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Paknejad et al.’s model is considered in this paper. Itemwise multiobjective models for both
exponential and uniform lead-time demand are taken and the results are compared numerically
both in fuzzy optimization and intuitionistic fuzzy optimization techniques. Objective of this
paper is to establish that intuitionistic fuzzy optimizaion method is better than usual fuzzy
optimization technique as expected annual cost of this inventory model is more minimized in
case of intuitionistic fuzzy optimization method. As a single objective stochastic inventory model
where the lead-time demand follows normal distribution and with varying defective rate, expected
annual cost is also measured. Finally the model considers for fuzzy cost components, which
make the model more realistic, and numerical values for uniform, exponential, and normal lead-
time demand are compared. Necessary graphical presentations are also given besides numerical
illustrations.

1. Introduction

In conventional inventory models, uncertainties are treated as randomness and are handled
by appealing to probability theory. However, in certain situations uncertainties are due
to fuzziness and in these cases the fuzzy set theory, originally introduced by Zadeh
[1], is applicable. Today most of the real-world decision-making problems in economic,
technical and environmental ones are multidimensional and multiobjective. It is significant
to realize that multiple-objectives are often noncommensurable and conflict with each other
in optimization problem. An objective within exact target value is termed as fuzzy goal. So a
multiobjective model with fuzzy objectives is more realistic than deterministic of it.

In decision making process, first, Bellman and Zadeh [2] introduced fuzzy set theory;
Tanaka et al. [3] applied concept of fuzzy sets to decision-making problems to consider the
objectives as fuzzy goals over the α-cuts of a fuzzy constraints. Zimmermann [4, 5] showed
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that the classical algorithms can be used in few inventory models. Li et al. [6] discussed
fuzzy models for single-period inventory problem in 2002. Abou-El-Ata et al. [7] considered
in 2003 a probabilistic multiitem inventory model with varying order cost. A single-period
inventory model with fuzzy demand is analyzed by Kao and Hsu [8]. Fergany and El-Wakeel
[9] considered a probabilistic single-item inventory problem with varying order cost under
two linear constraints. A survey of literature on continuously deteriorating inventory models
are discussed by Raafat [10]. Hala and EI-Saadani [11] analyzed a constrained single period
stochastic uniform inventory model with continuous distributions of demand and varying
holding cost. Some inventory problems with fuzzy shortage cost is discussed by Katagiri
and Ishii [12]. Moon and Choi [13] implemented a note on lead time and distributional
assumptions in continuous review inventory models. Lai and Hwang [14, 15] elaborately
discussed fuzzy mathematical programming and fuzzy multiple objective decision making in
their two renowned contributions. Ouyang and Chang [16] analyzed a minimax distribution
free procedure for mixed inventory models involving variable lead time with fuzzy lost
sales. Mahapatra and Roy [17] discussed fuzzy multiobjective mathematical programming
on reliability optimization model. Hariga and Ben-Daya [18] considered some stochastic
inventory models with deterministic variable lead time. A fuzzy EOQ model with demand-
dependent unit cost under limited storage capacity is implemented by Roy and Maiti [19].
Zheng [20] discussed optimal control policy for stochastic inventory systems with Markovian
discount opportunities.

Intuitionistic Fuzzy Set (IFS) was introduced by Atanassov [21] and seems to be
applicable to real world problems. The concept of IFS can be viewed as an alternative
approach to define a fuzzy set in case where available information is not sufficient for the
definition of an imprecise concept by means of a conventional fuzzy set. Thus it is expected
that IFS can be used to simulate human decision-making process and any activitities requiring
human expertise and knowledge that are inevitably imprecise or totally reliable. Here the
degrees of rejection and satisfaction are considered so that the sum of both values is always
less than unity [21]. Atanassov also analyzed Intuitionistic fuzzy sets in a more explicit
way. Atanassov and Gargov [22] discussed an Open problem in intuitionistic fuzzy sets
theory. An Interval-valued intuitionistic fuzzy set was analyzed byAtanassov [23]. Atanassov
and Kreinovich [24] implemented Intuitionistic fuzzy interpretation of interval data. The
temporal intuitionistic fuzzy sets are discussed also by Atanassov [25]. Intuitionistic fuzzy
soft sets are considered by Maji et al. [26]. Nikolova et al. [27] presented a Survey of the
research on intuitionistic fuzzy sets. Rough intuitionistic fuzzy sets are analyzed by Rizvi et
al. [28]. Angelov [29] implemented the Optimization in an intuitionistic fuzzy environment.
He [30, 31] also contributed in another two important papers, based on Intuitionistic
fuzzy optimization. Pramanik and Roy [32] solved a vector optimization problem using an
Intuitionistic Fuzzy goal programming. A transportation model is solved by Jana and Roy
[33] using multi-objective intuitionistic fuzzy linear programming.

