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The extended symmetry of the functional of length determined in an affine space 𝐾
3 of the correlation vectors for homogeneous

isotropic turbulence is studied. The two-point velocity-correlation tensor field (parametrized by the time variable 𝑡) of the velocity
fluctuations is used to equip this space by a family of the pseudo-Riemannian metrics 𝑑𝑙2(𝑡) (Grebenev and Oberlack (2011)). First,
we observe the results obtained by Grebenev and Oberlack (2011) and Grebenev et al. (2012) about a geometry of the correlation
space 𝐾

3 and expose the Lie algebra associated with the equivalence transformation of the above-mentioned functional for the
quadratic form 𝑑𝑙

2

𝐷
2 (𝑡) generated by 𝑑𝑙

2
(𝑡) which is similar to the Lie algebra constructed by Grebenev et al. (2012). Then, using

the properties of this Lie algebra, we show that there exists a nontrivial central extension wherein the central charge is defined by
the same bilinear skew-symmetric form 𝑐 as for the Witt algebra which measures the number of internal degrees of freedom of the
system. For the applications in turbulence, as the main result, we establish the asymptotic expansion of the transversal correlation
function for large correlation distances in the frame of 𝑑𝑙2

𝐷
2 (𝑡).

1. Introduction

This paper is a continuation of [1–3] wherein we investigated
both the geometry and the group of transformations of an
affine space 𝐾

3 of the correlation vectors. In [1], we used the
two-point velocity-correlation tensor to equip the correlation
space 𝐾

3 by the structure of a pseudo-Riemannian manifold
of a variable signature and gave the geometric realization of
the two-point velocity-correlation tensor which presents a
metric tensor in the case of homogeneous isotropic turbu-
lence.This construction presents the template for embedding
the couple (𝐾

3
, 𝑑𝑙

2
(𝑡)) into the Euclidean space R3 with the

standard metric. The Lagrangian system in the extended
space 𝐾

3
× 𝑅

+
was introduced in [3] that allowed us to

attract common concept and technics of the Lagrangian
mechanics for the application in turbulence. Dynamics in
time of a singled out fluid volume equipped with a family
of pseudo-Riemannian metrics was described in the frame
of the geometry generated by 𝑑𝑙

2
(𝑡) whose components

are the correlation functions that evolve according to the
von Kármán-Howarth equation [4]. Notice here that the
first integrals of the equations of geodesic curves form the
“kinematic” conservation laws; see, for more details, [3]. In
[2], we considered the functional of length and studied the
infinitesimal transformations admitted by this functional.We
extended the variational symmetries up to the equivalence
transformations which generate an infinite-dimensional Lie
algebra (the so-called extended symmetries algebra). The
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properties obtained of this algebra were discussed both for
the signature (++) and for the signature (+−) of the above-
mentioned pseudo-Riemannian metrics.

The main result of the paper is the derivation of the
asymptotic expansion of the transversal correlation func-
tion for large correlation distances. Notice that this expan-
sion is obtained in the case when the correlation space
𝐾
3 is equipped with the metric generated by the two-

point velocity-correlation tensor. This derivation is based on
the algebraic constructions as in Conformal Field Theory
(CFT). Also we present a nontrivial extension of the above-
mentioned infinite-dimensional Lie algebra.

Central extensions of groups and Lie algebras occur in
CFT in the investigations of conformal symmetries where
the Virasoro algebra is used as the fundamental set of
infinitesimal symmetries. This implies the existence of an
infinite number of independent constraints, which yields the
exceptional feature of the two-dimensional conformal theory.
This algebra is the Lie algebra of the central extension of the
group of diffeomorphisms of the circle whose basic elements
{𝐿

𝑛
}, 𝑛 ∈ 𝑍, satisfy the following commutation relations:

[𝐿
𝑛
, 𝐿

𝑚
] = (𝑛 − 𝑚) 𝐿

𝑛+𝑚
+

𝑐

12
𝑛 (𝑛

2
− 1) 𝛿

𝑛+𝑚
, (1)

where 𝛿
𝑘

= 1 for 𝑘 = 0 and 𝛿
𝑘

= 0 for 𝑘 ̸= 0. The quantity
𝑐 is known as the central charge, and its value in general
depends on the particular theory under consideration. For
the application in turbulence in [5, 6], the central charge 𝑐

is expressed via the diffusion coefficient 𝜅 of SLE: the Shram-
Lövner evolution, of random curves in planar domains; see
[5, 6]. Here, the diffusion coefficient 𝜅 allows us to classify
the conformally invariant randomcurves into classes denoted
by SLE

𝜅
. The formula 𝑐 = (8 − 3𝜅)(𝜅 − 6)/2𝜅 classifies the

models, for instance, SLE
6
and SLE

8/3
, corresponds to 𝑐 = 0,

while SLE
4
corresponds to 𝑐 = 1. The isolines of vorticity for

the 2D Euler equations and the temperature isolines in the
SQG model (surface of quasi-geostrophic model) belong to
the class SLE,more exactly, SLE

𝜅
1

and SLE
𝜅
1

, correspondingly,
where 𝜅

1
≈ 6 and 𝜅

2
≈ 4. The energy-momentum tensor was

calculated for SLE in [7].
The paper is organized as follows. Section 1 contains the

results obtained (see [1–3] for more details) in a compressed
form about the geometry of the correlation space 𝐾

3 and
the extended group of the transformations admitted by the
Lagrangian system. In Section 2, we consider the energy-
momentum tensor associated with the metric 𝑑𝑙

2

𝐷
2(𝑡) and

show that the components 𝑇(𝑧) and 𝑇(𝑧) of this tensor are
holomorphic functions. Then, in the full analogy of CFT, we
expose the asymptotic expansion both for 𝑇(𝑧) and 𝑇(𝑧) as
𝑧 → ∞ and 𝑧 → ∞. As a consequence of this result, we
get the asymptotic expansion of the transversal correlation
function for the large values of the correlation distances.
Appendix to this paper is devoted to the central extension of
the corresponding infinite-dimensional Lie algebra.We show
that this nontrivial central extension can be determined by
the same bilinear skew-symmetric form 𝑐 (the central charge)
as for the central extension of the Witt algebra.

2. Geometry and Group Transformations of
the Correlation Space

In this section, we demonstrate in the compressed form
the results obtained in [1] about a geometric realization of
the two-point velocity-correlation tensor 𝐵

𝑖𝑗
and present the

extended symmetries of the functional of length based on the
calculation of the equivalence transformations of the eikonal
equation (see, for more details, [2]).

2.1. Geometric Realization of the Two-Point Velocity-Cor-
relation Tensor. We recall only the elementary information
about the structure of the two-point velocity-correlation
tensor of the velocity fluctuations for homogeneous isotropic
flows. The modern theory of the properties and structure of
second-order (Cartesian) correlation tensors is given in [8].

The statistical description of fluid turbulence employ
the Reynolds decomposition to separate the fluid velocity
�⃗� at a point �⃗� into its mean and fluctuating components
as �⃗� = �⃗� + �⃗�

. Here, (⋅) is the mean velocity, while �⃗� is
the corresponding fluctuating quantity, usually interpreted as
representing turbulence. The two-point correlation tensor is
defined by the following:

𝐵
𝑖𝑗
(𝑥, 𝑥


, 𝑡) = (𝑢



𝑖
(𝑥, 𝑡)) (𝑢



𝑗
(𝑥, 𝑡)), (2)

where 𝑡 ∈ R
+
and 𝑥, 𝑥

 are the points of a three-dimensional
space filled by turbulent fluid. Formula (2) is rewritten as
follows:

𝐵
𝑖𝑗 (𝑥, ⃗𝑟, 𝑡) = (𝑢



𝑖
(𝑥, 𝑡)) (𝑢



𝑗
(𝑥 + ⃗𝑟, 𝑡)), (3)

where the vector ⃗𝑟 is determined by the pair (𝑥, 𝑥

), where 𝑥

and 𝑥
 are the starting point and endpoint, correspondingly,

or ⃗𝑟 = �⃗�

− �⃗�. Therefore, we will consider an affine space

𝐾
3 with the adjoined vector space of the correlation vectors

�⃗�
3

≡ { ⃗𝑟 = (𝑟
1
, 𝑟

2
, 𝑟

3
)}. The assumption of homogeneity

and isotropy of turbulent flow (invariance with respect to
rotation, reflection, and translation) implies that this tensor
depends only on the length of the correlation vector ⃗𝑟 and
time 𝑡; that is,

𝐵
𝑖𝑗 (𝑥, ⃗𝑟, 𝑡) = [𝐵

𝐿𝐿 (| ⃗𝑟| , 𝑡) − 𝐵
𝑁𝑁 (| ⃗𝑟| , 𝑡)]

𝑟
𝑖
𝑟
𝑗

| ⃗𝑟|
2

+ 𝐵
𝑁𝑁

(| ⃗𝑟| , 𝑡) 𝛿𝑖𝑗.

