowski spacetime. Consequently, we relate the inertia
effects to the more general post-Riemannian geometry. The crucial point is to observe that,
in spite of totally different and independent physical sources of gravitation and inertia,
the RTI furnishes justification for the introduction of the WPE [108, 109]. However, this
investigation is incomplete unless it has conceptual problems for further motivation and
justification of introducing the fundamental concept of MS. The way we assigned such a
property to theMS is completely ad hoc and there are some obscure aspects of this hypothesis.
All these details will be further motivated and justified in subsequent paper. The outline of
the rest of the present paper is as follows. In Section 2 we briefly revisit the theory of TSSD
and show how it can be useful for the theory of electromagnetism and charged particles.
In Section 3, we explain our view of what is the MS and lay a foundation of the RLI. A
general deformation/distortion of MS is described in Section 4. In Section 5, we construct
the RTI in the background 4DMinkowski space. In Section 6, we go beyond the hypothesis of
locality, whereas we compute the improved metric and other relevant geometrical structures
in noninertial system of arbitrary accelerating and rotating observer inMinkowski spacetime.
The case of semi-Riemann background space V4 is dealt with in Section 7, whereby we give
justification for the introduction of the WPE on the theoretical basis. In Section 8, we relate
the RTI to more general post-Riemannian geometry. The concluding remarks are presented
in Section 9. We will be brief and often ruthlessly suppress the indices without notice. Unless
otherwise stated we take natural units, h = c = 1.
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2. TSSD Revisited: Preliminaries

For the benefit of the reader, this section contains some of the necessary preliminaries
on generic of the key ideas behind the TSSD [96], which needs one to know in order to
understand the rest of the paper. We adopt then its all ideas and conventions. The interested
reader is invited to consult the original paper for further details. It is well known that the
notions of space and connections should be separated; see, for example, [110–113]. The
curvature and torsion are in fact properties of a connection, and many different connections
are allowed to exist in the same spacetime. Therefore, when considering several connections
with different curvatures and torsions, one takes spacetime simply as a manifold and
connections as additional structures. From this view point in a recent paper [96] we have
tackled the problem of spacetime deformation. In order to relate local Lorentz symmetry
to curved spacetime, there is, however, a need to introduce the soldering tools, which
are the linear frames and forms in tangent fiber-bundles to the external curved space,
whose components are so-called tetrad (vierbein) fields. To start with, let us consider the
semi-Riemann space, V4, which has at each point a tangent space, T̆x̆V4, spanned by the
anholonomic orthonormal frame field, ĕ, as a shorthand for the collection of the 4-tuplet
(ĕ0, . . . , ĕ3), where ĕa = ĕ

μ
a∂̆μ. All magnitudes related to the space, V4, will be denoted by

an over “˘”. These then define a dual vector, ϑ̆, of differential forms, ϑ̆=

⎛
⎜⎝

ϑ̆0

...
ϑ̆3

⎞
⎟⎠, as a shorthand

for the collection of the ϑ̆b = ĕbμdx̆
μ, whose values at every point form the dual basis, such

that ĕa�ϑ̆b = δb
a, where � denotes the interior product, namely, this is a C∞-bilinear map

� : Ω1 → Ω0 where Ωp denotes the C∞-modulo of differential p-forms on V4. In components
ĕ
μ
aĕ

b
μ = δb

a. On the manifold, V4, the tautological tensor field, id̆, of type (1, 1) can be defined
which assigns to each tangent space the identity linear transformation. Thus for any point
x̆ ∈ V4, and any vector ξ̆ ∈ T̆x̆V4, one has id̆(ξ̆) = ξ̆. In terms of the frame field, the ϑ̆a give
the expression for id̆ as id̆ = ĕϑ̆ = ĕ0 ⊗ ϑ̆0 + · · · ĕ3 ⊗ ϑ̆3, in the sense that both sides yield ξ̆
when applied to any tangent vector ξ̆ in the domain of definition of the frame field. One can
also consider general transformations of the linear group, GL(4, R), taking any base into any
other set of four linearly independent fields. The notation {ĕa, ϑ̆b}will be used hereinafter for
general linear frames. The holonomic metric can be defined in the semi-Riemann space, V4,
as

ğ = ğμνϑ̆
μ ⊗ ϑ̆ν = ğ

(
ĕμ, ĕν

)
ϑ̆μ ⊗ ϑ̆ν, (2.1)

with components ğμν = ğ(ĕμ, ĕν) in the dual holonomic base {ϑ̆μ ≡ dx̆μ}. The anholonomic
orthonormal frame field, ĕ, relates ğ to the tangent space metric, oab = diag(+−−−), by oab =
ğ(ĕa, ĕb) = ğμνĕ

μ
aĕ

ν
b , which has the converse ğμν = oabĕ

a
μĕ

b
ν because ĕ

μ
aĕ

a
ν = δ

μ
ν .

For reasons that will become clear in the sequel, next we write the norm, ds, of the
infinitesimal displacement, dxμ, on the general smooth differential 4D-manifold,M4, in terms
of the spacetime structures of V4, as

ds = eϑ = Ων
μĕν ⊗ ϑ̆μ = Ωa

b
ĕa ⊗ ϑ̆b = eρ ⊗ ϑρ = ea ⊗ ϑa ∈ M4, (2.2)

where Ων
μ = π

ρ
μπ

ν
ρ is the world deformation tensor, e = {ea = e

ρ
aeρ} is the frame field, and

ϑ = {ϑa = eaρϑ
ρ} is the coframe field defined on M4, such that ea�ϑb = δb

a, or in components,
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e
μ
ae

b
μ = δb

a; also the procedure can be inverted, eaρe
σ
a = δσ

ρ . Hence the deformation tensor,
Ωa

b = πa
c π

c
b = Ων

μĕ
a
ν ĕ

μ

b , yields local tetrad deformations:

ec = πa
c ĕa, ϑc = πc

b ϑ̆
b, eϑ = ea ⊗ ϑa = Ωa

b ĕa ⊗ ϑ̆b. (2.3)

The components of the general spin connection then transform inhomogeneously under a local
tetrad deformations (2.3):

ωa
bμ = πa

c ω̆
c
dμπ

d
b + πa

c ∂μπ
c
b . (2.4)

This is still a passive transformation, but with inverted factor ordering. The matrices π(x) :=
(πa

b )(x) are called first deformation matrices, and the matrices γcd(x) = oabπ
a
c (x)π

b
d(x), second

deformation matrices. The matrices πa
c (x) ∈ GL(4, R) for all x, in general, give rise to

right cosets of the Lorentz group; that is, they are the elements of the quotient group
GL(4, R)/SO(3, 1), because the Lorentz matrices, Λa

c , leave the Minkowski metric invariant.
A right-multiplication of π(x) by a Lorentz matrix gives an other deformation matrix. If we
deform the tetrad according to (2.3), in general, we have two choices to recast metric as
follows: either writing the deformation of the metric in the space of tetrads or deforming
the tetrad field:

g = oabπ
a
c π

b
dϑ̆

c ⊗ ϑ̆d = γcdϑ̆
c ⊗ ϑ̆d = oabϑ

a ⊗ ϑb. (2.5)

In the first case, the contribution of the Christoffel symbols, constructed by the metric γab,
reads

Γabc =
1
2

(
C̆a

bc − γaa′γbb′C̆
b′

a′c − γaa
′
γcc′C̆

c′

a′b

)

+
1
2
γaa

′(
ĕc�dγba′ − ĕb�dγca′ − ĕa′ �dγbc

)
,

(2.6)

with C̆e
df

representing the curls of the base members in the semi-Riemann space:

C̆e
df = ĕf

⌋
ĕd
⌋
C̆e = −ϑ̆e([ĕd, ĕf

])
= ĕ

μ

d
ĕνf

(
∂̆μĕ

e
ν − ∂̆νĕ

e
μ

)
= −ĕeμ

[
ĕd
(
ĕ
μ

f

)
− ĕf
(
ĕ
μ

d

)]
, (2.7)

where C̆a := dϑ̆a = (1/2)C̆a
bcϑ̆

b ∧ ϑ̆c is the anfolonomity 2-form. The deformed metric can be
split as follows [96]:

gμν(π) = Υ2(π)ğμν + γμν(π), (2.8)

where Υ(π) = πa
a , and γμν(π) = [γab − Υ2(π)oab]ĕaμĕ

b
ν. In the second case, we may write the

commutation table for the anholonomic frame, {ea},

[ea, eb] = −1
2
Cc

ab
ec, (2.9)
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and define the anholonomy objects:

Ca
bc = πa

e π
−1
b

d
π−1
c

f
C̆e

df + 2πa
f ĕ

μ
g

(
π−1
[b

g
∂μπ

−1
[c

f
)
. (2.10)

The usual Levi-Civita connection corresponding to the metric (2.8) is related to the original
connection by the following relation:

Γμρσ = Γ̆μρσ + Πμ
ρσ, (2.11)

provided that

Πμ
ρσ = 2gμνğν(ρ∇σ)Υ − ğρσg

μν∇νΥ +
1
2
gμν(∇ργνσ +∇σγρν − ∇νγρσ

)
, (2.12)

where the controvariant deformed metric, gνρ, is defined as the inverse of gμν, such that
gμνg

νρ = δ
ρ
μ. Hence, the connection deformation Πμ

ρσ acts like a force that deviates the test
particles from the geodesic motion in the space V4 (for more details see [96]). Next, we deal
with the spacetime deformation π(x), to be consisted of two ingredient deformations (

•
π (

•
x),

σ(x)). Provided, we require that the first deformation matrix,
•
π (

•
x) := (

•
π

a

b)(
•
x), satisfies the

following peculiar condition:

•
π

a

c

( •
x
)•
∂μ

•
π

−1
b

c( •
x
)
= ω̆a

bμ(x̆), (2.13)

where ω̆a
bμ(x̆) is the spin connection defined in the semi-Riemann space. By virtue of (2.13),

the general deformed spin connection vanishes, and a general linear connection,
•
Γ
μ

ρσ , is

related to the corresponding spin connection
•
ω

a

bμ, through the inverse

•
Γ
μ

ρσ =
•
e
μ

a

•
∂σ

•
e
a

ρ +
•
e
μ

a

•
ω

a

bσ

•
e
b

ρ =
•
e
μ

a

•
∂σ

•
e
a

ρ, (2.14)

which is the Weitzenböck connection revealing the Weitzenböck spacetime W4 of the
teleparallel gravity. Thus,

•
π (

•
x) can be referred to as the Weitzenböck deformation matrix.