Paknejad et al.[35] presented a quality adjusted lot-sizing model with stochastic
demand and constant lead time and studied the benefits of lower setup cost in the model.
We note that the previous literature focuses on the issue of setup cost reduction in which
information about lead-time demand, whether constant or stochastic, is assumed completely
known. Ouyang and Chang [34] modified Paknejad et al.’s inventory model by relaxing
the assumption that the stochastic demand during lead time follows a specific probability
distribution and by considering that the unsatisfied demands are partially backordered.
Also, instead of having a stockout cost in the objective function, a service level constraint
is employed.



Advances in Operations Research 3

Paknejad et al.’s [35] model is considered in this paper, as a single objective stochastic
inventory model where the lead-time demand follows normal distribution and with varying
defective rate, expected annual cost is measured. Itemwise multiobjective models for
both exponential and uniform lead time demand are taken and the results are compared
numerically both in fuzzy optimization and intuitionistic fuzzy optimization techniques.
From our numerical as well as graphical presentations, it is clear that intuitionistic fuzzy
optimization obtains better results than fuzzy optimization. Finally the model considers for
several fuzzy costs and numerical values for uniform, exponential, and normal lead-time
demand are compared. Necessary graphical presentations are also given besides numerical
illustrations.

2. Mathematical Model

Paknejad et al. [35] presented a quality adjusted lot-sizing model with stochastic demand and
constant lead time and studied the benefits of lower setup cost in the model. We note that the
previous literature focuses on the issue of setup cost reduction in which information about
lead-time demand, whether constant or stochastic, is assumed completely known. This paper
considers Paknejad et al.’s model along with the notations and some assumptions that will
be taken into account throughout the paper. Each lot contains a random number of defectives
following binomial distribution. After the arrival purchaser examines the entire lot, an order
of sizeQ is placed as soon as the inventory position reaches the reorder point s. The shortages
are allowed and completely backordered. Lead-time is constant and probability distribution
of lead-time demand is known.

Now, we use the following notations:

D: expected demand per year,

Q: lot size,

s: reorder point,

K: setup cost,

θ: defective rate in a lot of size Q, 0 ≤ θ ≤ 1,

h: nondefective holding cost per unit per year,

h′: defective holding cost per unit per year,

π : shortage cost per unit short,

ν: cost of inspecting a single item in each lot,

μ: expected demand during lead time,

b(s): the expected demand short at the end of the cycle

b(s) =
∫∞
s

(x − s)f(x)dx, (2.1)

where f(x) is the density function of lead-time demand,

EC(Q, s): expected annual cost given that a lot size Q is ordered.
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3. Single Objective Stochastic Inventory Model (SOSIM)

Thus a quality-adjusted lot-sizing model is formed as

MinEC(Q, s) = Setup cost + non-defective item holding cost + stockout cost

+ defective item holding cost + inspecting cost

=
DK

Q(1 − θ) + h
(
s − μ +

1
2
(Q(1 − θ) + θ)

)

+
Dπb(s)
Q(1 − θ) + h

′θ(Q − 1) +
Dv

1 − θ Q, s > 0.

(3.1)

It is the stochastic model, which minimizes the expected annual cost.

4. Multiobjective Stochastic Inventory Model (MOSIM)

In reality, a managerial problem of a responsible organization involves several conflicting
objectives to be achieved simultaneously that refers to a situation on which the DM has
no control. For this purpose a latest tool is linear or nonlinear programming problem with
multiple conflicting objectives. So the following model may be considered.