(4)

Moreover, for isotropic turbulence, 𝐵
𝑖𝑗
(| ⃗𝑟|, 𝑡) is a symmetric

tensor and the correlations 𝐵
𝑖𝑗
can be expressed by using

only the longitudinal correlational function 𝐵
𝐿𝐿

(| ⃗𝑟|, 𝑡) and
the transversal correlation function 𝐵

𝑁𝑁
(| ⃗𝑟|, 𝑡) [9]; that is,

the correlation tensor 𝐵
𝑖𝑗
takes the diagonal form with the

components 𝐵
11

= 𝐵
𝐿𝐿

and 𝐵
22

≡ 𝐵
33

= 𝐵
𝑁𝑁

in a suitable
system of the coordinates of the adjoined vector space. Fur-
ther instead of directly employing the correlation functions
𝐵
𝐿𝐿

and 𝐵
𝑁𝑁

, we use their normalized representations 𝑓 and
𝑔 where 𝐵

𝐿𝐿
= 𝑢2(𝑡)𝑓(| ⃗𝑟|, 𝑡), 𝐵

𝑁𝑁
= 𝑢2(𝑡)𝑔(| ⃗𝑟|, 𝑡) with

the turbulence intensity equals 𝑢2(𝑡) = 𝐵
𝐿𝐿

(0, 𝑡). Then, the
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corresponding quadratic form (or linear element) takes the
following form:

𝑑𝑙
2
(𝑡) = 𝑢2 (𝑡)𝑓 (| ⃗𝑟| , 𝑡) 𝑑𝑟

12

+ 𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) (𝑑𝑟
22

+ 𝑑𝑟
32

) ,

(5)

where 𝑑𝑙
2
(𝑡) is an indefinite quadratic form in view of the

properties 𝑔(| ⃗𝑟|, 𝑡), see below. The normalized transversal
correlation function 𝑔 satisfies the following relation (taken
from the continuity) [10]:

𝑔 (| ⃗𝑟| , 𝑡) = 𝑓 (| ⃗𝑟| , 𝑡) +
𝑟

2

𝜕

𝜕𝑟
𝑓 (| ⃗𝑟| , 𝑡) . (6)

The property that 𝑓 decays faster than | ⃗𝑟|
−2 on infinity

together with (6) yields [10]

∫

∞

0

| ⃗𝑟| 𝑔 (| ⃗𝑟| , 𝑡) 𝑑 | ⃗𝑟| = 0. (7)

Hence, 𝑔(| ⃗𝑟|, 𝑡) is an alternative sign function. Typical forms
of experimentally measured functions 𝑓 and 𝑔 are given in
Figure 1. we use the data presented to determine the qualita-
tive behaviors of 𝑓 and 𝑔, in particular, the algebraic proper-
ties of these correlation functions. Thus, we will assume that
𝑓 is a positive everywhere function and 𝑔 changes sign only
in interval (−𝜀 + | ⃗𝑟

∗
|, | ⃗𝑟

∗
| + 𝜀), 𝜀 > 0. 𝑔 is a positive function

on [0, ±| ⃗𝑟
∗
|) and therefore 𝑔 < 0 outside of [−| ⃗𝑟

∗
|, | ⃗𝑟

∗
|]. The

change sign of 𝑔means that the quadratic forms 𝑑𝑙2(𝑡) have a
variable signature.The normalized longitudinal correlational
function 𝑓(| ⃗𝑟|, 𝑡) is dynamically evolved due to the von
Kármán-Howarth equation [4]:

𝜕𝑢2 (𝑡)𝑓 (|𝑟| , 𝑡)

𝜕𝑡

=
1

𝑟4

𝜕

𝜕𝑟
𝑟
4
(𝑢2 (𝑡)

3/2

ℎ (|𝑟| , 𝑡) + 2]
𝜕

𝜕𝑟
𝑢2 (𝑡)𝑓 (|𝑟| , 𝑡)) .

(8)

ℎ is the normalized triple-correlation function and 𝑢2(𝑡) is
the turbulence intensity (a positive everywhere function that
vanishes on infinity) or the velocity scale for the turbulent
kinetic energy; 𝑢2(𝑡)

3/2

determines the scale for the turbu-
lence transfer. This single equation directly follows from the
Navier-Stokes equation (see, for example, [9]) and contains
two unknowns, 𝑓 and ℎ, with the turbulence intensity
𝑢2(𝑡) which cannot be defined from (8) without the use of
additional hypothesis.

If we consider in the correlation space 𝐾
3 with �⃗�

3

equipped by the standard Euclidean scalar product (i.e., in
R3) an infinite cylindrical domain (a singled out fluid tube at
some fixed time), then the metric (induced by the quadratic
form 𝐵

𝑖𝑗
) of the surface which bounds this domain takes the

following form:

𝑑𝑠
2
(𝑡) = 𝑢2 (𝑡)𝑓 (| ⃗𝑟| , 𝑡) 𝑑𝑟

12

+ 𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) 𝜌
2
𝑑𝜙

2
,

(9)

1

𝑔

𝑓

1
𝑟
∗

Figure 1: Typical forms of the normalized longitudinal and transver-
sal correlation functions.

where 𝜌 denotes the Euclidean radius of the cross-section
{𝑎} × 𝑆

1
(𝜌) of the surface R × 𝑆

1
(𝜌), 𝑎 ∈ R. We can

account that 𝜌 = 1 and identify this manifold withR× 𝑆
1
(1).

The functions 𝑓 and 𝑔 are nondimensional with 𝑓(0, 𝑡) =

𝑔(0, 𝑡) = 1 and physically 𝑓 is a positive function such that
𝑓 → 0 (𝑔 → 0) as | ⃗𝑟| tends to infinity.Moreover,𝑓 and𝑔 are
bounded even functions such that 𝑓 ≤ 1, |𝑔| ≤ 1, and 𝑓 goes
faster to zero than | ⃗𝑟|

−2, when | ⃗𝑟| tends to infinity. Physically
such behavior of 𝑓 is acceptable [10] and the map

𝑞 (𝑎, 𝑡) = ∫

𝑎

0

√𝑓 (| ⃗𝑟| , 𝑡)𝑑𝑟
1
, 𝑎 ∈ R, (10)

acts as (−∞,∞) → [−L∗(𝑡), L∗(𝑡)], L∗(𝑡) = L(𝑡)/2√𝑢2(𝑡),
where L(𝑡) is determined by the following:

L (𝑡) = 2∫

∞

0

√𝑢2 (𝑡)𝑓 (| ⃗𝑟| , 𝑡)𝑑𝑟
1
. (11)

Now, we rewrite the metric 𝑑𝑠
2
(𝑡) in the frame of the variable

𝑞:

𝑑𝑠
2
(𝑡) = 𝑢2 (𝑡) {𝑑𝑞

2
+ 𝐺 (𝑞, 𝑡) 𝑑𝜙

2
} ,

𝐺 (𝑞, 𝑡) = 𝑔 (|𝑟| , 𝑡) .

(12)

The metric (12) admits a one-parametric group of (iso-
metric) motion g

𝜏
(�⃗�) ≡ g(�⃗�, 𝑎

1
), �⃗� = (𝑞, 𝜙) of the following

form:

g
𝜏
: (𝑞, 𝜙) → (𝑞, 𝜙 + 𝜒𝜏) , 𝜒 = const, (13)

with the generator

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑝𝑖
≡ 𝜒

𝜕

𝜕𝜙
. (14)

The scalar product of the generator 𝑋 equals

𝑋
2
= ⟨𝑋,𝑋⟩ = ⟨𝜒

𝜕

𝜕𝜙
, 𝜒

𝜕

𝜕𝜙
⟩ ≡ 𝜒

2
⟨

𝜕

𝜕𝜙
,

𝜕

𝜕𝜙
⟩

= 𝑢2 (𝑡)𝜒
2
𝐺 (𝑞, 𝑡)

(15)

for each time 𝑡.
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A point 𝑝
0
is called the pole [11] of a (pseudo-) Rie-

mannian manifold 𝑀 if 𝑝
0
is a fixed point of a group of

diffeomorphisms g(�⃗�, �⃗�), �⃗� = (𝑎
1
, . . . , 𝑎

𝑟
) which acts on 𝑀.

We note that if𝑝 = 𝑝
0
(𝑝

0
is the pole of g

𝜏
), then𝑋

2
(𝑝

0
) =

0 and due to (15) 𝑝
0
coincides with the roots of the equation

𝐺(𝑞, ⋅) = 0.Therefore, the points 𝑞∗ ∈ [−L∗(𝑡), L∗(𝑡)]wherein
𝐺 vanishes are the poles of g

𝜏
. In view of our assumption on

𝑔(|𝑟|, 𝑡), the equation 𝐺(𝑞, ⋅) = 0 has only 4 roots 𝑞
∗

𝑖
, 𝑖 =

1, . . . , 4 such that |𝑞∗
1
| = 𝑞

∗

4
= L∗(𝑡) and |𝑞

∗

2
| = 𝑞

∗

3
. Thus, the

metric (12) has the different signature for 𝑞 ∈ 𝐼
1

= (𝑞
∗

2
, 𝑞

∗

3
),

𝑞 ∈ 𝐼
2
= (−L∗(𝑡), 𝑞∗

2
), and, 𝑞 ∈ 𝐼

3
= (𝑞

∗

3
, L∗(𝑡)), respectively,

where 𝑞
∗

𝑖
depends on 𝑡. This metric determines for 𝑞 ∈ 𝐼

1

the element of length of the surface of revolution in R3 and
the radius-vector �⃗� = (𝑞, 𝜙, ⋅) of this surface is given by the
following:

�⃗� (𝑞, 𝜙, ⋅) = (𝑞, {𝑢2 (𝑡)𝐺}
1/2

(𝑞, ⋅) cos𝜙,

{𝑢2 (𝑡)𝐺}
1/2

(𝑞, ⋅) sin𝜙) .