All magnitudes related to the teleparallel gravity will be denoted by an over “•”. The
components of the general spin connection then transform inhomogeneously under a local
tetrad deformations:

ω′a
bμ = σa

c

•
ω

c

dμσ
d
b + σa

c ∂μσ
c
b , (2.15)

such that

(σ)
ωbμ

a

:= ω′a
bμ = σa

c ∂μσ
c
b (2.16)
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is referred to as the deformation-related frame connection, which represents the deformed properties
of the frame only. Then, it follows that the affine connection Γ transforms inhomogeneously
through

Γμρσ = e
μ
a∂σe

a
ρ + e

μ
a

(π)
ωbσ

a

ebρ = σ
μ
a∂σσ

a
ρ + σ

μ
a

(σ)
ωbσ

a

σb
ρ , (2.17)

where we have σμ
aσ

b
μ = δb

a, also the procedure can be inverted, σμ
aσ

a
ν = δ

μ
ν , and

(μ)
ωbμ

a

:= ωa
bμ = πa

c ω̆
c
dμπ

db + πa
c ∂μπ

cb (2.18)

is the spin connection. For our convenience, hereinafter the notation {
(A)
ea ,

(A)
ϑ

b

}(A = π, σ) will
be used for general linear frames:

{
(A)
ea ,

(A)
ϑ

b
}

=
{(

(π)
ea ,

(σ)
ea

)
,

(
(π)
ϑ

b

,
(σ)
ϑ

b
)}

≡
{(

ea,
•
ea

)
,
(
ϑb,

•
ϑ
b
)}

, (2.19)

where
(A)
ea �

(A)
ϑ

b

= δb
a, or in components,

(A)
ea

μ(A)
eμ

b

= δb
a; also the procedure can be inverted,

(A)
eρ

a(A)
ea

σ

= δσ
ρ , provided that

(A)
ea

μ

=
(
(A)
ea

μ

,
(σ)
ea

μ)
≡
(
e
μ
a, σ

μ
a

)
. (2.20)

Hence, the affine connection (2.17) can be rewritten in the abbreviated form:

(A)
Γρσ

μ

=
(A)
ea

μ

∂σ
(A)
eρ

a

+
(A)
ea

μ (A)
ωbσ

a(A)
eρ

b

. (2.21)

Since the first deformation matrices π(x) and σ(x) are arbitrary functions, the inhomoge-

neously transformed general spin connections
(π)
ω(x) and

(σ)
ω(x), as well as the affine connection

(2.21), are independent of tetrad fields and their derivatives. In what follows, therefore, we
will separate the notions of space and connections—the metric-affine formulation of gravity.
A metric-affine space (M4, g,Γ) is defined to have a metric and a linear connection that need
not be dependent on each other. The lifting of the constraints of metric-compatibility and
symmetry yields the new geometrical property of the spacetime, which are the nonmetricity

1-form
(A)
Nab and the affine torsion 2-form

(A)
T

a

representing a translational misfit (for a

comprehensive discussion see [114–118]. These, together with the curvature 2-form
(A)
Sa

b

,
symbolically can be presented as [119, 120]

(
(A)
Nab,

(A)
T

a

,
(A)
Sa

b
)

∼
(A)
D
(

(A)
gab,

(A)
ϑ

a

,
(A)
Γa

b
)
, (2.22)
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where for a tensor-valued p-form density of representation type ρ(Lb
a), theGL(4, R)-covariant

exterior derivative reads
(A)
D : = d +

(A)
Γa

b

ρ(Lb
a)∧ and

(A)
Γa

b

=
(A)
Γμa

b

dxμ is the general nonmetricity

connection. This notation will be used instead of
(A)
ωa

b

=
(A)
ωμa

b

dxμ, such that
(A)
Γμa

b

=
(A)
ea

ν(A)
eσ

b

Γσμν +
(A)
ea

ν

∂μ
(A)
eν

b

. In what follows, however, we may still maintain the former notation
(A)
ωa

b

to be referred to as corresponding connection constrained by the metricity condition. We

may introduce the affine contortion 1-form
(A)
Kab = −

(A)
Kab given in terms of the torsion 2-form

(A)
Ta =

(A)

ϑb ∧
(A)
Ka

b
. In tensor components we have

(A)
Kμν

ρ

= 2
(A)

Q(μν)

ρ

+
(A)
Qμν

ρ

, where the torsion tensor
(A)
Qμν

ρ

= (1/2),
(A)
Tμν

ρ

=
(A)
Γ[μν]

ρ

given with respect to a holonomic frame, d
(A)
ϑρ = 0, is a third-rank

tensor, antisymmetric in the first two indices, with 24 independent components. The TSSD-
U4 theory (see [96]) considers curvature and torsion as representing independent degrees
of freedom. The RC manifold, U4, is a particular case of general metric-affine manifold M4,
restricted by the metricity condition, when a nonsymmetric linear connection is said to be
metric compatible. Taking the antisymmetrized derivative of the metric condition gives an
identity between the curvature of the spin-connection and the curvature of the Christoffel
connection:

(A)
Rμν

ab(
(A)
ω
) (A)
eρb −Rσ

ρμν(Γ)
(A)
eσ

a

= 0, (2.23)

where

(A)
Rμν

ab(
(A)
ω
)
= ∂μ

(A)
ω

ab

ν − ∂ν
(A)
ωμ

ab

+
(A)
ωμ

ac (A)
ωνc

b

−
(A)
ων

ac (A)
ωμc

b

,

Rσ
ρμν(Γ) = ∂μΓσνρ − ∂νΓσμρ − ΓλμρΓ

σ
νλ + ΓλνρΓ

σ
μλ.

(2.24)

Hence, the relations between the scalar curvatures for an U4 manifold read

(A)
R
(
(A)
ω

)
≡

(A)
ea

μ(A)
eb

ν (A)
Rμν

ab(
(A)
ω

)
= R
(
g,Γ
)
≡ gρνR

μ
ρμν(Γ). (2.25)

This means that the Lorentz and diffeomorphism invariant scalar curvature, R, becomes

either a function of
(A)
ea

μ

only or a function of gμν only. Certainly, it can be seen by noting
that the Lorentz gauge transformations can be used to fix the six antisymmetric components

of
(A)
ea

μ

to vanish. Then in both cases diffeomorphism invariance fixes four more components
out of the six gμν, with the four components g0μ being non dynamical, obviously, leaving
only two dynamical degrees of freedom. This shows that the equivalence of the vierbein and
metric formulations holds. According to (2.25), the relations between the Ricci scalars read

◦
R ≡

◦ (σ)
Rcd ∧

•
ϑ
c

∧
•
ϑ
d

=
◦ (π)
Rcd ∧ϑc ∧ ϑd. (2.26)
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To recover the TSSD-U4 theory, one can choose the EC Lagrangian, LEC, as

LEC = − 1
2
2

(A)
R

ab

∧
(A)
ηab +

1
2
Λ

(A)
η +

1
2

(A)
Nab ∧λab, (2.27)

whereΛ is the cosmological constant,
(A)
Ra

b

is the curvature tensor, λab is the Lagrange multiplier,

and (1/2)
(A)
R

ab

∧
(A)
ηab=

(A)
R

(A)
η . The η-basis is consisting in the Hodge dual of exterior products

of tetrads by means of the Levi-Civita object: ηabcd := �
ϑ
abcd, which yields ηab := �

ϑ
ab =

(1/2!) ηab
cd ∧ ϑcd and η := �1 = (1/4!) ηabcd ϑabcd, where we used the abbreviated notations

for the wedge product monomials,
(A)
ϑ

μνα···
=

(A)
ϑ

μ

∧
(A)
ϑ

ν

∧
(A)
ϑ

α

∧ · · · , and � denotes the Hodge
dual. The variation of the total action

S = SEC + S
(π)
m , (2.28)

given by the sum of the gravitational field action, SEC =
∫
LEC, with the Lagrangian (2.27) and

the macroscopic matter sources, S(π)
m , with respect to the

(A)
ϑ

a

, 1-form
(A)
ω

ab

and Ψ, which is a
p-form representing a matter field (fundamentally a representation of the SL(4, R) or of some
of its subgroups), gives

(1)
1
2

◦ (A)
Rca ∧

(A)
ϑ

c

+ Λ
(A)
ηa= 
2

(A)
θa , (2)

(A)
Θab

a′b′

∧ �
(A)
Ta′b′= 
2�

(π)
Σab,

(3)
δL

(π)
m

δΨ
= 0,

δL
(π)
m

δΨ
= 0,

(2.29)

where 
 is the Planck length,
(A)
Θa′b′

ab

(π(x), σ(x)) = ((∂
(A)
ω

a′b′

)/∂
(π)
ω

ab

), and �
(π)
Σab= −�

(π)
Σba is the

dual 3-form corresponding to the canonical spin tensor, which is identical with the dynamical

spin tensor
(π)
Sabc, namely,

�
(π)
Σab =

(π)
Sab

μ

εμναβ
(π)
ϑ

ναβ

, (2.30)

provided that,

�
(A)
T ab :=

1
2
�

(
(A)
Qa ∧

(A)
eb

)
=

(A)
Q

c

∧
(A)
ϑ

d

εcdab =
1
2

(A)
Qμν

c

∧
(A)
eα

d

εabcd
(A)
ϑ

μνα

, (2.31)

and that

(A)
Q

a

=
(A)
D

(A)
ϑ

a

= d
(A)
ϑ

a

+
(A)
ωb

a

∧
(A)
ϑ

b

. (2.32)
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To obtain some feeling for the tensor language in a holonomic frame then we may recast the
first two field equations in (2.29) in the tensorial form:

(1)
◦
Gμν + Λ gμν = 
2

(A)
θμν, (2)

∂
(A)
ων′

μ′ρ′

∂
(π)
ων

μρ

(
(A)
T

) (A)
Tμ′ρ′

ν′

= 
2
(π)
Sμρ

ν

, (2.33)

where
◦
Gμν ≡

◦
Rμν − (1/2)gμν

◦
R is Einstein’s tensor, and the modified torsion reads

(A)
Tμρ

ν

:=
(A)
Qμρ

ν

+ δν
μ

(A)
Qρ −δν

ρ

(A)
Qμ . (2.34)

Thus, the equations of the standard EC theory can be recovered for A = π . However, these
equations can be equivalently replaced by the set of modified EC equations for A = σ:

(1)
◦
Gμν + Λgμν = 
2

(σ)
θμν, (2)

(σ)
Θν′μρ

μ′ρ′ν(
(σ)
T

) (σ)
Tμ′ρ′

ν′

= 
2
(π)
Sμρ

ν

. (2.35)

We may impose different physical constraints upon the spacetime deformation σ(x), which
will be useful for the theory of electromagnetism and charged particles:

Θμ′ρ′ν

ν′μρ (π(x), σ(x)) ≡ Θμ′ρ′ν

ν′μρ

(
(σ)
T

)
= 2ϕ, σ ε

σν
μρ

(
(σ)