To solve the problem in (3.1) as an MOSIM, it can be reformulated as

MinECi(Qi, si)=
DiKi

Qi(1 − θi)
+hi
(
si − μi +

1
2
(Qi(1 − θi)+θi)

)

+
Diπbi(si)
Qi(1 − θi)

+ h′iθi(Qi − 1)+
Divi
1 − θi

Qi, si > 0 ∀i = 1, 2, . . . , n.

(4.1)

5. Multiitem Stochastic Model with Fuzzy Cost Components

Stochastic nonlinear programming problem with fuzzy cost components considers as

MinEC(Q1, . . . , Qn, s1, . . . , sn)

=
n∑
i=1

(
DiK̃i

Qi(1 − θi)
+h̃i
(
si−μi+

1
2
(Qi(1−θi)+θi)

)
+
Diπ̃ibi(s)
Qi(1−θi)

+h̃′iθi(Qi − 1)+
Divi
1 − θi

)

Qi, si > 0 ∀i = 1, 2, . . . , n.
(5.1)

Here K̃i, π̃i, h̃i, h̃
′
i represent vector of fuzzy parameters involved in the objective function

EC. We assume K̃i = (K−i , K
0
i , K

+
i ), π̃i = (π−i , π

0
i , π

+
i ), h̃i = (h−i , h

0
i , h

+
i ), and h̃′i = (h′−i , h

′0
i , h

′+
i ),

all of which are triangular fuzzy numbers.
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6. Fuzzy Nonlinear Programming (FNLP) Technique to
Solve Multiobjective Nonlinear Programming Problem (MONLP)

A Multi-Objective Non-Linear Programming (MONLP) or Vector Minimization problem
(VMP) may be taken in the following form:

M inf(x) =
(
f1(x), f2(x), . . . , fk(x)

)T
Subject to x ∈ X =

{
x ∈ Rn : gj(x) ≤ or = or ≥ bj for j = 1, 2, . . . , m

}
li ≤ x ≤ ui (i = 1, 2, . . . , n).

(6.1)

Zimmermann [5] showed that fuzzy programming technique can be used to solve the multi-
objective programming problem.

To solve MONLP problem, the following steps are used.

Step 1. Solve the MONLP of (6.1) as a single objective non-linear programming problem
using only one objective at a time and ignoring the others; these solutions are known as ideal
solution.

Step 2. From the result of Step 1, determine the corresponding values for every objective at
each solution derived. With the values of all objectives at each ideal solution, pay-off matrix
can be formulated as follows:

f1(x) f2(x) . . . fk(x)
x1

x2

. . .
xk

⎡
⎢⎢⎣
f∗1
(
x1)

f1
(
x2)
. . .

f1
(
xk
)

f2
(
x1)

f∗2
(
x2)
. . .

f2
(
xk
)

. . .

. . .

. . .

. . .

fk
(
x1)

fk
(
x2)
. . .

f∗
k

(
xk
)

⎤
⎥⎥⎦. (6.2)

Here x1, x2, . . . , xk are the ideal solutions of the objective functions f1(x), f2(x), . . . , fk(x),
respectively.

So

Ur = max
{
fr(x1), fr(x2), . . . , fr(xk)

}
,

Lr = min
{
fr(x1), fr(x2), . . . , fr(xk)

} (6.3)

(Lr and Ur are lower and upper bounds of the rth objective functions fr(x) r = 1, 2, . . . , k)).

Step 3. Using aspiration level of each objective of the MONLP of (6.1) may be written as
follows.

Find x so as to satisfy

fr(x)≤̃Lr (r = 1, 2, . . . , k), x ∈ X. (6.4)
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Here objective functions of (6.1) are considered as fuzzy constraints. These type of
fuzzy constraints can be quantified by eliciting a corresponding membership function:

μr
(
fr(x)

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 or −→ 0 if fr(x) ≥ Ur

μr
(
fr(x)

)
if Lr ≤ fr(x) ≤ Ur (r = 1, 2, . . . , k)

1 if fr(x) ≤ Lr.