(16)

Therefore, the model manifold defined by (12) for 𝑞 ∈ 𝐼
1
is a

cylindrical-type surface 𝑀
𝑡

𝐼
1

= (𝑞
∗

2
, 𝑞

∗

3
) × 𝑆

1
(1) wherein the

radius of the cross-section {𝑞} × 𝑆
1
(1) equals 𝐺

1/2
(𝑞, 𝑡). For

the 𝑞 ∈ 𝐼
𝑖
, 𝑖 = 2, 3 where 𝐺 is negative, the positive defined

metric

𝑑𝑠
2
(𝑡) = 𝑢2 (𝑡) {𝑑𝑞

2
−

𝐺 (𝑞, 𝑡)
 𝑑𝜙

2
} ,

𝐺 (𝑞, 𝑡) = 𝑔 (| ⃗𝑟| , 𝑡) ,

(17)

can be realized (see, for details, [1]) as a surface of revolution
(for each fixed time) in the Minkowski space R3

1,2
with the

element of length

𝑑𝜌
2
= 𝑑𝑥

2

1
− 𝑑𝑥

2

2
− 𝑑𝑥

2

3
(18)

when the form 𝑑𝑠
2
(𝑡) is of a fixed sign [12]. Here, the rotation

presents the motion along the pseudocircle of the radius
|𝐺(𝑞, ⋅)|

1/2, 𝑞 ∈ 𝐼
𝑖
. Indeed, let us fix the point 𝑝

𝑎
= (𝑞

𝑎
, 𝜙

𝑎
) on

the cross-section {𝑞
𝑎
} × 𝑆

1
(1) and consider the action of the

group g
𝜏
on𝑝

𝑎
; that is, the orbitO

𝑝
𝑎

: 𝜏 → g
𝜏
(𝑝

𝑎
).This action

is a motion along {𝑞
𝑎
}×𝑆

1
(1) and if 𝑝

𝑎
does not coincide with

the poles g
𝜏
, then O

𝑝
𝑎

is a not compact set [11]. In particular,
O
𝑝
𝑎

⊆ {(𝑥
1
, 𝑥

2
) : 𝑥

2

1
− 𝑥

2

2
= 𝑢2(𝑡)|𝐺(𝑞

𝑎
, 𝑡)|} for each fixed

time 𝑡 which coincides with the so-called pseudocircle under
the embedding 𝑀

𝑡

𝐼
3

(𝑀𝑡

𝐼
2

) into the Minkowski space R3

1,2
.

Moreover, the poles are saddle points of a negative index for
the orbitsO

𝑝
,𝑝 ∈ 𝑀

𝑡

𝐼
3

(𝑀𝑡

𝐼
2

).The cross-sections {𝑞
𝑎
}×𝑆

1
(1) of

𝑀
𝑡

𝐼
3

(𝑀𝑡

𝐼
2

) for 𝑞
𝑎
∈ {𝑞

∗

3
, L∗(𝑡)} (resp., 𝑞

𝑎
∈ {−L∗(𝑡), 𝑞∗

2
}) are the

pseudocircles of zero radius and consist of the isotropic rays
with the initial points 𝑞∗

3
and L∗(𝑡) (resp., −L∗(𝑡) and 𝑞

∗

2
).The

action of g
𝜏
on the point 𝑝 is a motion along these piecewise

linear isotropic curves when 𝑝 ∈ {−L∗(𝑡), 𝑞∗
2
, 𝑞

∗

3
, L∗(𝑡)}. We

can identify 𝑀
𝑡

𝐼
3

(𝑀𝑡

𝐼
2

) with the foliation space of orbits
𝑀

𝑡

𝐼
𝑗

= ⋃
𝑝
O
𝑝
and associate the modulus of the transversal

correlation function 𝐺(𝑞, 𝑡) with the length of the velocity

vector �⃗�(𝑝) of the orbit O
𝑝
by |�⃗�(𝑝)| = 𝑢2(𝑡)𝜒√|𝐺(𝑞, 𝑡)|.

The length of displacement of the point 𝑝 (or the length of
arch), with respect to the vector field generated by g

𝜏
(𝑝), is

determined by the formula

𝜆 (𝜙
𝑎
, 𝜙

𝑏
) = ∫

𝜙
𝑏

𝜙
𝑎

𝜒√𝑢2 (𝑡)
𝐺 (𝑞, 𝑡)

𝑑𝜙

≡ 𝜒√𝑢2 (𝑡)
𝐺 (𝑞, 𝑡

𝑐
)
 (𝜙𝑏 − 𝜙

𝑎
) , 𝜒 = const,

(19)

for each fixed time that defines the following length scale
along the orbitO

𝑝
:

𝜆O
𝑝

= 𝜒√𝑢2 (𝑡)
 𝐺 (𝑞, 𝑡)

2𝜋𝜙, 𝑞 ∈ (𝑞
∗

3
, L∗ (𝑡)) , 𝜒 = 1.

(20)

The constant𝜒 can be fixed by normalizing the velocity vector
�⃗�(𝑝).

2.2. Extended Symmetry Transformations. Let us consider
again in the correlation space 𝐾

3 with �⃗�
3

equipped by the
standard Euclidean scalar product (i.e., in R3) an infinite
cylindrical domain (a singled out fluid tube at some fixed
time). Fix the cross-section {0} × 𝐷

2 of this domain where
𝐷
2 is a two-dimensional disk.Then the quadratic form 𝑑𝑙

2
(𝑡)

induces on the above-mentioned cross-section the metric

𝑑𝑙
2

𝐷
2 (𝑡) = 𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) (𝑑𝑟

22

+ 𝑑𝑟
32

) , (21)

where | ⃗𝑟| = √𝑟2 + 𝑟3.Therefore, themetric (21) is a conformal
form-type metric. First, we study the case of positive values
of 𝑔(| ⃗𝑟|, 𝑡). Consider the set Ω(𝐷

2
, V, 𝑤) of piecewise smooth

curves 𝛾 : 𝐽 → 𝐷
2 with fixed endpoints 𝛾(0) = V and 𝛾(1) =

𝑤. Let 𝐿
𝛾
: Ω(𝐷

2
, V, 𝑤) → R be the paper (the simple action)

for each fixed time 𝑡. Then the formula

𝑑
𝑡
(V, 𝑤) = min

𝛾∈Ω(𝐷
2
,V,𝑤)

𝐿
𝑡

𝛾
(𝛾) ,

𝐿
𝑡

𝛾
= ∫

𝛾

√𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) (𝑟
2

𝜏

2
+ 𝑟3

𝜏

2
)𝑑𝜏,

(22)

defines the function of distance 𝑑𝑡 : ({0}×𝐷
2
)×({0}×𝐷

2
) →

R on the cross-section.We can account that 𝜏 is the so-called
natural parameter; that is,

𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) (𝑟
2

𝜏

2

+ 𝑟
3

𝜏

2

) = 1 along the curve 𝛾. (23)

Therefore,

𝐿
𝑡

𝛾
= ∫

𝛾

1 ⋅ 𝑑𝜏 = 𝜏
𝛾
, (24)

where the symbol 𝜏
𝛾
denotes length of the curve 𝛾. Consider

the infinitesimal transformations of the variables 𝑟2 and 𝑟
3

𝑟
2∗

= 𝑟
2
+ 𝛿𝑟

2
, 𝑟

3∗

= 𝑟
3
+ 𝛿𝑟

3
. (25)
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In order to investigate the invariance of 𝑑𝑡 under the action
of infinitesimal transformations, it is sufficient to prove that
the length of arch of extremals of the functional above is
invariant. Instead of the vector (𝑟

2
, 𝑟

3
), we consider the unit

covector (𝜏
𝑟
2 , 𝜏

𝑟
3) defined by the formulas (for brevity we

omitted the index 𝛾 for 𝜏):

𝑟
2

𝜏
=

𝜏
𝑟
2

𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡)

,

𝑟
3

𝜏
=

𝜏
𝑟
3

𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡)

.