T−1

)μ′ρ′

ν′
, (2.36)

with ϕ as a scalar or pseudoscalar function of relevant variables. Here Θμ′ρ′ν

ν′μρ (
(A)
T ) =

((∂
(A)
ων′

μ′ρ′

)/∂
(π)
ων

μρ

(
(A)
T )). Then we obtain

(π)
Tμρ

ν

= Θμ′ρ′ν

ν′μρ (π(x), σ(x))
(σ)
Tμ′ρ′

ν′

= 2ϕ, σε
σν
μρ,

(2.37)

which recovers the term in the Lagrangian of pseudoscalar-photon interaction theory [41, 97–
101], such that the nonmetric part of the Lagrangian can be put in the well-known form of
the χ − g framework:

L
(π)NM
I = 2

(
−g
)1/2

AνAμ,ρ

(π)
T

νμρ

= 4
(
−g
)1/2

ϕ, σε
σνμρAνAμ,ρ, (mod div), (2.38)

where Fμν = Aμ,ν − Aν,μ has the usual meaning for electromagnetism. This is equivalent, up
to integration by parts in the action integral (modulo a divergence), to the Lagrangian

L
(π)NM
I =

(
−g
)1/2

ϕεσνμρFσνFμρ. (2.39)
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According to (2.39), the gravitational constitutive tensor χσνμρ = χμρσν = −χμρνσ [40] of the
gravitational fields (e.g., metric gμν, (pseudo)scalar field ϕ, etc.) reads

χσνμρ =
(
−g
)1/2[1

2
gσμgνρ − 1

2
gσρgμν + ϕεσνμρ

]
. (2.40)

The special case ϕ, σ = constant = Vσ is considered by [102, 103], for modification
of electrodynamics with an additional external constant vector coupling. Imposing other
appropriate constraints upon the spacetime deformation σ(x), in the framework of TSSD-
U4 theory we may reproduce the various terms in the Lagrangians of pseudoscalar theories,
for example, as intergrand for topological invariant [104], or pseudoscalar-gluon coupling
occurred in QCD in an effort to solve the strong CP problem [105–107].

3. The Hypothetical Flat MS companion: A Toy Model

As a preliminary step we now conceive two different spaces: one would be 4D background
Minkowski space, M4, and another one should be MS embedded in the M4, which is an
indispensable individual companion to the particle, without relation to the other matter. This
theory is mathematically somewhat similar to the more recent membrane theory. The flat MS
in suggested model is assumed to be 2D Minkowski space, M2:

M2 = R1
(+) ⊕ R1

(−). (3.1)

The ingredient 1D-space R1
A is spanned by the coordinates ηA, where we use the naked capital

Latin letters A,B, . . . = (±) to denote the world indices related toM2. The metric in M2 is

g = g(eA, eB)ϑ
A
⊗ ϑ

B
, (3.2)

where ϑ
A
= dηA is the infinitesimal displacement. The basis eA at the point of interest in M2

consists of two real null vectors:

g(eA, eB) ≡ 〈eA, eB〉 = ∗oAB, ( ∗oAB) =
(
0 1
1 0

)
. (3.3)

The norm, id ≡ dη̂, given in this basis reads id = eϑ = eA ⊗ ϑ
A
, where id is the tautological

tensor field of type (1,1), e is a shorthand for the collection of the 2-tuplet (e(+), e(−)), and

ϑ =
(

ϑ
(+)

ϑ
(−)

)
. We may equivalently use a temporal q0 ∈ T1 and a spatial q1 ∈ R1 variables

qr(q0, q1) (r = 0, 1), such that

M2 = R1 ⊕ T1. (3.4)
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The norm, id, now can be rewritten in terms of displacement, dqr , as

id = dq̂ = e0 ⊗ dq0 + e1 ⊗ dq1, (3.5)

where e0 and e1 are, respectively, the temporal and spatial basis vectors:

e0 =
1√
2

(
e(+) + e(−)

)
, e1 =

1√
2

(
e(+) − e(−)

)
,

g(er, es) ≡ 〈er, es〉 = ors, (ors) =
(
1 0
0 −1

)
.

(3.6)

TheMS companion (M2) of this particle is assumed to be smoothly (injective and continuous)
embedded in the M4. Suppose that the position of the particle in the background M4 space
is specified by the coordinates xl(s) (l = 0, 1, 2, 3)(x0 = t) with respect to the axes of the
inertial system S(4). Then, a smooth map f : M2 → M4 is defined to be an immersion—an
embedding is a function that is a homeomorphism onto its image:

q0 =
1√
2

(
η(+) + η(−)

)
= t, q1 =

1√
2

(
η(+) − η(−)

)
= |�x|. (3.7)

In fact, we assume that the particle has to be moving simultaneously in the parallel individual
M2 space and the ordinary 4D background space (either Minkowskian or Riemannian). Let
the nonaccelerated observer uses the inertial coordinate frame S(2) for the position qr of a free
test particle in the flat M2. We may choose the system S(2) in such a way as the time axis e0
lies along the time axis of a comoving inertial frame S4, such that the time coordinates in the
two systems are taken the same, q0 = t. For the case at hand,

v(±) =
dη(±)

dq0
=

1√
2

(
1 ± vq

)
, vq =

dq1

dq0
= |�v| =

∣∣∣∣
d�x

dt

∣∣∣∣ = const ≥ 0. (3.8)

Hence, given the inertial frames S(4), S′
(4), S

′′

(4), . . . in the M4, in this manner we may define

the corresponding inertial frames S(2), S′
(2), S

′′

(2), . . . in the M2.
Continuing on our quest, we next define the concepts of absolute and relative states of

the ingredient spaces R1
A. The measure for these states is the very magnitude of the velocity

components vA of the particle.

Definition 3.1. The ingredient space R1
A of the individual MS companion of the particle is said

to be in

absolute (abs) state if vA = 0, relative (rel) state if vA
/= 0. (3.9)

Therefore, the MS can be realized either in the semiabsolute state (rel, abs), or (abs, rel), or in
the total relative state (rel, rel). It is remarkable that the total-absolute state, (abs, abs), which
is equivalent to the unobservable Newtonian absolute two-dimensional spacetime, cannot be
realized because of the relation v(+) + v(−) =

√
2. An existence of the absolute state of the R1

A is
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an immediate cause of the light traveling in empty space R1 along the q-axis with a maximal
velocity vq = c (we reinstate the factor (c)) in the (+)-direction corresponding to the state
(v(+), 0) ⇔ (rel, abs), and in the (−)-direction corresponding to the state (0, v(−)) ⇔ (abs, rel).
The absolute state of R1

A manifests its absolute character in the important for SR fact that the
resulting velocity of light in the empty space R1 is the same in all inertial frames S(2), S′

(2),
S

′′

(2),. . .; that is, in empty space light propagates independently of the state of motion of the

source—if vA = 0, then vA′
= vA

′′
= · · · = 0. Since the vA is the very key measure of a deviation

from the absolute state, we might expect that this has a substantial effect in an alteration of
the particle motion under the unbalanced force. This observation allows us to lay forth the
foundation of the fundamental RLI as follows.

Conjecture 1 (RIL conjecture). The nonzero local rate �(η,m, f) of instantaneously change of
a constant velocity vA (both magnitude and direction) of a massive (m) test particle under the
unbalanced net force ( �f) is the immediate cause of a deformation (distortion of the local internal
properties) of MS: M2 → M̃2.

We can conclude therefrom that, unless MS is flat, a free particle in 4D background
space in motion of uniform speed in a straight line tends to stay in this motion and a particle
at rest tends to stay at rest. In this way, the MS companion, therefore, abundantly serves to
account for the state of motion of the particle in the 4D background space. TheMS companion
is not measurable directly, but in going into practical details, in Section 4 we will determine
the function �(η,m, �f) and show that a deformation (distortion of local internal properties) of
MS is the origin of inertia effects that can be observed by us. Before tempting to build realistic
model of accelerated motion and inertial effects, for the benefit of the reader, we briefly turn
back to physical discussion of why theMS is two dimensional and not higher. We have first to
recall the salient features of MS which admittedly possesses some rather unusual properties;
namely, the basis at the point of interest in MS, embedded in the 4D spacetime, would be
consisted of the real null vectors, which just allows only two-dimensional constructions (3.3).
Next, note that the immediate cause of inertia effects is the nonlinear process of deformation
(distortion of local internal properties) of MS, which yields the resulting linear relation �fin =
− �f (see (2.19)–(5.35)) with respect to the components of inertial force �fin in terms of the
relativistic force �f acting on a purely classical particle in M4. This ultimately requires that
MS should only be two dimensional, because to resolve the afore-mentioned relationship of
nonlinear and linear processes we may choose the system S(2) in only allowed way as the
time axis e0 lies along the time axis of a comoving inertial frame S4, in order that the time
coordinates in the two systems are taken the same, q0 = t and that another axis �eq lies along
the net 3-acceleration (�eq‖�ea), (�ea = �anet/|�anet|) (5.26).

4. The General Spacetime Deformation/Distortion Complex

For the self-contained arguments, we now extend just necessary geometrical ideas of the
spacetime deformation framework described in Section 2, without going into the subtleties,
as applied to the 2D deformationM2 → M̃2. To start with, let V2 be 2D semi-Riemann space,
which has at each point a tangent space, T̆η̆V2, spanned by the anholonomic orthonormal
frame field, ĕ, as a shorthand for the collection of the 2-tuplet (ĕ(+), ĕ(−)), where ĕa = ĕÃa ĕÃ,
where the holonomic frame is given as ĕÃ = ∂̆Ã. Here, we use the first half of Latin alphabet
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a, b, c, . . . = (±) to denote the anholonomic indices to related the tangent space, and the capital
Latin letters with an over “ ∼ ′′—Ã, B̃, . . . = (±), to denote the holonomic world indices related
to either the space V2 or M̃2. All magnitudes referred to the space, V2, will be denoted by an
over “ ˘ ′′. These then define a dual vector, ϑ̆, of differential forms, ϑ̆ =

(
ϑ̆(+)

ϑ̆(−)

)
, as a shorthand

for the collection of the ϑ̆b = ĕb
Ã
ϑ̆Ã, whose values at every point form the dual basis, such

that ĕa�ϑ̆b = δb
a. In components ĕÃa ĕ

b

Ã
= δb

a. On the manifold, V2, the tautological tensor

field, id̆, of type (1,1) can be defined which assigns to each tangent space the identity linear
transformation. Thus for any point η̆ ∈ V2, and any vector ξ̆ ∈ T̆η̆V2, one has id̆(ξ̆) = ξ̆. In terms
of the frame field, the ϑ̆a give the expression for id̆ as id̆ = ĕϑ̆ = ĕ(+) ⊗ ϑ̆(+) + ĕ(−) ⊗ ϑ̆(−), in the
sense that both sides yield ξ̆ when applied to any tangent vector ξ̆ in the domain of definition
of the frame field. We may consider general transformations of the linear group, GL(2, R),
taking any base into any other set of four linearly independent fields. The notation {ĕa, ϑ̆b}
will be used hereinafter for general linear frames. The holonomic metric can be defined in the
semi-Riemann space, V2, as

ğ = ğÃB̃ϑ̆
Ã ⊗ ϑ̆B̃ = ğ

(
ĕÃ, ĕB̃

)
ϑ̆Ã ⊗ ϑ̆B̃, (4.1)

with components ğÃB̃ = ğ(ĕÃ, ĕB̃) in the dual holonomic base {ϑ̆Ã}. The anholonomic
orthonormal frame field, ĕ, relates ğ to the tangent space metric, ∗oab, by ∗oab = ğ(ĕa, ĕb) =
ğÃB̃ĕ

Ã
a ĕ

B̃
b
, which has the converse ğÃB̃ = ∗oabĕ

a

Ã
ĕb
B̃
because of the relation ĕÃa ĕ

a

B̃
= δÃ

B̃
. With

this provision, we build up a general distortion-complex, yielding a distortion of the flat space
M2, and show how it recovers the world-deformation tensor Ω̃, which still has to be put in
[96] by hand. The DC members are the invertible distortion matrix D, the tensor Y , and the
flat-deformation tensor Ω. Symbolically,

DC ∼
(
D̆, Y̆ ,Ω

)
−→ Ω̃. (4.2)

The principle foundation of a distortion of local internal properties of MS comprises then two
steps.