(6.5)

Having elicited the membership functions (as in (6.5)) μr(fr(x)) for r = 1, 2, . . . , k introduce
a general aggregation function:

μD̃(x) = G
(
μ1
(
f1(x)

)
, μ2
(
f2(x)

)
, . . . , μk

(
fk(x)

))
. (6.6)

So a fuzzy multi-objective decision making problem can be defined as

Max μD̃(x)

subject to x ∈ X.
(6.7)

Here we adopt the fuzzy decision as follows.
Fuzzy decision is based on minimum operator (like Zimmermann’s approach [4]). In

this case (6.7) is known as FNLPM.
Then the problem of (6.7), using the membership function as in (6.5), according to

min-operator is reduced to

Max α

Subject to μi
(
fi(x)

)
≥ α for (i = 1, 2, . . . , k), x ∈ X α ∈ [0, 1].

(6.8)

Step 4. Solve (6.8) to get optimal solution.

7. Stochastic Models with Fuzzy Cost Components

Stochastic non-linear programming problem with fuzzy objective coefficient considers as

MinZ = C̃X, X ≥ 0. (7.1)
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Here C̃ represents a vector of fuzzy parameters involved in the objective function Z. We
assume C̃i= (ci−, ci0, ci+), which is a triangular fuzzy number with membership function:

μC̃i(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t − c−i
ci0 − c−i

for c−i ≤ t ≤ c
0
i ,

c+i − t
c+i − c

0
i

for c0
i ≤ t ≤ c

+
i ,

0 for t > c+i or t < c−i .

(7.2)

So (7.1) becomes

MinZ =
(
c−i X, c

0
i X, c

+
i X
)
, X ≥ 0, (7.3)

where

c− =
(
c−1 , c

−
2 , . . . , c

−
n

)
,

c0 =
(
c0

1, c
0
2, . . . , c

0
n

)
,

c+ =
(
c+1 , c

−
2 , . . . , c

+
n

)
.

(7.4)

According to Kaufman and Gupta [36] by combining three objectives into a single objective
function, (7.3) can be reduced to an LPP by most likely criteria as

Min

(
c− + 4c0 + c+

6

)
X, X ≥ 0. (7.5)

8. Formulation of Intuitionistic Fuzzy Optimization

When the degree of rejection (nonmembership) is defined simultaneously with degree
of acceptance (membership) of the objectives and when both of these degrees are not
complementary to each other, then IF sets can be used as a more general tool for describing
uncertainty.
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(μk, vk)

μk(Zk(X))

vk(Zk(X))

Zk(X)Uacc
k

= Urej
k

Lacc
k

L
rej
k

1 1

Figure 1: Membership and nonmemebership functions of the objective goal.

To maximize the degree of acceptance of IF objectives and constraints and to minimize
the degree of rejection of IF objectives and constraints, we can write

max μi
(
X
)
, XεR, i = 1, 2, . . . , K + n,

min υi
(
X
)
, XεR, i = 1, 2, . . . , K + n,

Subject to υi
(
X
)
≥ 0,

μi
(
X
)
≥ υi
(
X
)
,

μi
(
X
)
+ υi
(
X
)
< 1,

X ≥ 0,

(8.1)

where μi(X) denotes the degree of membership function of (X) to the ith IF sets and νi(X)
denotes the degree of nonmembership (rejection) of (X) from the ith IF sets.

9. An Intuitionistic Fuzzy Approach for Solving MOIP with Linear
Membership and Nonmembership Functions

To define the membership function of MOIM problem, let Lacc
k

and Uacc
k

be the lower and
upper bounds of the kth objective function. These values are determined as follows. Calculate
the individual minimum value of each objective function as a single objective IP subject to
the given set of constraints. Let X