(26)

Then (23) is transformed to

𝜏
2

𝑟
2 + 𝜏

2

𝑟
3 = 𝑢2 (𝑡)𝑔 (| ⃗𝑟| , 𝑡) . (27)

This equation is the eikonal-type equation. Therefore, in
order to find symmetries of the functional 𝐿

𝑡

𝛾
, we can

consider symmetries admitted by (27) that leaves 𝜏 invariant.
The restatement of the variational symmetry in the terms of
symmetry of partial differential equations (27) enables us to
extend the class of symmetry transformations admitted by
the functional 𝐿

𝑡

𝛾
. More exactly, we extend the variational

symmetry up to the equivalence transformations. Recall that
equivalence transformations for a differential equation in a
given class is a change of variables which maps the equation
to another equation in the same class. An equivalence trans-
formation admitted by (27) is a point transformation given
on (𝑟

2
, 𝑟

3
, 𝑢

1
, 𝑢

2
) space where 𝑢

1
= 𝜏, 𝑢

2
= 𝑢2(𝑡)𝑔(| ⃗𝑟|, 𝑡).

Infinitesimally, we look for an operator in the following form
[13, 14]:

𝑌 = 𝜇 (𝑟
2
, 𝑟

3
, 𝑢

1
, 𝑢

2
)

𝜕

𝜕𝑟2

+ ] (𝑟
2
, 𝑟

3
, 𝑢

1
, 𝑢

2
)

𝜕

𝜕𝑟3

+ 𝜆
𝑖
(𝑟

2
, 𝑟

3
, 𝑢

1
, 𝑢

2
)

𝜕

𝜕𝑢𝑖
,

(28)

where the coefficients are defined due to the following:
𝑌
1

(27)
= 0. (29)

Here,𝑌
1
denotes the first prolongation of𝑌.The infinitesimal

operator 𝑌 reads as follows:

𝑌 = Φ(𝑟
2
, 𝑟

3
)

𝜕

𝜕𝑟2

+ Ψ (𝑟
2
, 𝑟

3
)

𝜕

𝜕𝑟2
+ 𝛾 (𝑢

1
)

𝜕

𝜕𝑢1

+ 2(
𝑑𝛾

𝑑𝑢1
− Φ

𝑟
2 (𝑟

2
, 𝑟

3
)) 𝑢

2 𝜕

𝜕𝑢2
.

(30)

Its Lie (infinite-dimensional) subalgebra is of the following
form:

𝑋 = Φ(𝑟
2
, 𝑟

3
)

𝜕

𝜕𝑟2
+ Ψ (𝑟

2
, 𝑟

3
)

𝜕

𝜕𝑟3

− 2Φ
𝑟
2 (𝑟

2
, 𝑟

3
) 𝑢

2 𝜕

𝜕𝑢2
,

(31)

and 𝑢
1(≡ 𝜏) is a scalar invariant of 𝑋. Therefore, 𝑋 is a

symmetry operator admitted by the functional 𝐿𝑡
𝛾
. Here, the

functionsΦ(𝑟
2
, 𝑟

3
) andΨ(𝑟

2
, 𝑟

3
) satisfy the Cauchy-Riemann

differential equations Φ
𝑟
2 = Ψ

𝑟
3 and Φ

𝑟
3 = −Ψ

𝑟
2 . To get

a fine structure of the equivalence transformation generated
by the infinitesimal 𝑋, we consider the complex coordinates
𝑧 = 𝑟

2
+ 𝑖𝑟

3 and 𝑧 = 𝑟
2
− 𝑖𝑟

3. Then

𝑑𝑙
2

𝐷
2 = 𝑢2 (𝑡)𝑔 (𝑧𝑧) 𝑑𝑧𝑑𝑧, (32)

or more exactly

𝑑𝑙
2

𝐷
2 =

𝑢2 (𝑡)𝑔 (𝑧𝑧)

2
(𝑑𝑧 ⊗ 𝑑𝑧 + 𝑑𝑧 ⊗ 𝑑𝑧) . (33)

The operator 𝑋
1
takes the following form:

𝑋
1
= 𝐹 (𝑧)

𝑑

𝑑𝑧
+ 𝐹 (𝑧)

𝑑

𝑑𝑧

− 𝐹
𝑧 (𝑧) 𝑢

2 𝑑

𝜕𝑢2
− 𝐹

𝑧 (𝑧) 𝑢
2
(𝑧𝑧)

𝑑

𝜕𝑢2
.

(34)

Here, 𝐹 = Φ + 𝑖Ψ and 𝐹 = Φ − 𝑖Ψ, and we use that 𝐹(𝑧, 𝑧) ≡

𝐹(𝑧) and 𝐹(𝑧, 𝑧) ≡ 𝐹(𝑧) for the holomorphic function 𝐹. The
tangent space is spanned by the following:

𝑑

𝑑𝑧
=

1

2
(

𝜕

𝜕𝑟2
− 𝑖

𝜕

𝜕𝑟3
) ,

𝑑

𝑑𝑧
=

1

2
(

𝜕

𝜕𝑟2
+ 𝑖

𝜕

𝜕𝑟3
) .

(35)

For small perturbations 𝑧 → 𝑧 + 𝜖(𝑧) and 𝑧 → 𝑧 + 𝜀(𝑧),
we find the representation of the operator 𝑋

1
. Infinitesimal

holomorphic transformations of the variables 𝑧 and 𝑧 read as
follows:

𝑧
∗
= 𝑧 + 𝜖 (𝑧) = 𝑧 + 𝐹 (𝑧) 𝛿𝑠,

𝑧
∗
= 𝑧 + 𝜖 (𝑧) = 𝑧 + 𝐹 (𝑧) 𝛿𝑠,

(36)

which are generated by the vector field

(𝐹 (𝑧)
𝑑

𝑑𝑧
, 𝐹 (𝑧)

𝑑

𝑑𝑧
) . (37)

Using the Laurent series

𝜖 (𝑧) = −

∞

∑

𝑛=−∞

𝜀
𝑛
𝑧
𝑛+1

,

𝜖 (𝑧) = −

∞

∑

𝑛=−∞

𝜀
𝑛
𝑧
𝑛+1

,

(38)

where 𝜀
𝑛
(𝜀
𝑛
) are infinitesimal small numbers. We can look

at 𝜀
𝑛
𝑧
𝑛+1, 𝜀

𝑛
𝑧
𝑛+1 as the harmonics of decomposition of

𝜖(𝑧), 𝜖(𝑧) with respect to the basis functions {𝑧
𝑛+1

} ({𝑧𝑛+1}).
Each harmonics generate the transformations 𝑧 → 𝑧


≡ 𝑧 −

𝜀
𝑛
𝑧
𝑛+1

, 𝑧 → 𝑧

≡ 𝑧 − 𝜀

𝑛
𝑧
𝑛+1 and the corresponding infinites-

imal generators: 𝑙
𝑛

= −𝑧
𝑛+1

(𝑑/𝑑𝑧), 𝑙
𝑛

= −𝑧
𝑛+1

(𝑑/𝑑𝑧),
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presents the basis of the infinite dimensional conformal Lie
algebra

𝑍 = 𝐹 (𝑧)
𝑑

𝑑𝑧
+ 𝐹 (𝑧)

𝑑

𝑑𝑧
. (39)

Therefore, the basis of the operator 𝑋

𝑋 = 𝐹 (𝑧)
𝑑

𝑑𝑧
+ 𝐹 (𝑧)

𝑑

𝑑𝑧

− 𝐹
𝑧
(𝑧) 𝑢

2
(𝑧𝑧)

𝑑

𝑑𝑢2

− 𝐹
𝑧 (𝑧) 𝑢

2
(𝑧𝑧)

𝑑

𝑑𝑢2

(40)

is 𝑘
𝑛
⊕ 𝑘

𝑛
, 𝑛 ∈ Z

𝑘
𝑛
= −𝑧

𝑛+1 𝑑

𝑑𝑧
− (𝑛 + 1) 𝑧

𝑛
𝑢
2 𝑑

𝑑𝑢2
,

𝑘
𝑛
= −𝑧

𝑛+1 𝑑

𝑑𝑧
− (𝑛 + 1) 𝑧

𝑛
𝑢
2 𝑑

𝑑𝑢2
.

(41)

The factor 𝑢2 is transformed into

𝑢
2∗

=
𝑢
2

(𝑧∗
𝑧
)
2
, for 𝑘

𝑛
,

𝑢
2∗

=
𝑢
2

(𝑧
∗

𝑧
)
2
, for 𝑘

𝑛
,

(42)

where (𝑧
∗

𝑧
)
2

= (𝑧
∗

𝑧
)
2 under the change of variables 𝑧 → 𝑧

∗,
and 𝑧 → 𝑧

∗, correspondingly.
The liner hull of the 𝑙

𝑛
over C is called the Witt algebra.