(1) The first is to assume that the linear frame (eA;ϑ
A
), at given point (p ∈ M2),

undergoes the distortion transformations, conducted by (D̆, Y̆ ) and (D,Y ), respectively,
relating to V2 and M̃2, recast in the form

ĕÃ = D̆B

Ã
eB, ϑ̆Ã = Y̆ Ã

B ϑ
B
, eÃ = DB

Ã
eB, ϑÃ = YÃ

B ϑ
B
. (4.3)

(2) Then, the norm d˜̂η ≡ id of the infinitesimal displacement dη̃Ã on the general
smooth differential 2D-manifold M̃2 can be written in terms of the spacetime structures of
V2 and M2:

id = eϑ = Ω̃ B̃

Ã
ĕB̃ ⊗ ϑ̆Ã = Ωa

b ĕa ⊗ ϑ̆b = eC̃ ⊗ ϑC̃ = ea ⊗ ϑa = ΩB
AeB ⊗ ϑ

A
∈ M̃2, (4.4)
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where e = {ea = eC̃a eC̃} is the frame field and ϑ = {ϑa = ea
C̃
ϑC̃} is the coframe field defined on

M̃2, such that ea�ϑb = δb
a. The deformation tensors Ω̃B̃

Ã
= πC̃

Ã
πB̃

C̃
and ΩB

A imply

Ω̃B̃

Ã
= D̆C

Ã
ΩD

C Y̆
B̃
D, ΩB

A = YC̃
AD

B

C̃
, (4.5)

provided that

DA

C̃
= πB̃

C̃
D̆A

B̃
, Y C̃

B = πC̃

Ã
Y̆ Ã
B , (4.6)

such that

eC̃ = πB̃

C̃
ĕB̃ ≡ ∂̃C̃, ϑC̃ = πC̃

Ã
ϑ̆Ṽ ≡ dη̃C̃, η̃C̃ ∈ U ∈ M̃2. (4.7)

Hence the anholonomic deformation tensor, Ωa
b

= πa
c π

c
b

= Ω̃B̃

Ã
ĕa
B̃
ĕÃ
b
, yields local tetrad

deformations:

ec = πa
c ĕa, ϑc = πc

b ϑ̆
b, eϑ = ea ⊗ ϑa = Ωa

b ĕa ⊗ ϑ̆b. (4.8)

The matrices π(η̃) := (πa
b )(η̃) are referred to as the first deformation matrices, and the matrices

γcd(η̃)=∗oabπ
a
c (η̃)π

b
d(η̃), second deformation matrices. The matrices πa

c (η̃) ∈ GL(2, R) for all η̃,
in general, give rise to right cosets of the Lorentz group; that is, they are the elements
of the quotient group GL(2, R)/SO(1, 1), because the Lorentz matrices, Λr

s, (r, s = 1, 0)
leave the Minkowski metric invariant. A right multiplication of π(η̃) by a Lorentz matrix
gives another deformation matrix. So, all the fundamental geometrical structures on
deformed/distorted MS in fact—the metric as much as the coframes and connections—
acquire a deformation/distortion-induced theoretical interpretation. If we deform the tetrad
according to (4.8), in general, we have two choices to recast metric as follows: either writing
the deformation of the metric in the space of tetrads or deforming the tetrad field:

g = ∗oabπ
a
c π

b
dϑ̆

c ⊗ ϑ̆d = γcdϑ̆
c ⊗ ϑ̆d = ∗oabϑ

a ⊗ ϑb. (4.9)

In the first case, the contribution of the Christoffel symbols, constructed by the metric γab,
reads

Γabc =
1
2

(
C̆a

bc − γaa
′
γbb′C̆

b′

a′c − γaa
′
γcc′C̆

c′

a′b

)

+
1
2
γaa

′(
ĕc�dγba′ − ĕb�dγca′ − ĕa′ �dγbc

)
.

(4.10)

The deformed metric can be split as follows [96]:

gÃB̃(π) = Υ2(π)ğÃB̃ + γÃB̃(π), (4.11)
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where Υ(π) = πa
a , and

γÃB̃(π) =
[
γab − Υ2(π) ∗oab

]
ĕa
Ã
ĕb
B̃
. (4.12)

In the second case, we may write the commutation table for the anholonomic frame, {ea},

[ea, eb] = −1
2
Cc

ab
ec, (4.13)

and define the anholonomy objects:

Ca
bc

= πa
e π

−1
b
d
π−1

c
f
C̆e

df
+ 2πa

f
ĕÃg

(
π−1

[b
g
∂Ãπ

−1
c]
f
)
. (4.14)

The usual Levi-Civita connection corresponding to the metric (4.11) is related to the original
connection by the following relation:

ΓÃ
C̃D̃

= Γ̆Ã
C̃D̃

+ ΠÃ

C̃D̃
, (4.15)

provided that

ΠÃ

C̃D̃
= 2gÃB̃ğB̃(C̃ ∇D̃)Υ − ğC̃D̃g

ÃB̃∇B̃Υ

+
1
2
gÃB̃(∇C̃γB̃D̃ +∇D̃γC̃B̃ − ∇B̃γC̃D̃

)
,

(4.16)

where the controvariant deformed metric, gB̃C̃, is defined as the inverse of gÃB̃, such that
gÃB̃g

B̃C̃ = δC̃

Ã
. That is, the connection deformation ΠÃ

C̃D̃
acts like a force that deviates the test

particles from the geodesic motion in the space, V2. Taking into account (4.4), the metric (4.9)
can be alternatively written in a general form of the spacetime or frame objects:

g = gÃB̃ϑ
Ã ⊗ ϑB̃ =

(
Ω̃B̃

Ã
Ω̃D̃

C̃

)
ğB̃D̃ϑ̆

Ã ⊗ ϑ̆C̃

= ∗oabϑ
a ⊗ ϑb =

(
Ωc

a Ωd
b

)
∗ocdϑ̆

a ⊗ ϑ̆b

= γcdϑ̆
c ⊗ ϑ̆d =

(
ΩC

A ΩD
B

) ∗oCDϑ
A
⊗ ϑ

B
.

(4.17)

A significantly more rigorous formulation of the spacetime deformation technique with
different applications as we have presented it may be found in [96].

5. Model Building in the 4D Background Minkowski Spacetime

In this section we construct the RTI in particular case when the relativistic test particle
accelerated in the Minkowski 4D background flat space, M4, under an unbalanced net force
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other than gravitational. Here and henceforth we simplify DC for our use by imposing the
constraints

DA

C̃
= D̆A

B̃
, Y̆ Ã

B = D̆Ã
B , (5.1)

and, therefore,

DC ∼ (D,Ω) −→ Ω̃. (5.2)

The (4.5), by virtue of (4.4) and (5.1), gives

Ω̃B̃

Ã
= D̆C

Ã
ΩD

C D̆
B̃
D = πB̃

Ã
, Y C̃

B = Ω̃C̃

Ã
D̆Ã

B , (5.3)

where the deformation tensor, Ω̃B̃

Ã
, yields the partial holonomic frame transformations:

eC̃ = ĕC̃, ϑC̃ = Ω̃C̃

Ã
ϑ̆Ṽ , (5.4)

or, respectively, the Ωa
b yields the partial local tetrad deformations:

ec = ĕc, ϑc = Ωc
bϑ̆

b, eϑ = ea ⊗ ϑa = Ωa
b ĕa ⊗ ϑ̆b. (5.5)

Hence, (4.4) defines a diffeomorphism η̃Ã(η) : M2 → M̃2:

eÃY
Ã
B = ΩA

B eA, (5.6)

where YÃ
B = ∂η̃Ã/∂ηB. The conditions of integrability, ∂AY C̃

B = ∂BY
C̃
A , and nondegeneracy,

det |YÃ
B |/= 0, immediately define a general form of the flat-deformation tensor ΩA

B := DA

C̃
∂BΘC̃,

where ΘC̃ is an arbitrary holonomic function. To make the remainder of our discussion a bit
more concrete, it proves necessary to provide, further, a constitutive ansatz of simple, yet
tentative, linear distortion transformations, which, according to RLI conjecture, can be written
in terms of local rate �(η,m, f) of instantaneously change of the measure vA of massive (m)
test particle under the unbalanced net force (f):

e(+̃)
(
�
)
= D B

(+̃)
(
�
)
eB = e(+) − �

(
η,m, f

)
v(−)e(−),

e(−̃)
(
�
)
= D B

(−̃)
(
�
)
eB = e(−) + �

(
η,m, f

)
v(+)e(+).