∗
1, X

∗
2, . . . , X

∗
k be the respective optimal solution for the k

different objective and evaluate each objective function at all these k optimal solutions. It is
assumed here that at least two of these solutions are different for which the kth objective func-
tion has different bounded values. For each objective, find lower bound (minimum value)
Lacc
k and the upper bound (maximum value) Uacc

k . But in intuitionistic fuzzy optimization
(IFO), the degree of rejection (non-membership) and degree of acceptance (membership) are
considered so that the sum of both values is less than one. To define membership function
of MOIM problem, let Lrej

k and U
rej
k be the lower and upper bounds of the objective function

Zk(X) where Lacc
k
≤ Lrej

k
≤ Urej

k
≤ Uacc

k
. These values are defined as follows.
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The linear membership function for the objective Zk(X) is defined as

μk
(
Zk

(
X
))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if Zk

(
X
)
≤ Lacc

k ,

Uacc
k − Zk

(
X
)

Uacc
k
− Lacc

k

if Lacc
k ≤ Zk

(
X
)
≤ Uacc

k ,

0 if Zk

(
X
)
≥ Uacc

k
,

νk
(
Zk

(
X
))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if Zk

(
X
)
≥ Urej

k
,

Zk

(
X
)
− Lrej

k

U
rej
k
− Lrej

k

if Lrej
k
≤ Zk

(
X
)
≤ Urej

k
,

0 if Zk

(
X
)
≤ Lrej

k .

(9.1)

Lemma 9.1. In case of minimization problem, the lower bound for non-membership function
(rejection) is always greater than that of the membership function (acceptance).

Now, we take new lower and upper bounds for the non-membership function as
follows:

L
rej
k

= Lacc
k + t

(
Uacc
k − L

acc
k

)
, where 0 < t < 1,

U
rej
k = Uacc

k + t
(
Uacc
k − L

acc
k

)
for t = 0.

(9.2)

Following the fuzzy decision of Bellman-Zadeh [2] together with linear membership
function and non-membership functions of (9.1), an intuitionistic fuzzy optimization model
of MOIM problem can be written as

max μk
(
X
)
, XεR, k = 1, 2, . . . , K,

min υk
(
X
)
, XεR, k = 1, 2, . . . , K

Subject to υk
(
X
)
≥ 0,

μk
(
X
)
≥ υk

(
X
)
,

μk
(
X
)
+ υk

(
X
)
< 1,

X ≥ 0.

(9.3)
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The problem of (9.3) can be reduced following Angelov [29] to the following form:

Max α − β

Subject to Zk

(
X
)
≤ Uacc

k − α
(
Uacc
k − L

acc
k

)
,

Zk

(
X
)
≤ Lrej

k
+ β
(
U

rej
k
− Lrej

k

)
,

β ≥ 0,

α ≥ β,

α + β < 1,

X ≥ 0,

(9.4)

Then the solution of the MOIM problem is summarized in the following steps.

Step 1. Pick the first objective function and solve it as a single objective IP subject to the
constraint; continue the processK-times forK different objective functions. If all the solutions
(i.e., X

∗
1 = X

∗
2 = · · · = X

∗
k (i = 1, 2, . . . , m; j = 1, 2, . . . , n)) are the same, then one of them is the

optimal compromise solution and go to Step 6. Otherwise go to Step 2. However, this rarely
happens due to the conflicting objective functions.

Then the intuitionistic fuzzy goals take the form

Zk

(
X
)
≤̃ Lk

(
X
)∗
k

k = 1, 2, . . . , K. (9.5)

Step 2. To build membership function, goals and tolerances should be determined at first.
Using the ideal solutions, obtained in Step 1, we find the values of all the objective functions
at each ideal solution and construct pay off matrix as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1

(
X
∗
1

)
Z2

(
X
∗
1

)
· · · · · · · · · Zk

(
X
∗
1

)

Z1

(
X
∗
2

)
Z2

(
X
∗
2

)
· · · · · · · · · Zk

(
X
∗
2

)

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

Z1

(
X
∗
k

)
Z2

(
X
∗
k

)
· · · · · · · · · Zk

(
X
∗
k

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.6)

Step 3. From Step 2, we find the upper and lower bounds of each objective for the degree of
acceptance and rejection corresponding to the set of solutions as follows:

Uacc
k = max

(
Zk

(
X
∗
r

))
, Lacc

k = min
(
Zk

(
X
∗
r

))
, 1 ≤ r ≤ k. (9.7)
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For linear membership functions,

L
rej
k

= Lacc
k + t

(
Uacc
k − L

acc
k

)
, where 0 < t < 1,

U
rej
k

= Uacc
k + t

(
Uacc
k − L

acc
k

)
for t = 0.