TheWitt algebra𝑊 is a dense subalgebra of the Lie algebra of
holomorphic vector fields onC\{0}.Therefore, we can define
the algebra generated by the infinitesimal operator 𝑋 as

𝑊
2
= C {𝑘

𝑛
, 𝑛 ∈ 𝑍} ⊕ C {𝑘

𝑛
, 𝑛 ∈ 𝑍} . (43)

This is the linear hull of the basis elements 𝑘
𝑛
⊕ 𝑘

𝑛
. Here,

𝑘
𝑛

: 𝑓(𝑧, 𝑥) → −𝑧
𝑛+1

𝑓
𝑧
(𝑧, 𝑥) − (𝑛 + 1)𝑧

𝑛
𝑓
𝑥
(𝑧, 𝑥), where

𝑧 ∈ C \ {0}, 𝑥 ∈ R
+
. Correspondingly for 𝑘

𝑛
, we have

𝑘
𝑛

: 𝑓(𝑧, 𝑥) → −𝑧
𝑛+1

𝑓
𝑧
(𝑧, 𝑥) − (𝑛 + 1)𝑧

𝑛
𝑓
𝑥
(𝑧, 𝑥), where

𝑧 ∈ C \ {0}, 𝑥 ∈ R
+
.𝑊

2
with the Lie bracket actually become

Lie algebras over C for that we determine the Lie bracket
of the 𝑘

𝑛
, 𝑘

𝑚
and correspondingly of the 𝑘

𝑛
, 𝑘

𝑚
. The direct

calculations demonstrate that

[𝑘
𝑛
, 𝑘

𝑚
] 𝑓 = 𝑘

𝑛
𝑘
𝑚
𝑓 − 𝑘

𝑚
𝑘
𝑛
𝑓 = (𝑛 − 𝑚) 𝑘

𝑛+𝑚
, (44)

[𝑘
𝑛
, 𝑘

𝑚
] 𝑓 = (𝑛 − 𝑚) 𝑘

𝑛+𝑚
𝑓, [𝑘

𝑛
, 𝑘

𝑚
] 𝑓 = 0. (45)

The last relation follows from the following:

𝑑

𝑑𝑧
𝑧
𝑛
= 0,

𝑑

𝑑𝑧
𝑧
𝑛
= 0. (46)

The commutation relations (44) and (45) will be significant
for us to prove that central extension for𝑊

2
is defined by the

same skew-symmetric bilinear form as for the Witt algebra.

The case of negative values of 𝑔(𝑧𝑧)means that 𝐿𝑡
𝛾
defines

the function of imaginary distance and instead of (23) we
have to consider

𝑢2 (𝑡)𝑖
2 𝑔 (| ⃗𝑟| , 𝑡)

 (𝑟
2

𝜏

2

+ 𝑟
3

𝜏

2

) = 1

along the curve 𝛾, 𝑖
2
= −1.

(47)

The calculations of equivalence transformations of (47) are
similar as for (23) where the variable 𝑢

2
= 𝑢2(𝑡)𝑔(| ⃗𝑟|, 𝑡) is

replaced on 𝑢
2
= 𝑢2(𝑡)𝑖

2
|𝑔(| ⃗𝑟|, 𝑡)|.

3. Asymptotic Expansion of the Transversal
Correlation Function

First, using the functional of action of the trajectory 𝛾

𝐸
𝑡

𝛾
= ∫

𝛾

(𝑢
2
)
−1

(𝜏
2

𝑟
2 + 𝜏

2

𝑟
3) 𝑑𝜏, 𝜏

2

𝑟
2 + 𝜏

2

𝑟
3 = 𝑢

2
, (48)

which in the complex coordinates takes the form

𝐸
𝑡

𝛾
= 4∫

𝛾

(𝑢
2
)
−1

(𝑧𝑧, 𝑡) 𝜕𝑧𝜏 (𝑧, 𝑧) ⋅ 𝜕𝑧𝜏 (𝑧, 𝑧) 𝑑𝜏, (49)

we demonstrate (in the full analogy with CFT) the represen-
tation of the operators 𝑘

𝑛
and 𝑘

𝑛
in terms of the components

of the energy-momentum tensor obtained. Notice that this
tensor has only two independent components 𝑇(𝑧) and
𝑇(𝑧) which can be expressed by the transversal correlation
function. 𝑇(𝑧) and 𝑇(𝑧) are holomorphic functions of the
variables 𝑧 and 𝑧 whose variations under the infinitesimal
transformations 𝑧 → 𝑧 + 𝜖(𝑧), 𝑧 → 𝑧 + 𝜖(𝑧) are of the form

𝛿
𝜖
𝑇 (𝑧) = 𝜖 (𝑧) 𝑇


+ 2𝜖


(𝑧) 𝑇 (𝑧) + (1/12) 𝑐𝜖


(𝑧) ,

𝛿
𝜖
𝑇 (𝑧) = 𝜖 (𝑧) 𝑇



+ 2𝜖 (𝑧) 𝑇 (𝑧) + (1/12) 𝑐𝜖


(𝑧) ,

(50)

where 𝑐(𝑐) coincides with the central charge for the cor-
responding nontrivial extensions. According to [15], these
formulas lead to the commutation relations for the field
representations of 𝑇(𝑧) and 𝑇(𝑧) which coincide with the
commutation relations of nontrivial central extensions of
the algebra 𝑊

2
. Then we show how on the basis of these

commutation relations to find asymptotic expansion of the
transversal correlation function that present the basic interest
of the theory of homogeneous isotropic turbulence.

3.1. The Energy-Momentum Tensor. Consider the functional
of action of the trajectory 𝛾

𝐸
𝑡

𝛾
= ∫

𝛾

𝑢
2
(𝑟

2

𝜏

2

+ 𝑟
3

𝜏

2

) 𝑑𝜏 (51)

and write this 𝐸𝑡

𝛾
in the form

𝐸
𝑡

𝛾
= ∫

𝛾

(𝑢
2
)
−1

(𝜏
2

𝑟
2 + 𝜏

2

𝑟
3) 𝑑𝜏, 𝜏

2

𝑟
2 + 𝜏

2

𝑟
3 = 𝑢

2
. (52)
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We note that the extremals of this functional coincide with
the geodesic curves and the length of the geodesic curve 𝛾

coincides with 𝜏
𝛾
for the corresponding index 𝛾. 𝐸𝑡

𝛾
admits

the same infinite-dimensional Lie algebra 𝑊
2
.

Recall that the classical energy-momentum tensor is
defined by

𝑇
𝑖𝑘

= 𝑔
𝑘𝑙
𝑓
𝛼

𝑥
𝑖

𝜕𝐿

𝜕𝑓𝛼𝑥𝑙
− 𝑔

𝑖𝑘
𝐿, (53)

where 𝐿 = 𝐿(𝑓
𝑗
, 𝑓

𝑖

𝑥
𝑘) is a Lagrangian. For the functional (52)

with the scalar field 𝜏 this tensor takes the following form:

𝑇
11

= 2𝜏
2

𝑟
2 − 𝑢

2
⋅ 1,

𝑇
22

= 2𝜏
2

𝑟
3 − 𝑢

2
⋅ 1,

𝑇
12

= 𝑇
21

= 2𝜏
𝑟
2𝜏
𝑟
3 .

(54)

𝑇
𝑖𝑘
is a traceless tensor due to the equality 𝑇

11
+ 𝑇

22
= 2(𝜏

2

𝑟
2 +

𝜏
2

𝑟
3 − 𝑢

2
) = 0. Denote �⃗� = (𝑟

2
, 𝑟

3
) and ⃗𝛿𝜔 = (𝛿𝑟

2
, 𝛿𝑟

3
). Then

the current is defined 𝑗
𝜇

= 𝑇
𝜇]𝛿𝜔

] and has an automatically
vanishing divergence 𝜕⋅𝑗 = (1/2)𝑇

𝜇

𝜇
(𝜕⋅𝛿𝜔)due to the traceless

condition on 𝑇
𝜇].

In the complex coordinates, the functional (52) takes the
following form:

𝐸
𝑡

𝛾
= 4∫

𝛾

(𝑢
2
)
−1

(𝑧𝑧, 𝑡) 𝜕𝑧𝜏 (𝑧, 𝑧) ⋅ 𝜕𝑧𝜏 (𝑧, 𝑧) 𝑑𝜏. (55)

Since 𝑇
𝑖𝑘

is traceless, we have 𝑇
𝑧𝑧

= 𝑇
𝑧𝑧

= 0; these
imply 𝜕

𝑧
𝑇
𝑧𝑧

= 𝜕
𝑧
𝑇
𝑧𝑧

= 0 and there are only two
nonvanishing components of the energy-momentum tensor
𝑇(𝑧) = 𝑇

𝑧𝑧
(𝑧) = 1/4(𝑇

11
− 2𝑖𝑇

12
− 𝑇

22
) and 𝑇(𝑧) =

𝑇
𝑧𝑧
(𝑧) = 1/4(𝑇

11
+ 2𝑖𝑇

12
− 𝑇

22
). Moreover 𝑇

𝑧𝑧
= (𝜕

𝑧
𝜏)

2 and
𝑇
𝑧𝑧

= (𝜕
𝑧
𝜏)

2. In the line of Conformal Field Theory, we can
consider the following constructions: since 𝑇(𝑧) and 𝑇(𝑧) are
holomorphic functions, then due to Laurent expansions

𝑇 (𝑧) = ∑

𝑛

𝐿
𝑛
𝑧
−𝑛−2

, 𝑇 (𝑧) = ∑

𝑛

𝐿
𝑛
𝑧
−𝑛−2

, (56)

where the exponent −𝑛 − 2 is chosen so that for the scale
transformation 𝑧 → 𝜆

−1
𝑧 under which 𝑇(𝑧) → 𝜆

2
𝑇(𝜆

−1
𝑧)

we have 𝐿
−𝑛

→ 𝜆
𝑛
𝐿
−𝑛

and 𝐿
−𝑛

→ 𝜆
𝑛

𝐿
−𝑛
. Therefore, the

expression (56) is finally inverted by the following relations:

𝐿
𝑛
=

1

2𝜋𝑖
∮𝑇 (𝑧) 𝑧

𝑛+1
𝑑𝑧, 𝐿

𝑛
=

1

2𝜋𝑖
∮𝑇 (𝑧) 𝑧

𝑛+1
𝑑𝑧.