(5.7)
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Clearly, these transformations imply a violation of the relation (3.3) (e2
Ã
(�)/= 0) for the null

vectors eA. Now we can use (4.4) to observe that for dual vectors of differential forms ϑ =(
ϑ(+̃)

ϑ(−̃)

)
and ϑ =

(
ϑ
(+)

ϑ
(−)

)
we may obtain

ϑ =

⎛
⎜⎝

Ω C
(+)

〈
e(+̃), eC

〉
Ω C

(−)

〈
e(+̃), eC

〉

Ω C
(+)

〈
e(−̃), eC

〉
Ω C

(−)

〈
e(−̃), eC

〉
⎞
⎟⎠ ϑ. (5.8)

We parameterize the tensor ΩA
B in terms of the parameters τ1 and τ2 as

Ω(+)
(+) = Ω(−)

(−) = τ1
(
1 + τ2�

2
)
, Ω(−)

(+) = −τ1(1 − τ2)�v(−),

Ω(+)
(−) = τ1(1 − τ2)�v(+),

(5.9)

where �2 = v2�2, v2 = v(+)v(−) = 1/2γ2q and γq = (1 − v2
q)

−1/2. Then, the relation (5.8) can be
recast in an alternative form:

ϑ = τ1

(
1 −τ2�v(+)

τ2�v
(−) 1

)
ϑ. (5.10)

Suppose that a second observer, who makes measurements using a frame of reference S̃(2)

which is held stationary in deformed/distorted space M̃2, uses for the test particle the
corresponding spacetime coordinates q̃r̃((q̃0̃, q̃1̃) ≡ (t̃, q̃)). The (4.4) can be rewritten in terms
of spacetime variables as

id = eϑ ≡ d˜̂q = ẽ0 ⊗ dt̃ + ẽq ⊗ dq̃, (5.11)

where ẽ0 and ẽq are, respectively, the temporal and spatial basis vectors:

ẽ0
(
�
)
=

1√
2

[
e(+̃)
(
�
)
+ e(−̃)

(
�
)]
, ẽq

(
�
)
=

1√
2

[
e(+̃)
(
�
)
− e(−̃)

(
�
)]
. (5.12)

The transformation equation for the coordinates, according to (5.10), becomes

ϑ(±̃) = τ1

(
ϑ
(±)

∓ τ2 �v(±)ϑ
(∓)
)

= τ1
(
v(±) ∓ τ2 �v2)dt, (5.13)

which gives the general transformation equations for spatial and temporal coordinates as
follows (�eq ≡ e1, q ≡ q1):

dt̃ = τ1dt, dq̃ = τ1

[
dq

(
1 +

τ2�vq√
2

)
−
τ2�√
2
dt

]
= τ1

(
dq −

τ2�√
2γ2q

dt

)
. (5.14)
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Hence, the general metric (4.17) in M̃2 reads

g ≡ ds̃2q = gr̃s̃dq̃
r̃ ⊗ dq̃s̃ =

[(
Ω(+)

(+)

)2
+ Ω(+)

(−)Ω
(−)
(+)

]
ds2q

+ Ω(+)
(+)

(
Ω(+)

(−) + Ω(−)
(+)

)(
dt ⊗ dt + dq ⊗ dq

)

− 2Ω(+)
(+)

(
Ω(+)

(−) −Ω(−)
(+)

)
dt ⊗ dq,

(5.15)

provided that

g0̃0̃ =
(
1 +

�vq√
2

)2

−
�2

2
, g1̃1̃ = −

(
1 −

�vq√
2

)2

+
�2

2
, g1̃0̃ = g0̃1̃ = −

√
2�. (5.16)

The difference of the vector, dq̂ ∈ M2 (3.5), and the vector, d˜̂q ∈ M̃2 (5.11), can be interpreted
by the second observer as being due to the deformation/distortion of flat spaceM2. However,
this difference with equal justice can be interpreted by him as a definite criterion for the
absolute character of his own state of acceleration in M2, rather than to any absolute quality
of a deformation/distortion of M2. To prove this assertion, note that the transformation
equations (5.14) give a reasonable change at low velocities vq � 0, as

dt̃ = τ1dt, dq̃ � τ1

(
dq −

τ2�√
2
dt

)
, (5.17)

thereby

Ω(+)
(+) = Ω(−)

(−) = τ1
(
1 + τ2�

2
)
, Ω(+)

(−) = −Ω(−)
(+) = τ1(1 − τ2)�. (5.18)

Then (5.17) becomes conventional transformation equations to accelerated (anet /= 0) axes if
we assume that d(τ2�)/

√
2dt = anet and τ1(vq � 0) = 1, where anet is a magnitude of proper

net acceleration. In high-velocity limit vq � 1, � � 0 (dη(−) = v(−)dt � 0, v(+) � v �
√
2), we

have

Ω(+)
(+) = Ω(−)

(−) = τ1, Ω(−)
(+) = 0, Ω(+)

(−) = τ1(1 − τ2)
√
2�, (5.19)

and so (5.14) and (5.15), respectively, give

dt̃ = τ1dt � τ1dq � dq̃, (5.20)

ds̃2q �
[(

1 +
�
√
2

)2

−
�2

2

]
dt̃ ⊗ dt +

[
−
(
1 −

�
√
2

)2

+
�2

2

]
dq̃ ⊗ dq̃ − 2

√
2�dt̃ ⊗ dq̃ � τ21ds

2
q = 0.

(5.21)
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To this end, the inertial effects become zero. Let �anet be a local net 3-acceleration of an arbitrary
observer with proper linear 3-acceleration �a and proper 3-angular velocity �ωmeasured in the
rest frame:

�anet =
d�u

ds
= �a ∧ �u + �ω × �u, (5.22)

where u is the 4-velocity. A magnitude of �anet can be computed as the simple invariant of the
absolute value |du/ds| as measured in rest frame:

|a| =
∣∣∣∣
du
ds

∣∣∣∣ =
(

dul

ds
,
dul

ds

)1/2

. (5.23)

Following [57, 58], let us define an orthonormal frame eâ, carried by an accelerated observer,
who moves with proper linear 3-acceleration and �a(s) and proper 3-rotation �ω(s). Particular
frame components are denoted by hats, 0̂, 1̂, and so forth. Let the zeroth leg of the frame e0̂
be 4-velocity u of the observer that is tangent to the worldline at a given event xl(s) and we
parameterize the remaining spatial triad frame vectors eî, orthogonal to e0̂, also by (s). The
spatial triad eî rotates with proper 3-rotation �ω(s). The 4-velocity vector naturally undergoes
Fermi-Walker transport along the curveC, which guarantees that e0̂(s)will always be tangent
to C determined by xl = xl(s):

deâ
ds

= −Ωeâ, (5.24)

where the antisymmetric rotation tensorΩ splits into a Fermi-Walker transport partΩFW and
a spatial rotation part ΩSR:

Ωlk
FW = aluk − akul, Ωlk

SR = umωnε
mnlk. (5.25)

The 4-vector of rotation ωl is orthogonal to 4-velocity ul, therefore, in the rest frame it
becomesωl(0, �ω), and εmnlk is the Levi-Civita tensor with ε0123 = −1. Then (5.17) immediately
indicates that wemay introduce the very concept of the local absolute acceleration (in Newton’s
terminology) brought about via the Fermi-Walker transported frames as

�aabs ≡ �eq
d
(
τ2�
)

√
2dsq

= �eq

∣∣∣∣
de0̂
ds

∣∣∣∣ = �eq|a|, (5.26)

where we choose the system S(2) in such a way as the axis �eq lies along the net 3-acceleration
(�eq ‖ �ea), (�ea = �anet/|�anet|). Hereinafter, we may simplify the flat-deformation tensor ΩB

A by
setting τ2 = 1, such that (5.9) becomes

Ω(+)
(+) = Ω(−)

(−) ≡ Ω
(
�
)
= 1 + �2, Ω(−)

(+) = Ω(+)
(−) = 0, (5.27)
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and the general metric (4.17) in M̃2 reads ds̃2q = Ω2(�)ds2q. Hence (5.26) gives

� =
√
2
∫ sq

0
|a|ds′q. (5.28)

Combining (5.14) and (5.26), we obtain the key relation between a so-called inertial
acceleration, arisen due to the curvature of MS,

�ain = �eaain, ain =
d2q̃

ds̃2q
= −Γ1

r̃s̃

(
�
)dq̃r̃
ds̃q

dq̃s̃

ds̃q
=

1√
2

(
d2η̃(+)

ds̃2q
−
d2η̃(−)

ds̃2q

)
, (5.29)

and a local absolute acceleration as follows:

Ω2(�)γq�ain = −�aabs, (5.30)

where Γ1
r̃s̃
(�) are the Christoffel symbols constructed by the metric (5.16). Then (5.30)

provides a quantitative means for the inertial force �f(in):

�f(in) = m�ain = −mΓ1
r̃s̃

(
�
)dq̃r̃
ds̃q

dq̃s̃

ds̃q
= − m�aabs

Ω2
(
�
)
γq
. (5.31)

In case of absence of rotation, we may write the local absolute acceleration (5.26) in terms of the
relativistic force fl acting on a particle with coordinates xl(s):

fl
(
f0, �f

)
= m

d2xl

ds2
= Λl

k(�v)F
k. (5.32)

Here Fk(0, �F) is the force defined in the rest frame of the test particle, andΛl
k(�v) is the Lorentz

transformation matrix (i, j = 1, 2, 3):

Λi
j = δij −

(
γ − 1

)vivj

|�v|2
, Λ0

i = γvi, (5.33)

where γ = (1 − �v2)−1/2. So

|a| = 1
m

∣∣fl
∣∣ = 1

m

(
flfl
)1/2 = 1

mγ

∣∣∣ �f
∣∣∣, (5.34)

and hence (5.31), (5.26), and (5.34) give

�f(in) = − 1
Ω2
(
�
)
γqγ

⎡
⎢⎣�F +

(
γ − 1

) �v
(
�v · �F

)

|�v|2

⎤
⎥⎦. (5.35)
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At low velocities vq � |�v| � 0 and tiny accelerations we usually experience, one has Ω(�) � 1;
therefore (5.35) reduces to the conventional nonrelativistic law of inertia:

�f(in) = −m�aabs = −�F. (5.36)

At high velocities vq � |�v| � 1 (Ω(�) � 1), if (�v · �F)/= 0, the inertial force (5.35) becomes

�f(in) � −1
γ
�ev
(
�ev · �F

)
, (5.37)

and, in agreement with (5.21), it vanishes in the limit of the photon (|�v| = 1, m = 0). Thus,
it takes force to disturb an inertia state, that is, to make the absolute acceleration (�aabs /= 0). The
absolute acceleration is due to the real deformation/distortion of the space M2. The relative
(d(τ2�)/dsq = 0) acceleration (in Newton’s terminology) (both magnitude and direction), to
the contrary, has nothing to do with the deformation/distortion of the spaceM2 and, thus, it
cannot produce inertia effects.