(9.8)

Step 4. Construct the fuzzy programming problem of (9.3) and find its equivalent LP problem
of (9.4).

Step 5. Solve (9.4) by using appropriate mathematical programming algorithm to get an
optimal solution and evaluate the K objective functions at these optimal compromise
solutions.

Step 6. STOP.

10. Few Stochastic Models

Case 1 (Demand follows Uniform distribution). We assume that lead time demand for the
period for the ith item is a random variable which follows uniform distribution and if the
decision maker feels that demand values for item I below ai or above bi are highly unlikely
and values between ai and bi are equally likely, then the probability density function fi(x) is
given by

fi(x) =

⎧⎪⎨
⎪⎩

1
bi − ai

, if ai ≤ x ≤ bi,

0, otherwise,
for i = 1, 2, . . . , n. (10.1)

So,

bi(si) =
(bi − si)2

2(bi − ai)
for i = 1, 2, . . . , n, (10.2)

where bi(si) are the expected number of shortages per cycle and all these values of bi(si) affect
all the desired models.

Case 2 (Demand follows Exponential distribution). We assume that lead-time demand for the
period for the ith item is a random variable that follows exponential distribution. Then the
probability density function fi(x) is given by

fi(x) =

{
λie

(−λix), x > 0 for i = 1, 2, . . . , n,
0, otherwise.

(10.3)

So,

bi(si) =
e−λisi

(−λi)
for i = 1, 2, . . . , n, (10.4)
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where bi(si) are the expected number of shortages per cycle and all these values of bi(si) affect
all the desired models.

Case 3 (Demand follows Normal distribution). We assume that lead-time demand for the
period for the ith item is a random variable, which follows normal distribution. Then the
probability density function fi(x) is given by

fi(x) =
1

σi
√

2π
exp

(
−
(
x − μi

)2

2σi2

)
, −∞ < x <∞,

bi(si) =

(
μi − si

)
σi
√

2π

(
1 −Φ

(
si − μi
σi

))
+

1√
2π

exp

(
−
(
μi − si

)2

2σi2

)
for i = 1, 2, . . . , n,

(10.5)

where bi(si) are the expected number of shortages per cycle and all these values of bi(si)
affects all the desired models and Φ(xi) represents area under standard normal curve from
−∞ to xi.

11. Numericals

11.1. Solution of the Model of (3.1)

The lead-time demand follows normal distribution and thus bi(si), the expected demand
short at the end of the cycle, takes up the value according to (10.2). Thus for single item
model, we consider the following data:

D = 2750; K = 10; h = 0.25; v = 0.02; π = 1; h′ = 0.15 (11.1)

(all the cost-related parameters are measured in “$”).
Here, the lead-time demand follows Normal distribution with mean μ = 20 and

standard deviation σ = 2.
The lead-time demand follows normal distribution and thus bi(si), the expected

demand short at the end of the cycle, takes up the value according to (10.2).
In Table 1, a study of expected annual cost EC(Q, s) with lot size Q and reorder point

s is given for different defective rate θ. We conclude from Table 1 as well asFigure 2 that the
order quantity as well as the expected annual cost increases as θ increases.

11.2. Solution of the Model of (4.1)

In case of MOSIM of (4.1), we use the methods described in Section 6, to solve it by fuzzy
optimization technique, and Sections 8 and 9, to solve it by intuitionistic fuzzy optimization
technique and the following data are considered.
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Table 1: Variation of “EC” and “s” with “θ”.

θ EC∗ ($) Q∗

0.1 186.3471 489.2484
0.2 202.8538 513.7929
0.3 223.2740 543.9329
0.4 249.3887 581.9080
0.5 284.3121 631.4677
0.6 334.0731 699.4850
0.7 412.2208 800.3515
0.8 557.5926 971.4324
0.9 952.6872 1361.609

Case 1. The lead-time demand follows uniform distribution and thus bi(si), the expected
demand short at the end of the cycle, takes up the value according to (10.2).