(57)

Recall that 𝐿
𝑛
are defined on C \ {0}:

𝑇
𝜖
= ∮𝜖 (𝑧) 𝑇 (𝑧) 𝑑𝑧, 𝑇

𝜖
= ∮𝜖 (𝑧) 𝑇 (𝑧) 𝑑𝑧 (58)

Their variations read as follows:

𝛿
𝜖
𝑇 (𝑧) = 𝜖 (𝑧) 𝑇


+ 2𝜖


(𝑧) 𝑇 (𝑧) + (

1

12
) 𝑐𝜖


(𝑧) ,

𝛿
𝜖
𝑇 (𝑧) = 𝜖 (𝑧) 𝑇



+ 2𝜖 (𝑧) 𝑇 (𝑧) + (
1

12
) 𝑐𝜖


(𝑧) .

(59)

It leads to (see [15])

[𝑇
𝜖
, 𝑇 (𝑧)] = 𝜖 (𝑧) 𝑇


(𝑧) + 2𝜖 (𝑧) 𝑇 (𝑧) +

𝑐

12
𝜖


(𝑧) ,

[𝑇
𝜖
, 𝑇 (𝑧)] = 𝜖 (𝑧) 𝑇



(𝑧) + 2𝜖 (𝑧) 𝑇 (𝑧) +
𝑐

12
𝜖


(𝑧) .

(60)

Then from (60) we get as in [15] that 𝐿
𝑛
and 𝐿

𝑛
satisfy the

commutation relations

[𝐿
𝑛
, 𝐿

𝑚
] = (𝑛 − 𝑚) 𝐿𝑛+𝑚

+
𝑐

12
𝛿
𝑛+𝑚

𝑛 (𝑛
2
− 1) , (61)

[𝐿
𝑛
, 𝐿

𝑚
] = (𝑛 − 𝑚) 𝐿

𝑛+𝑚

+
𝑐

12
𝛿
𝑛+𝑚

𝑛 (𝑛
2
− 1) , [𝐿

𝑛
, 𝐿

𝑚
] = 0.

(62)

Lemma 1. Let 𝑇(𝑧) = ∑
𝑛
𝐿
𝑛
𝑧
−𝑛−2 and 𝑇(𝑤) = ∑

𝑛
𝐿
𝑛
𝑤
−𝑛−2

be the fields with {𝐿
𝑛
} satisfying the commutation relationship

(61). Then for large 𝑧 and 𝑤, it holds that

𝑇 (𝑧) 𝑇 (𝑤) ∼
𝑐

2(𝑧 − 𝑤)
4
+

2𝑇 (𝑤)

(𝑧 − 𝑤)
2
+

𝜕
𝑤
𝑇 (𝑤)

𝑧 − 𝑤
. (63)

The left-hand side of (61) reads as follows:

[𝐿
𝑛
, 𝐿

𝑚
] = (∮

|𝑧|>|𝑤|

𝑑𝑧

2𝜋𝑖
∮

𝑑𝑤

2𝜋𝑖
− ∮

𝑑𝑤

2𝜋𝑖
∮

|𝑧|<|𝑤|

𝑑𝑧

2𝜋𝑖
)

× 𝑧
𝑛+1

𝑇 (𝑍)𝑤
𝑛+1

𝑇 (𝑤) .

(64)

The proof of this lemma is based on the direct calculations.
The first term of the right-hand side of (61) equals

(𝑛 − 𝑚) 𝐿
𝑛+𝑚

= (𝑛 − 𝑚)∮
𝑑𝑤

2𝜋𝑖
(𝑤

𝑛+𝑚+1
𝑇 (𝑤)) . (65)

This integral can be rewritten as follows

∮
𝑑𝑤

2𝜋𝑖
(2 (𝑛 + 1)𝑤

𝑛
𝑤
𝑚+1

𝑇 (𝑤) + 𝑤
𝑛+1

𝑤
𝑚+1

𝜕
𝑤
𝑇 (𝑤)) . (66)

Indeed, integrating the last term of this integral by parts and
combining with the first term we get the right-hand part of
(65). The second term of (61), that is, (𝑐/12)𝛿

𝑛+𝑚
𝑛(𝑛

2
− 1),

can be presented as the following integral:

∮
𝑑𝑤

2𝜋𝑖
(

𝑐

12
𝑛 (𝑛

2
− 1)𝑤

𝑛−2
𝑤
𝑚
) . (67)

Further transformations are based on using the well-known
formula from the Complex Analysis

𝜕
𝑛

𝜁
𝑓 (𝜁) = 𝑛!∮

𝑑𝑤

2𝜋𝑖

𝑓 (𝜁)

(𝜁 − 𝑧)
𝑛
. (68)

Since 𝜕
3

𝑧
𝑧
𝑛+1

|
𝑧=𝑤

= 𝑛(𝑛
2
− 1)𝑤

𝑛−2, then applying (68), we get
that (67) equals

∮
𝑑𝑧

2𝜋𝑖
∮

𝑑𝑤

2𝜋𝑖
𝑧
𝑛+1

𝑤
𝑚+1 𝑐

2(𝑧 − 𝑤)
4
. (69)
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Applying the sameprocedure to the first and the second terms
of (66), we can see that this integral equals

∮
𝑑𝑧

2𝜋𝑖
∮

𝑑𝑤

2𝜋𝑖
𝑧
𝑛+1

𝑤
𝑚+1

(
2𝑇 (𝑤)

(𝑧 − 𝑤)
2
+

𝜕𝑇 (𝑤)

𝑧 − 𝑤
) . (70)

Combining (69) and (70), we found that the integral

∮
𝑑𝑧

2𝜋𝑖
∮

𝑑𝑤

2𝜋𝑖
𝑧
𝑛+1

𝑤
𝑚+1

(
𝑐

2(𝑧 − 𝑤)
4
+

2𝑇 (𝑤)

(𝑧 − 𝑤)
2
+

𝜕𝑇 (𝑤)

𝑧 − 𝑤
)

(71)

equals the right-hand side of (64). For the completeness, we
need to add at the integral (71) a regular function 𝑅(𝑧, 𝑤) on
the variable 𝑧 −𝑤 since this function is free of poles at 𝑧 = 𝑤;
hence, 𝑅(𝑧, 𝑤) does not contribute to the integral. Therefore,
comparing (71) with (64), we derive that

𝑇 (𝑧) 𝑇 (𝑤) =
𝑐

2(𝑧 − 𝑤)
4
+

2𝑇 (𝑤)

(𝑧 − 𝑤)
2
+

𝜕
𝑤
𝑇 (𝑤)

𝑧 − 𝑤
+ 𝑅 (𝑧, 𝑤) .

(72)

This relationship is called the operator product expansion in
CFT. The same assertion holds for the 𝑇(𝑧). Notice that the
quantities 𝑐 and 𝑐 coincide.

Corollary 2. Consider the following:

𝑇 (𝑧) 𝑇 (0) ∼
𝑐

2𝑧4
, 𝑇 (𝑧) 𝑇 (0) ∼

𝑐

2𝑧
4

as 𝑧, 𝑧 → ∞.

(73)

One applies the results obtained to find asymptotic behavior
of the transversal correlation function 𝐵

𝑁𝑁
= 𝑢2(𝑡)𝑔(𝑧𝑧) as

the length of the correlation vector tends to infinity. For this,
one uses the following relationship:

4𝜕
𝑧
𝜏 ⋅ 𝜕

𝑧
𝜏 = 𝑢

2
, (74)

and the equalities 𝑇(𝑧) = 𝑇
𝑧𝑧

= (𝜕
𝑧
𝜏)

2 and 𝑇(𝑧) = 𝑇
𝑧𝑧

=

(𝜕
𝑧
𝜏)

2. Rewrite (74) in the form (𝜕
𝑧
𝜏)

2
⋅ (𝜕

𝑧
𝜏)

2
= (1/16)(𝑢

2
)
2

and use the formulas (73). Then substituting instead of (𝑢2)2

the quantity 𝑢2(𝑡)
2

𝑔
2
(| ⃗𝑟|, 𝑡) in (73), one gets the asymptotic

expansion for 𝐵2

𝑁𝑁
(| ⃗𝑟|, 𝑡) in the follwing form:

𝑢2 (𝑡)
2

𝑔
2
(| ⃗𝑟| , 𝑡) ∼

4𝑐
2

| ⃗𝑟|
8
𝑇 (0) 𝑇 (0)

,

𝑧𝑧 = | ⃗𝑟|
2 as | ⃗𝑟| → ∞.