6. Beyond the Hypothesis of Locality

The standard geometrical structures, referred to a noninertial coordinate frame of accelerating
and rotating observer in Minkowski spacetime, were computed on the base of the hypothesis
of locality [59–66], which in effect replaces an accelerated observer at each instant with
a momentarily comoving inertial observer along its wordline. This assumption represents
strict restrictions, because, in other words, it approximately replaces a noninertial frame of
reference S̃(2), which is held stationary in the deformed/distorted space M̃2 ≡ V

(�)
2 (�/= 0),

with a continuous infinity set of the inertial frames {S(2), S
′
(2), S′′

(2), . . .} given in the flat
M2(� = 0). In this situation the use of the hypothesis of locality is physically unjustifiable.
Therefore, it is worthwhile to go beyond the hypothesis of locality with special emphasis
on distortion of MS, which, we might expect, will essentially improve the standard results.
The notation will be slightly different from the previous section. We denote the orthonormal
frame eâ (5.24), carried by an accelerated observer, with the over “breve” such that

ĕâ = e
μ

â
eμ = ĕ

μ

â
ĕμ, ϑ̆b̂ = eb̂μϑ

μ
= ĕb̂μϑ̆

μ, (6.1)

with eμ = ∂μ = ∂/(∂xμ), ĕμ = ∂̆μ = ∂/∂x̆μ, and ϑ
μ
= dxμ, ϑ̆μ = dx̆. Here, following [58, 64],

we introduced a geodesic coordinate system x̆μ—coordinates relative to the accelerated observer
(laboratory coordinates)—in the neighborhood of the accelerated path. The coframemembers
{ϑ̆b̂} are the objects of dual counterpart: ĕâ�ϑ̆b̂ = δb

a. We choose the zeroth leg of the frame, ĕ0̂,
as before, to be the unit vector u that is tangent to the worldline at a given event xμ(s), where
(s) is a proper time measured along the accelerated path by the standard (static inertial)
observers in the underlying global inertial frame. The condition of orthonormality for the
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frame field e
μ

â
reads ημνe

μ

â
e ν

b̂
= oâb̂ = diag(+ − −−). The antisymmetric acceleration tensor

Φab [64–68, 121–125] is given by

Φb
a := eb̂μ

de
μ

â

ds
= eb̂μu

λ∇̆λe
μ

â
= u�Γ̌ba, (6.2)

provided that Γ̆ba = Γ̆baμdx̆
μ, where Γ̆baμ is the metric compatible, torsion-free Levi-Civita

connection. According to (5.24) and (5.25), and in analogy with the Faraday tensor, one
can identify Φab → (−a, ω), with a(s) as the translational acceleration Φ0i = −ai and
ω(s) as the frequency of rotation of the local spatial frame with respect to a nonrotating
(Fermi-Walker transported) frame Φij = −εijkωk. The invariants constructed out of Φab

establish the acceleration scales and lengths. The hypothesis of locality holds for huge proper
acceleration lengths |I|−1/2 � 1 and |I∗|−1/2 � 1, where the scalar invariants are given by
I = (1/2) ΦabΦab = −�a2 + �ω2 and I∗ = (1/4) Φ∗

abΦ
ab = −�a · �ω (Φ∗

ab = εabcdΦcd) [64–66, 121–
125]. Suppose that the displacement vector zμ(s) represents the position of the accelerated
observer. According to the hypothesis of locality, at any time (s) along the accelerated
worldline the hypersurface orthogonal to the worldline is Euclidean space and we usually
describe some event on this hypersurface (local coordinate system) at xμ to be at x̆μ, where xμ

and x̆μ are connected via x̆0 = s and

xμ = zμ(s) + x̆ie
μ

î
(s). (6.3)

Let q̆r(q̆0, q̆1) be coordinates relative to the accelerated observer in the neighborhood of the
accelerated path in MS, with spacetime components implying

dq̆0 = dx̆0, dq̆1 =
∣∣∣d�̆x
∣∣∣, �̆e =

d�̆x

dq̆1
=

d�̆x∣∣∣d�̆x
∣∣∣
, �̆e · �̆e = 1. (6.4)

As long as a locality assumption holds, we may describe, with equal justice, the event at xμ

(6.3) to be at point q̆r , such that xμ and q̆r , in full generality, are connected via q̆0 = s and

xμ = z
μ
q(s) + q̆1β

μ

1̂(s), (6.5)

where the displacement vector from the origin reads dzμq(s) = β
μ

0̂dq̆
0, and the components β

μ

r̂

can be written in terms of e μ

â
. Actually, from (6.3) and (6.5) we may obtain

dxμ = dz
μ
q(s) + dq̆1β

μ

1̂(s) + q̆1dβ
μ

1̂(s)

=
[
β
μ

0̂

(
1 + q̆1ϕ̆0

)
+ β

μ

1̂ q̆
1ϕ̆1

]
dq̆0

+ β
μ

1̂dq̆
1 ≡ dzμ(s) + dx̆ie

μ

î
(s) + x̆ide

μ

î
(s)

=
[
e
μ

0̂

(
1 + x̆iΦ0

i

)
+ e

μ

ĵ
x̆iΦj

i

)]
dx̆0 + e

μ

î
dx̆i,

(6.6)
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where dβ
μ

1̂(s) is written in the basis β
μ

â as dβ
μ

1̂ = (ϕ̆0β
μ

0̂ + ϕ̆1β
μ

1̂)dq̆
0. Equation (6.6) holds by

identifying

β
μ

0̂

(
1 + q̆1ϕ̆0

)
≡ e

μ

0̂

(
1 + x̆iΦ0

i

)
, β

μ

1̂ q̆
1ϕ̆1 ≡ e

μ

ĵ
x̆iΦj

i , β
μ

1̂dq̆
1 ≡ e

μ

î
dx̆i. (6.7)

Choosing β
μ

0̂ ≡ e
μ

0̂
, we have then

q̆1ϕ̆0 = x̆iΦ0
i , β

μ

1̂ = e
μ

î
ĕi, q̆1ϕ̆1 = x̆iΦj

i ĕ
−1
j , (6.8)

with ĕj ĕ −1
i = δ

j

i . Consequently, (6.6) yields the standard metric of semi-Riemannian 4D
background space V

(0)
4 , in noninertial system of the accelerating and rotating observer,

computed on the base of hypothesis of locality:

ğ = ημνdx
μ ⊗ dxν

=
[(

1 + �a · �̆x
)2

+
(
�ω · �̆x

)2
− ( �ω · �ω)

(
�̆x · �̆x

)]
dx̆0 ⊗ dx̆0

− 2
(
�ω ∧ �̆x

)
· d�̆x ⊗ dx̆0 − d�̆x ⊗ d�̆x.

(6.9)

This metric was derived by [59] and [63], in agreement with [99] and [62] (see also [64–66]).
We see that the hypothesis of locality leads to the 2D semi-Riemannian MS space: V (0)

2 with
the incomplete metric ğ (� = 0):

ğ =
[(
1 + q̆1ϕ̆0

)2 − (q̆1ϕ̆1
)2]

dq̆0 ⊗ dq̆0

−2
(
q̆1ϕ̆1

)
dq̆1 ⊗ dq̆0 − dq̆1 ⊗ dq̆1.

(6.10)

Therefore, our strategy now is to deform the metric (6.10) by carrying out an additional
deformation of semi-Riemannian 4D background space V

(0)
4 → M̃4 ≡ V

(�)
4 , which, as a

corollary, will recover the complete metric g(�/= 0) (5.15) of the distorted MS-V (�)
2 . According

to (2.3), this means that we should find the first deformation matrices, π(�) := (πb̂
â
)(�), which

yield the local tetrad deformations:

eĉ = πâ
ĉ
ĕâ, ϑĉ = πĉ

b̂
ϑ̆b̂, eϑ = eâ ⊗ ϑâ = Ωa

b̂
ĕâ ⊗ ϑ̆b̂, (6.11)

where Ωâ

b̂
(�) = πâ

ĉ
(�)πĉ

b̂
(�) is referred to as the anholonomic deformation tensor and that the

resulting deformed metric of the space V (�)
4 can be split as

gμν
(
�
)
= Υ2(�)ğμν + γμν

(
�
)
, (6.12)

provided that

γμν
(
�
)
=
[
γâb̂ − Υ2(�)oâb̂

]
ĕâμĕ

b̂
ν, γĉd̂ = oâb̂π

â
ĉ
πb̂

d̂
, (6.13)
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where Υ(�) = πâ
â
(�) and γâb̂(x̆) are the second deformation matrices. Let the Latin letters

r̂, ŝ, . . . = 0, 1 be the anholonomic indices referred to the anholonomic frame er̂ = es
r̂
∂s̃,

defined on the V
(�)
2 , with ∂s̃ = ∂/∂q̃s̃ as the vectors tangent to the coordinate lines. So, a

smooth differential 2D-manifold V
(�)
2 has at each point q̃s a tangent space T̃q̃V

(�)
2 , spanned

by the frame, {er̂}, and the coframe members ϑr̂ = er̂sdq̃
s̃, which constitute a basis of the

covector space T̃ �
q̃
V

(�)
2 . All this nomenclature can be given for V (0)

2 too. Then, wemay calculate

corresponding vierbein fields ĕŝr and eŝr from

ğrs = ĕr̂
′

r ĕ
ŝ′
s or̂ ′ ŝ′ , gr̃s̃ = er̂

′
r e

ŝ′
s or̂ ′ ŝ′ , (6.14)

with ğrs and gr̃s̃ given by (6.10) and (5.16), respectively. Hence

ĕ0̂0 = 1 + �a · �̆x, ĕ1̂0 = �ω ∧ �̆x, ĕ0̂1 = 0, ĕ1̂1 = 1,

e0̂0 = 1 +
�vq√
2
, e1̂0 =

�
√
2
, e0̂1 = −

�
√
2
, e1̂1 = 1 −

�vq√
2
.

(6.15)

Since a distortion of MS may affect only the MS part of the components β
μ

r̂ , without relation

to the background spacetime part, therefore, a deformation V
(0)
4 → V

(�)
4 is equivalent to a

straightforward generalization β
μ

r̂ → β
μ

r̂
, where

β
μ

r̂
= Eŝ

r̂
β
μ

ŝ , Eŝ
r̂
:= er

′

r̂
ĕ ŝ
r ′ . (6.16)

Consequently, (6.16) gives a generalization of (6.3) as

xμ −→ x
μ

(�) = z
μ

(�)(s) + x̆ie
μ

î
(s), (6.17)

provided that, as before, x̆μ denotes the coordinates relative to the accelerated observer in 4D
background space V (�)

4 , and according to (6.7), we have

e
μ

0̂
= β

μ

0̂
, e

μ

î
= β

μ

1̂
ĕ−1i . (6.18)
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A displacement vector from the origin is then dz
μ
�(s) = e

μ

0̂
dx̆0. Combining (6.16) and (6.18),

and inverting eŝr (6.15), we obtain e
μ

â
= πb̂

â
(�)eμ

b̂
, where

π 0̂
0̂

(
�
)
≡
(
1 +

�2

2γ2q

)−1(
1 −

�vq√
2

)(
1 + �a · �̆x

)
,

πî

0̂

(
�
)
≡ −
(
1 +

�2

2γ2q

)−1
�
√
2
ĕi
(
1 + �a · �̆x

)
,

π 0̂
î

(
�
)
≡
(
1 +

�2

2γ2q

)−1[(
�ω ∧ �̆x

)(
1 −

�vq√
2

)
−

�
√
2

]
ĕ−1i ,

π
ĵ

î

(
�
)
= δ

j

i π
(
�
)
,

π
(
�
)
≡
(
1 +

�2

2γ2q

)−1[(
�ω ∧ �̆x

) �
√
2
+ 1 +

�vq√
2

]
.