(75)

Since 𝑇(0)𝑇(0) = (1/16)𝑢2(𝑡)
2

, one finally obtains from (75)
that

𝐵
𝑁𝑁 (| ⃗𝑟| , 𝑡) ∼ −

8𝑐

𝑢2 (𝑡)
2

| ⃗𝑟|
4

. (76)

Thesign “−” appears in view of the negative values of𝐵
𝑁𝑁

(| ⃗𝑟|, 𝑡)

as | ⃗𝑟| → ∞.

4. Concluding Remarks

The behavior of the correlation functions 𝐵
𝐿𝐿

and 𝐵
𝑁𝑁

presents significant interests for the theory of turbulence
since this leads to various types of the so-called integral
invariants. The Loitsyansky and Birkhoff integrals are the
most famous integral invariants. In this paper, we estab-
lished the asymptotic behavior of the transversal correlation
function 𝐵

𝑁𝑁
(| ⃗𝑟|, 𝑡) as | ⃗𝑟| → ∞ for the geometry of the

correlation space 𝐾
3 determined by the two-point velocity-

correlation tensor in the case of homogeneous isotropic
turbulence. The question about the asymptotic expansion of
𝐵
𝑁𝑁

(| ⃗𝑟|, 𝑡) for large values of the correlation distances in
the physical space R3 with the standard Euclidian metric
is still open. Nevertheless, the formula (76) can be applied
for studying this problem if we construct the isometric
embedding of the couple (𝐾

3
, 𝑑𝑙

2
(𝑡)) into the physical space

that presents another topic of investigations.

Appendix

In this section, we show that nontrivial central extension of
the Lie algebra 𝑊

2
exists.

In order to avoid a redundant complexity of the exposi-
tion of material, we recall basic definitions and present only
elementary results on the algebraic constructions concerning
central extensions of the Lie algebras. We begin several
definitions.

A Lie algebra a is called abelian if Lie bracket of a is trivial;
that is, [𝑋, 𝑌] = 0 for all 𝑋, 𝑌 ∈ a.

Let a be an abelian Lie algebra over C and g a Lie algebra
over C. An exact sequence of algebra homomorphisms

0 → a → b → g → 0 (A.1)

is called a central extension of g by a, if [a, g] = 0; that is,
[𝑋, 𝑌] = 0 for all 𝑋 ∈ a and 𝑌 ∈ b.

Here, we identify a with the corresponding subalgebra of
b. For such a central extension, the abelian Lie algebra a is
realized as an ideal in b and the homomorphism 𝜋 : b → g
serves to identify g with b/a.

For every central extension of the Lie algebras

0 → a → b → g → 0, (A.2)

there is a linear map 𝛽 : g → b with 𝜋 ⋅ 𝛽 = 𝑖𝑑b. Here, 𝛽 is
in general not a Lie algebra homomorphism. Consider

Θ (𝑋, 𝑌) = [𝛽 (𝑋) , 𝛽 (𝑌)] − 𝛽 ([𝑋, 𝑌]) for𝑋,𝑌 ∈ g.
(A.3)

Then the map Θ : g × g → a (depending on 𝛽) always has
the following properties:

(a) Θ : g × g → a is a skew-symmetric bilinear form;
(b) Θ(𝑋, [𝑌, 𝑍]) + Θ(𝑌, [𝑍,𝑋]) + Θ(𝑍, [𝑋, 𝑌]) = 0.
Moreover, b is isometric to g ⊕ a as vector spaces by the

linear isomorphism

𝜓 : g × a → b, 𝑋 ⊕ 𝑌 = (𝑋, 𝑌) → 𝛽 (𝑋) + 𝑌,

(A.4)
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Thus, with the Lie bracket on g ⊕ a given by

[𝑋 ⊕ 𝑍, 𝑌 ⊕ 𝑍

]b = [𝑋, 𝑌]g + Θ (𝑋, 𝑌) (A.5)

for 𝑋,𝑌 ∈ g and 𝑍,𝑍


∈ a, the map 𝜓 is a Lie algebra
isomorphism.

The Lie bracket on b can also be written as

[𝛽 (𝑋) + 𝑍, 𝛽 (𝑌) + 𝑍

] = 𝛽 ([𝑋, 𝑌]) + Θ (𝑋, 𝑌) . (A.6)

A map Θ : b × b → a with the properties (a) and (b) is
called a 2-cocycle on g.

With the definitions introduced, the following results
hold.

Lemma A.1. Every central extension b of g by a comes from
a cocycle Θ : b × b → a. Every cocycle Θ : b × b → a
generates a central extension b of g by a.

The first result follows from the comments above. Let b
be the vector space b = g ⊕ a. The bracket

[𝑋 ⊕ 𝑍, 𝑌 ⊕ 𝑍

]b = [𝑋, 𝑌]g ⊕ Θ (𝑋, 𝑌) (A.7)

for 𝑋, 𝑌 ∈ g and 𝑍,𝑍

∈ a is a Lie bracket if and only if Θ

is a cocycle. Hence, b with such Lie bracket defines a central
extension of g by a that proves the second assertion of this
lemma.

Define the following sets:

Alt2 (g, a) = {Θ : b × b → a | Θ satisfies condition a )} ,

Z2
(g, a) = {Θ ∈ Alt2 (g, a) | Θ satisfies condition b )} .

(A.8)

Z2 is a linear subspace of Alt2. The above vector spaces are
abelian groups, and Z2 is the space of 2 cocycles.

Let us consider the Lie algebra 𝑊
2
and denote the

corresponding components C{𝑘
𝑛
, 𝑛 ∈ 𝑍} ⊕ C{𝑘

𝑛
, 𝑛 ∈ 𝑍} for

these algebras by 𝑊
𝑎

2
, 𝑊𝑏

2
. In order to find central extension

of𝑊
2
, it is sufficient to construct a central extension for each

component.

Lemma A.2. The central extension 𝐸𝑊
𝑎

2
of 𝑊

𝑎

2
by 𝑍 exists;

that is,

𝐸𝑊
𝑎

2
= 𝑊

𝑎

2
⊕ C𝑍 as a complex vector space,

[𝑘
𝑛
, 𝑘

𝑚
] = (𝑛 − 𝑚) +

𝑐

12
𝛿
𝑛+𝑚

𝑛 (𝑛
2
− 1) , 𝑐 ∈ C,

[𝑘
𝑛
, 𝑍] = 0 for 𝑛,𝑚 ∈ 𝑍.

(A.9)

This central extension is defined by the cocycle Θ ∈ Z2
(Wa

2),
Θ = 𝑐𝜔, where 𝜔 = (1/12)𝛿

𝑛+𝑚
𝑛(𝑛

2
− 1) which coincides with

the cocycle of the Witt algebra 𝑊.

The proof of this lemma completely repeats one as we
came to the Virasoro algebra Vir which is a proper central
extension of the Witt algebra 𝑊 (see, for more details, [16]).
For the convince, we shortly present this proof again.

First, we establish that Θ ∈ Z2
(Wa

2); that is, we have to
check that

Θ(𝑘
𝑠
, [𝑘

𝑚
, 𝑘

𝑛
]) + Θ (𝑘

𝑚
, [𝑘

𝑛
, 𝑘

𝑠
]) + Θ (𝑘

𝑛
, [𝑘

𝑠
, 𝑘

𝑚
]) = 0

(A.10)

for 𝑠, 𝑚, 𝑛 ∈ 𝑍. Using the commutation relations (44), the
direct calculations show that

12 (Θ (𝑘
𝑠
, [𝑘

𝑚
, 𝑘

𝑛
]) + Θ (𝑘

𝑚
, [𝑘

𝑛
, 𝑘

𝑠
]) + Θ (𝑘

𝑛
, [𝑘

𝑠
, 𝑘

𝑚
]))

= 𝑐𝛿
𝑠+𝑚+𝑛

((𝑚 − 𝑛) 𝑠 (𝑠
2
− 1) + (𝑛 − 𝑠)𝑚 (𝑚

2
− 1)

+ (𝑠 − 𝑚) 𝑛 (𝑛
2
− 1))

= −𝑐 ((𝑚 − 𝑛) (𝑚 + 𝑛)

× ((𝑚 + 𝑛)
2
− 1) + (2𝑛 + 𝑚)𝑚 (𝑚

2
− 1)

− (2𝑚 + 𝑛) 𝑛 (𝑛
2
− 1)) = 0.

(A.11)

That proves the inclusion Θ ∈ Z2
(Wa

2). Further, we have

0 = Θ (𝑘
𝑠
, [𝑘

𝑚
, 𝑘

𝑛
]) + Θ (𝑘

𝑚
, [𝑘

𝑛
, 𝑘

𝑠
]) + Θ (𝑘

𝑛
, [𝑘

𝑠
, 𝑘

𝑚
])

= 𝑐 ((𝑚 − 𝑛)Θ (𝑘
𝑠
, 𝑘

𝑚+𝑛
) + (𝑛 − 𝑠)Θ (𝑘

𝑚
, 𝑘

𝑛+𝑠
)

+ (𝑘 − 𝑚)Θ (𝑘
𝑛
, 𝑘

𝑠+𝑚
)) .

(A.12)

For 𝑠 = 0 we get

(𝑚 − 𝑛)Θ (𝑘
0
, 𝑘

𝑚+𝑛
) + 𝑛Θ (𝑘

𝑚
, 𝑘

𝑛
) − 𝑚Θ (𝑘

𝑛
, 𝑘

𝑠+𝑚
) = 0.

(A.13)

Hence,

Θ(𝑘
𝑛
, 𝑘

𝑚
) =

𝑚 − 𝑛

𝑚 + 𝑛
Θ (𝑘

0
, 𝑘

𝑚+𝑛
) , (A.14)

for 𝑚, 𝑛 ∈ 𝑍, 𝑚 ̸= − 𝑛.
Define a homomorphism 𝜇 ∈ HomC(𝑊

𝑎

2
,C) by

𝜇 (𝑘
𝑛
) =

1

𝑛
Θ (𝑘

0
, 𝑘

𝑛
) for 𝑛 ∈ 𝑍 \ {0} ,

𝜇 (𝑘
0
) = −

1

2
Θ (𝑘

1
, 𝑘

−1
) ,

(A.15)

and letΘ
= Θ+�̃�, �̃�(𝑋, 𝑌) = 𝜇([𝑋, 𝑌]).Then,Θ

(𝑘
𝑛
, 𝑘

𝑚
) = 0

for 𝑚, 𝑛 ∈ 𝑍, 𝑚 ̸= − 𝑛, since

Θ

(𝑘

𝑛
, 𝑘

𝑚
) = Θ (𝑘

𝑛
, 𝑘

𝑚
) + 𝜇 ([𝑘

𝑛
, 𝑘

𝑚
])

=
𝑚 − 𝑛

𝑚 + 𝑛
Θ (𝑘

0
, 𝑘

𝑛+𝑚
) + 𝜇 ((𝑛 − 𝑚) [𝑘

𝑛+𝑚
])

=
𝑚 − 𝑛

𝑚 + 𝑛
Θ (𝑘

0
, 𝑘

𝑛+𝑚
) +

𝑛 − 𝑚

𝑚 + 𝑛
Θ (𝑘

0
, 𝑘

𝑛+𝑚
) = 0.

(A.16)

Thus, there is a map ℎ : 𝑍 → C such that

Θ

(𝑘

𝑛
, 𝑘

𝑚
) = 𝛿

𝑛+𝑚
ℎ (𝑛) for 𝑛,𝑚 ∈ 𝑍. (A.17)
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Since Θ
 is skew-symmetric, it follows that

ℎ (0) = 0, ℎ (−𝑠) = −ℎ (𝑠) ∀𝑛,𝑚 ∈ 𝑍. (A.18)

By definition of 𝜇, we have

ℎ (1) = Θ

(𝑘

1
, 𝑘

−1
)

= Θ (𝑘
1
, 𝑘

−1
) + 𝜇 ([𝑘

1
, 𝑘

−1
])

= Θ (𝑘
1
, 𝑘

−1
) − Θ (𝑘

1
, 𝑘

−1
)

= 0.

(A.19)

It remains to be shown that there is a 𝑐 ∈ C with Θ

= 𝑐𝜔;

that is,

ℎ (𝑛) =
𝑐

12
𝑛 (𝑛

2
− 1) for 𝑛 ∈ N. (A.20)

Since Θ

∈ Z2

(W2,a
2,0), we have for 𝑠, 𝑚, 𝑛 ∈ N the following:

0 = Θ

(𝑘

𝑠
, [𝑘

𝑚
, 𝑘

𝑛
]) + Θ (𝑘

𝑚
, [𝑘

𝑛
, 𝑘

𝑠
]) + Θ (𝑘

𝑛
, [𝑘

𝑠
, 𝑘

𝑚
])

= 𝑐 ((𝑚 − 𝑛)Θ

(𝑘

𝑠
, 𝑘

𝑚+𝑛
) + (𝑛 − 𝑠)Θ


(𝑘

𝑚
, 𝑘

𝑛+𝑠
)

+ (𝑘 − 𝑚)Θ

(𝑘

𝑛
, 𝑘

𝑠+𝑚
)) .

(A.21)

For 𝑘 + 𝑚 + 𝑛 = 0, we obtain

0 = (𝑚 − 𝑛) ℎ (𝑠) + (𝑛 − 𝑠) ℎ (𝑚)

+ (𝑠 − 𝑚) ℎ (𝑛)

= − (𝑚 − 𝑛) ℎ (𝑚+) (2𝑛 + 𝑚) ℎ (𝑚)

− (2𝑚 + 𝑛) ℎ (𝑛) .

(A.22)

The substitution 𝑛 = 1 yields the following:

− (𝑚 − 1) ℎ (𝑚 + 1) + (2 + 𝑚) ℎ (𝑚) − (2𝑚 + 1) ℎ (1) = 0,

(A.23)

for 𝑚 ∈ N. Combined with ℎ(1), this implies the recursion
formula

ℎ (𝑚 + 1) =
𝑚 + 2

𝑚 − 1
ℎ (𝑚) for𝑚 ∈ N. (A.24)

Consequently, the map ℎ is completely determined by ℎ(2) ∈

C. We can show by induction 𝑛 ∈ N that for 𝑐 ∈ 2ℎ(2) the
relation (A.20) holds. Cases 𝑛 = 1 and 𝑛 = 2 are obvious. So
let 𝑚 = 𝑚 ∈ N, 𝑛 > 1, and ℎ(𝑚) = (𝑐/12)𝑚(𝑚

2
− 1). Then,

ℎ (𝑚 + 1) =
𝑚 + 2

𝑚 − 1
ℎ (𝑚)

=
𝑚 + 2

𝑚 − 1

𝑐

12
𝑚 (𝑚

2
− 1)

=
𝑐

12
𝑚 ((𝑚 + 1) (𝑚 + 2))

=
𝑐

12
(𝑚 + 1) ((𝑚 + 1)

2
− 1) .

(A.25)

That completes the proof of Lemma A.2.

Corollary A.3. The Lie algebra 𝐸𝑊
𝑎

2
is homeomorphic to the

Virasoro algebra 𝑊.

Lemma A.2 andCorollary A.3 still hold if we consider𝑊𝑏

2

instead of 𝑊
𝑎

2
and change 𝑊 by 𝑊 for the corresponding

basis elements 𝑙
𝑛
= −𝑧

𝑛+1
𝑑/𝑑𝑧 of 𝑊 (a copy of 𝑊).
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[4] Th. von Kármán and L. Howarth, “On the statistical theory of
isotropic turbulence,”Proceedings of the Royal SocietyA, vol. 164,
pp. 192–215, 1938.

[5] G. Falkovich, “Conformal invariance in hydrodynamic turbu-
lence,”RussianMathematical Surveys, vol. 62, no. 3, pp. 497–510,
2007.

[6] D. Bernard, G. Bofffeta, A. Celani, and G. Falkovich, “Confor-
mal invariance in two-dimensional turbulence,”Nature Physics,
vol. 2, pp. 124–128, 2006.

[7] J. Cardy, “The power of two dimensions,” Nature Physics, vol. 2,
pp. 67–68, 2006.
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[10] J. C. Rotta, Turbulente Strömungen, Teubner, Stuttgar, Russia,
1972.

[11] N. R. Kamyshanskij and A. S. Solodovnikov, “Semireducible
analytic spaces “in the large”,” Russian Mathematical Surveys,
vol. 35, no. 5, pp. 1–56, 1980.

[12] L. P. Eisenhart, Riemannian Geometry, Princeton University
Press, Princeton, NJ, USA, 1926.

[13] A. G. Megrabov, “Group spliting and Lax representation,”
Doklady Mathematics, vol. 67, no. 3, pp. 335–349, 2003.

[14] S. V. Meleshko, “Homogeneous autonomous systems with three
independent variables,” Journal of Applied Mathematics and
Mechanics, vol. 58, no. 5, pp. 857–863, 1994.

[15] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
“Infinite conformal symmetry in two-dimensional quantum
field theory,”Nuclear Physics B, vol. 241, no. 2, pp. 333–380, 1984.



Advances in Mathematical Physics 11

[16] M. Schottenloher, A Mathematical Introduction to Conformal
Field Theory, vol. 759 of Lecture Notes in Physics, Springer,
Berlin, Germany, 2nd edition, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Journal of
Applied Mathematics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability
and
Statistics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Advances in

Mathematical Physics

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Combinatorics

 Operations
Research

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Decision
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