(6.19)

Thus,

dx
μ
� = dz

μ
�(s) + dx̆ie

μ

î
+ x̆ide

μ

î
(s) =

(
τb̂dx̆0 + πb̂

î
dx̆i
)
e
μ

b̂
, (6.20)

where

τb̂ ≡ πb̂

0̂
+ x̆i

⎛
⎝πâ

î
Φb

a +
dπb̂

î

ds

⎞
⎠. (6.21)

Hence, in general, the metric in noninertial frame of arbitrary accelerating and rotating
observer in Minkowski spacetime is

g
(
�
)
= ημνdx

μ
� ⊗ dxν

� = Wμν

(
�
)
dx̆μ ⊗ dx̆ν, (6.22)

which can be conveniently decomposed according to

W00
(
�
)
= π2

[(
1 + �a · �̆x

)2
+
(
�ω · �̆x

)2
− ( �ω · �ω)

(
�̆x · �̆x

)]
+ γ00

(
�
)
,

W0i
(
�
)
= −π2

(
�ω ∧ �̆x

)i
+ γ0i

(
�
)
, Wij

(
�
)
= −π2δij + γij

(
�
)
,

(6.23)

and also

γ00
(
�
)
= π

[(
1 + �a · �̆x

)
ζ0 −

(
�ω ∧ �̆x

)
· �ζ
]
+
(
ζ0
)2 −

(
�ζ
)2
,

γ0i
(
�
)
= −πζi + τ 0̂π 0̂

î
,

γij
(
�
)
= π 0̂

î
π 0̂
ĵ
, ζ0 = π

(
τ 0̂ − 1 − �a · �̆x

)
, �ζ = π

(
�τ − �ω ∧ �̆x

)
.

(6.24)
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As we expected, according to (6.22)–(6.24), the matric g(�) is decomposed in the form of
(4.11):

g
(
�
)
= π2(�)ğ + γ

(
�
)
, (6.25)

where γ(�) = γμν(�)dx̆μ ⊗ dx̆ν and Υ(�) = πâ
â
(�) = π(�). In general, the geodesic coordinates

are admissible as long as

(
1 + �a · �̆x +

ζ0

π

)2

>

(
�ω ∧ �̆x +

�ζ

π

)2

. (6.26)

Equations (6.9) and (6.22) say that the vierbein fields with entries ημνe
μ

â
e ν

b̂
= oâb̂ and

ημνe
μ

â
eν
b̂
= γâb̂ lead to the relations

ğ = oâb̂ϑ̆
â ⊗ ϑ̆b̂,

g = oâb̂ϑ
â ⊗ ϑb̂ = γâb̂ϑ̆

â ⊗ ϑ̆b̂ =
(
Ωĉ

â
Ωd̂

b̂
oĉd̂

)
ϑ
â
⊗ ϑ

b̂
,

(6.27)

and that (6.6) and (6.20) readily give the coframe fields:

ϑ̆b̂ = e b̂
μ dx

μ = ĕb̂μdx̆
μ, ĕb̂0 = Nb

0 , ĕb̂i = Nb
i ,

ϑb̂ = e b̂
μ dx

μ
� = eb̂μdx̆

μ = πb̂
â
ϑ̆â, eb̂0 = τb̂, eb̂i = πb̂

î
,

(6.28)

where N0
0 = N ≡ (1 + �a · �̆x), N0

i = 0, Ni
0 = Ni ≡ ( �ω · �̆x)i, and N

j

i = δ
j

i . In the standard
(3 + 1)-decomposition of spacetime, N and Ni are known as lapse function and shift vector,
respectively [126, 127]. Hence, we may easily recover the frame field eâ = e

μ

â
ĕμ = πb̂

â
ĕb̂ by

inverting (6.28):

e0̂ =
π

πτ 0̂ − π 0̂
k̂
τ k̂

ĕ0 − τ î

πτ 0̂ − π 0̂
k̂
τ k̂

ĕi,

eî = −
π 0̂
î

πτ 0̂ − π 0̂
k̂
τ k̂

ĕ0 + π−1

⎡
⎣δj

i +
τjπ 0̂

î

πτ 0̂ − π 0̂
k̂
τ k̂

⎤
⎦ĕj .

(6.29)

A generalized transport for deformed frame eâ, which includes both the Fermi-Walker transport
and distortion of MS, can be written in the following form:

de
μ

â

ds
= Φ̃b

ae
μ

b̂
, (6.30)
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where a deformed acceleration tensor Φ̃b
a concisely is given by

Φ̃ =
(
d lnπ
ds

)
+ πΦπ−1. (6.31)

Although the results (6.29)–(6.31) are obtained in the framework of purely classical physics,
nevertheless on this base wemay straightforwardly put the special-relativistic Dirac equation
into a noninertial reference frame by standard method similar to [59]. But we will forbear to
write it out here as it is somewhat lengthy and evidently irrelevant to the problem in quest in
this paper. It will be interesting topic for another publication.

7. Involving the Background Semi-Riemann Space V4: Justification for
the Introduction of the WPE

We can always choose natural coordinatesXα(T,X, Y,Z) = (T, �X)with respect to the axes of the
local free-fall coordinate frame S

(l)
4 in an immediate neighbourhood of any spacetime point

(x̆p) ∈ V4 in question of the background semi-Riemann space, V4, over a differential region
taken small enough so that we can neglect the spatial and temporal variations of gravity for
the range involved. The values of the metric tensor ğμν and the affine connection Γ̆λμν at the
point (x̆p) are necessarily sufficient information for determination of the natural coordinates
Xα(x̆μ) in the small region of the neighbourhood of the selected point [128]. Then the whole
scheme outlined in Section 4 will be held in the frame S(l)

4 . The relativistic gravitational force
f̆
μ
g (x̆) exerted on the test particle of the mass (m) is given by

f̆
μ
g (x̆) = m

d2x̆μ

ds̆2
= −mΓ̆μνλ(a)

dx̆ν

ds̆

dx̆λ

ds̆
. (7.1)

The frame S(l)
4 will be valid if only the gravitational force given in this coordinate frame

fα
g(l) =

∂Xα

∂x̃μ
f
μ
g (7.2)

could be removed by the inertial force, whereas, as before, the two systems S2 and S
(l)
4 can be

chosen in such a way as the axis �eq of S(2) lies (�eq = �ef) along the acting net force �f = �f(l)+ �fg(l),
where �f(l) is the SR value of the unbalanced relativistic force other than gravitational in the
frame S(l)

4 , while the time coordinates in the two systems are taken the same, q0 = t = X0 = T .
Then (5.34) now can be replaced by

1√
2

d
(
τ2�
)

dsq
=

1
m

∣∣∣fα
(l) + fα

g(l)

∣∣∣, (7.3)

and according to (5.31), the general inertial force reads

�̆f (in) = m�ain = − m�aabs

Ω2
(
�
)
γq

= −
�ef

Ω2
(
�
)
γq

∣∣∣∣fα
(l) −m

∂Xα

∂x̆σ
Γ̆σμν

dx̆μ

dS

dx̆ν

dS

∣∣∣∣. (7.4)
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Despite totally different and independent sources of gravitation and inertia, at fα
(l) = 0,

(7.4) establishes the independence of free-fall (vq = 0) trajectories of the mass, internal
composition, and structure of bodies. This furnishes a justification for the introduction of
the WPE. A remarkable feature is that although the inertial force has a nature different than
the gravitational force, nevertheless both are due to a distortion of the local inertial properties
of, respectively, 2D MS and 4D-background space. The nonvanishing inertial force acting on
the photon of energy hν and that of effective mass (hν/c2), after inserting units (h, c) which
so far was suppressed, can be obtained from (7.4) (fα

(l) = 0) as

�̆f (in) = −
(

hν

c2Ω2
(
�
)
)
�ef

∣∣∣∣
∂Xα

∂x̆σ
Γσμν

dx̆μ

dT

dx̆ν

dT

∣∣∣∣

= −
(

hν

c2Ω2
(
�
)
)
�ef

∣∣∣∣∣∣

(
d2t̃

dT2

)
dXα

dt̃
+

(
dt̃

dT

)2
∂Xα

∂x̆i

dui

dt̃

∣∣∣∣∣∣
,

(7.5)

provided that �ef = ( �X/| �X|), vq = (�ef · �̆u) = |�̆u|, (γq = γ) where �̆u is the velocity
of a photon, (d�̆u/dt̃) is the acceleration, and, ğμν(dx̆μ/dT) ⊗ (dx̆ν/dT) = 0. Note that
Nordtvedt, Will, and others [129–132] were led to provide rigorous underpinnings to the
operational significance of various theories, especially in solar system context, developing
the parameterized post-Newtonian (PPN) formalism as a theoretical standard for expressing
the predictions of relativistic gravitational theories in terms which could be directly related
to experimental observations. To obtain some feeling for this, in the PPN approximation we
may calculate the inertial force exerted on the photon in a gravitating system of particles that
are bound together by their mutual gravitational attraction to order v2 ∼ GNM/r of a small
parameter, where v, M, and r are typically the average values of their velocities, masses,
and separations, respectively. To this aim, we may expand the metric tensor to the following

order: ğ00 = 1+
2
g00+

4
g00+ · · · , ğij = −δij +

2
gij +

4
gij + · · · , ği0 =

3
gi0+

5
gi0+ · · · , where

N
gμν denotes

the term of order vN . Taking into account the standard expansions of the affine connection

[128]: Γ̆σμν =
2

Γσμν +
4

Γσμν + · · · for the components Γ̆i00, Γ̆
i
jk, and Γ̆00i, and that Γ̆σμν =

3
Γσμν +

5
Γσμν + · · ·

for the components Γ̆i0j , Γ̆
0
00, and Γ̆0ij , where

2

Γi00 =
2

Γ00i= −(1/2)(∂
2
g00/∂x̆

i), and so forth; hence
to the required accuracy we obtain

�̆f
(2)

(in) = −
(
hν

c2

)
�ef

∣∣∣∣∣∣∣

1(
∂Xα

∂x̆σ

) 2(
d2x̆σ

dT2

) ∣∣∣∣∣∣∣
= −
(
hν

c2

) 2(
d�̆u

dt̃

)

= −
(

hν

γc2

)[
−2�∇φ + 4�̆u

(
�̆u · �∇φ

)
+O
(
v3
)]

,

(7.6)

where φ is the Newton potential, such that
2
g00 = 2φ,

2
gij = 2δijφ, and |�̆u| = 1 + 2φ +O(v3).
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8. RTI in the Background Post-Riemannian Geometry

According to (2.21) and (2.22), if the nonmetricity tensor Nλμν = −Dλgμν ≡ −gμν;λ does not
vanish, the general formula for the affine connection written in the spacetime components is
(also see [118])

Γρμν =
◦
Γ
ρ

μν +K
ρ
μν −N

ρ
μν +

1
2
N

ρ

(μν),
(8.1)

where the metric alone determines the torsion-free Levi-Civita connection
◦
Γ
ρ

μν, and K
ρ
μν :=

2Q ρ

(μν) + Q
ρ
μν is the non-Riemann part—the affine contortion tensor. The torsion, Q

ρ
μν =

(1/2)Tρ
μν = Γρ[μν] given with respect to a holonomic frame, dϑρ = 0, is a third-rank tensor,

antisymmetric in the first two indices, with 24 independent components.

8.1. The Principle of Equivalence in the RC Space

The RC manifold, U4, is a particular case of general metric-affine manifold M̃4, restricted
by the metricity condition Nab = 0, when a nonsymmetric linear connection, Γ, is said to
be metric compatible. To avoid any possibility of confusion, here and throughout we again
use the first half of Latin alphabet (a, b, c, . . . = 0, 1, 2, 3 rather than (±)) now to denote the
anholonomic indices referred to the tangent space, which is endowed with the Lorentzian
metric oab := diag(+−−−). The space,U4, also locally has the structure ofM4, as has been first
pointed out by [133] and developed by [134–137]. In the case of the RC space there also exist
orthonormal reference frames which realize an “anholonomic” free-fall elevator. In Hartley’s
formulation [137], this reads as follows. For any single point P ∈ U4, there exist coordinates {xμ}
and an orthonormal frame {ea} in a neighborhood of P such that

ea = δ
μ
a∂xμ

Γ b
a = 0

at P, (8.2)

where Γba are the connection 1-forms referred to the frame {ea}. Therefore the existence of
torsion does not violate the PE. Note that since ∇g = 0 holds in U4, the arguments showing
that g can be transformed to o at any point P inU4 are the same as in the case of V4, while the
treatment of the connection must be different: the antisymmetric part of ω can be eliminated
only by a suitable choice for the relative orientation of neighbouring tetrads. Actually, let us
choose new local coordinates at P , dxμ → dxa = eaμdx

μ, related to an inertial frame. Then,

g ′
ab

= e
μ
ae

ν
b
gμν = oab, Γ

′b
ac = ebμe

ν
ae

λ
c

(
Δμ

νλ
+K

μ

νλ

)
≡ eλcω

b
aλ
. (8.3)

As it is argued in [138], the metricity condition ensures that this can be done consistently at
every point in spacetime. Suppose that we have a tetrad {ea(x)} at the point P and a tetrad
{ea(x + dx)} at another point in a neighbourhood of P ; then, we can apply a suitable Lorentz
rotation to ea(x+dx), so that it becomes parallel to ea(x). Given a vector v at P , it follows that
the components vc = v · ec do not change under parallel transport from x to x + dx, provided
that the metricity condition holds. Hence, the connection coefficients ωab

μ (x) at P , defined
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with respect to this particular tetrad field, vanish: ωab
μ (P) = 0. This property is compatible

with g ′
ab

= oab, since Lorentz rotation does not influence the value of the metric at a given
point. In more general geometries, where the symmetry of the tangent space is higher than
the Poincare group, the usual form of the PE is violated and local physics differs from SR.

8.2. The Generalized Inertial Force Exerted on
the Extended Spinning Body in the U4

We now compute the relativistic inertial force for the motion of the matter, which is
distributed over a small region in the U4 space and consists of points with the coordinates
xμ, forming an extended body whose motion in the space,U4, is represented by a world tube
in spacetime. Suppose that the motion of the body as a whole is represented by an arbitrary
timelike world line γ inside the world tube, which consists of points with the coordinates
X̃μ(τ), where τ is the proper time on γ . Define

δxμ = xμ − X̃μ, δx0 = 0, uμ =
dX̃μ

ds
. (8.4)

The Papapetrou equation of motion for the modified momentum (see [118, 139–143]) is

◦
DΘν

Ds
= −1

2

◦
R

ν

μσρu
μJσρ − 1

2
NμρλK

μρλ:ν, (8.5)

where Kμ

νλ is the contortion tensor,

Θν = Pν +
1
u0

◦
Γ
ν

μρ

(
uμJρ0 +N0μρ) − 1

2u0
K ν

μρN
μρ0 (8.6)

is referred to as the modified 4-momentum, Pλ =
∫
τλ0dΩ is the ordinary 4-momentum, dΩ :=

dx4, and the following integrals are defined:

Mμρ = u0
∫
τμρdΩ, Mμνρ = −u0

∫
δxμτνρdΩ, Nμνρ = u0

∫
sμνρdΩ,

Jμρ =
∫(

δxμτρ0 − δxρτμ0 + sμρ0
)
dΩ =

1
u0

(
−Mμρ0 +Mρμ0 +Nμρ0

)
,

(8.7)

where τμρ is the energy-momentum tensor for particles, and sμνρ is the spin density. The
quantity Jμρ is equal to

∫
(δxμτkl − δxρτμλ + sμρλ) dSλ taken for the volume hypersurface,

so it is a tensor, which is called the total spin tensor. The quantity Nμνρ is also a tensor. The
relation δx0 = 0 gives M0νρ = 0. It was assumed that the dimensions of the body are small,
so integrals with two or more factors δxμ multiplying τνρ and integrals with one or more
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factors δxμ multiplying sνρλ can be neglected. The Papapetrou equations of motion for the spin
(see [118, 139–143]) are

◦
D
Ds

Jλν = uνΘλ − uλΘν +Kλ
μρN

νμρ

+
1
2
K λ

μρN
μνρ −Kν

μρN
λμρ − 1

2
K ν

μρN
μρλ.

(8.8)

Calculating from (8.5) the particle 4-acceleration is

1
m
f
μ
g (x) =

d2xμ

ds̃2
= −Γμνλ

[
uνuλ +

1
u0

◦
Γ
μ

νρ

(
uνJρ0 +N0νρ

)]

+
1
2u0

K
μ
νρN

νρ0 − 1
2

◦
R

μ

νσρu
νJσρ − 1

2
NνρλK

νρλ:μ.

(8.9)

Thus, the relativistic inertial force, exerted on the extended spinning body moving in the RC
space U4, can be found to be

�f(in)(x) = m�ain(x) = −m�aabs(x)
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(
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γq

= −m
�ef
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(
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(8.10)

In particular, if the spin density vanishes, sμνρ = 0, from the conservation law we get then
τμρ = τρμ,Mμρ = Mρμ,Mμνρ = Mμρρ,Nμνρ = 0, and

Jμρ = Lμρ =
∫(

δxμτρ0 − δxρτμ0
)
dΩ =

1
u0

(
−Mμρ0 +Mρμ0

)
, (8.11)

where Lμρ is the angular momentum tensor. The modified 4-momentum (8.6) reduces to

Θν = Pν +

◦
D
Ds

Lνλuλ.
(8.12)

Equation (8.8) can be recast in the following form:

◦
D
Ds

Lλν = uνΘλ − uλΘν, (8.13)
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while (8.5) becomes

◦
DΘν

Ds
= −1

2

◦
R

μ

νσρu
μLσρ, (8.14)

which give the relativistic inertial force exerted on the spinless extended body moving in the
RC space U4 as follows:

�f(in)(x) = −m
�ef

Ω2
(
�
)
γq

∣∣∣∣
1
m
fα
(l) −

∂Xα

∂xμ

[◦
Γ
μ

νλu
νuλ +

1
u0

◦
Γ
μ

νρu
νLρ0 +

1
2

◦
R

μ

νσρu
νLσρ

]∣∣∣∣. (8.15)

If the body is not spatially extended, then it is referred to as a particle. The corresponding
condition δxα = 0 gives Mμνρ = 0, and Lμρ = 0. Therefore (uλ/u0)Nμν0 − Nμνλ = 0, which
gives Nμνρ = uμJνρ, so Jμν = Sμν = Nμνρuρ, where Sμν is the intrinsic spin tensor. If the body
is spatially extended, then the difference Rμρ = Jμρ − Sμρ is the rotational spin tensor. The
relativistic inertial force is then

�f(in)(x)

= −m
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(8.16)

In case of the Riemann space, V4 (Q̆ = 0), the relativistic inertial force (7.5) exerted on the
extended spinning body can be written in terms of the Ricci coefficient of rotation only:
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ŭνJ̆ρ0 + N̆0νρ

)
+
1
2
R̆

μ
νσρŭ
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In case of the Weitzenböck space, W4 (
•
R= 0), (7.5) reduces to its teleparallel equivalent:
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All magnitudes related to the teleparallel gravity are denoted by an over “•”. Finally, the
nonvanishing inertial force, f(phot)(in) (x), acting on the photon of energy hν in the U4, can be

obtained from (8.16), at �f(l) = 0, as
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(8.19)

where �ef = ( �X/| �X|), vq = (�ef · �u) = |�u|, γq = γ , �u is the velocity of the photon in U4, (d�u/dt)
is the acceleration, and gμν(dxμ/dT) ⊗ (dxν/dT) = 0.

9. Concluding Remarks

In the framework of TSSD theory, as a preliminary step, we show that by imposing different
appropriate physical constraints upon the spacetime deformations, we may recover the
term in the Lagrangian of pseudoscalar-photon interaction theory, or we may reproduce
the various terms in the Lagrangians of pseudoscalar theories, for example, as intergrand
for topological invariant, or pseudoscalar-gluon coupling occurred in QCD in an effort to
solve the strong CP problem. We carry out some details of this program to probe the origin
and nature of the phenomenon of inertia. We construct the RTI, which treats the inertia as a
distortion of local internal properties of hypothetical 2D, so-called master space (MS). The MS
is an indispensable companion of individual particle, without relation to the other matter,
embedded in the background 4D-spacetime. The RTI allows to compute the inertial force,
acting on an arbitrary point-like observer or particle due to its absolute acceleration. In this
framework we essentially improve standard metric and other relevant geometrical structures
referred to a noninertial frame for an arbitrary velocities and characteristic acceleration
lengths. Despite the totally different and independent physical sources of gravitation and
inertia, this approach furnishes justification for the introduction of the WPE. We relate the
inertia effects to the more general post-Riemannian geometry. We derive a general expression
of the relativistic inertial force exerted on the extended spinning body moving in the Rieman-
Cartan space.
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