We consider two different sets of data as

D1 = 2700; K1 = 12; h1 = 0.55; θ1 = 0.6; μ1 =
(a1 + b1)

2
;

ν1 = 0.03; π1 = 1; h′1 = 0.25; a1 = 20; b1 = 70; μ1 =
(a1 + b1)

2
.

D2 = 2750; K2 = 10; h2 = 0.25; θ2 = 0.8; μ2 =
(a2 + b2)

2
; ν2 = 0.02;

π2 = 2; h′2 = 0.15; a2 = 10; b2 = 50; μ2 =
(a2 + b2)

2
.

(11.2)
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Table 2: Comparison of solutions of FO and IFO (UNIFORM).

Methods Q1 Q2 s1 S2 EC1($) EC2($) α∗ β∗
Fuzzy
optimization

415.3 1042.3 69.157 44.778 519.0996 570.8203 0.9599 —

Intuitionistic
Fuzzy
optimization

967.6 1136.8 65.371 49.647 516.8335 563.7091 0.76 0.023

The pay-off matrix is

EC1 EC2

[
506.0453 804.4216

831.6330 562.4362

] (11.3)

We take

Uacc
1 = 831.6330; Lacc

1 = 506.0453; Uacc
2 = 804.4216; Lacc

2 = 562.4362;

U
rej
1 = 831.6330; L

rej
1 = 507; U

rej
2 = 804.4216; L

rej
2 = 570

(11.4)

(all the cost -related parameters are measured in “$”).
Then from Table 2 andFigure 3 we conclude that Intuitionistic fuzzy optimization

(IFO) obtains more optimized values of EC1 and EC2 than fuzzy optimization (FO). Also
solution obtained by IFO (516.8335, 563.7091) is closer to the ideal solution (506.0453,
562.4362) than the solution obtained by FO.

Case 2. The lead-time demand follows exponential distribution and thus bi(si), the expected
demand short at the end of the cycle, takes up the value according to (10.4).

We consider two different sets of data as

D1 = 2700; K1 = 8; h1 = 1; θ1 = 0.4; μ1 =
1
λ1

; ν1 = 0.03;

π1 = 1; h′1 = 0.25; λ1 = 1;

D2 = 2750; K2 = 10; h2 = 1; θ2 = 0.7; ν2 = 0.02; π2 = 1.1;

h′2 = 0.15; μ2 =
1
λ2

; λ2 = 1.1.

(11.5)

The pay-off matrix is

EC1 EC2

[
378.0060 523.5858

551.0537 382.4234

] (11.6)
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Table 3: Comparison of solutions of FO and IFO (EXPONENTIAL).

Methods Q1 Q2 s1 s2 EC1($) EC2($) α∗ α∗
Fuzzy
optimization

341.94 941.24 1.23 2.24 381.4218 434.5079 0.39646 —

Intuitionistic
fuzzy
optimization

201.73 939.16 3.10 2.28 377.5540 412.6827 0.78564 0.1026
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We take

Uacc
1 = 551.0537; Lacc

1 = 378.0060; Uacc
2 = 523.5858; Lacc

2 = 382.4234;

U
rej
1 = 551.0537; L

rej
1 = 380; U

rej
2 = 523.5858; L

rej
2 = 400.

(11.7)

(all the cost-related parameters are measured in “$”).
Thus from Table 3 and Figure 4 we conclude that Intuitionistic fuzzy optimization

(IFO) obtains more optimized values of EC1 and EC2 than fuzzy optimization (FO). Also
solution obtained by IFO (377.5540, 412.6827) is closer to the ideal solution (378.0060,
382.4234) than the solution obtained by FO.

Expected annual costs EC1 and EC2 are more minimized in case of IFO than FO
because, according to Section 6, only the membership functions μ(EC1) and μ(EC2) are
maximized when FO technique is applied and the degree of acceptance of the IF objectives is
measured by α∗. But, when IFO technique is applied, according to Sections 8 and 9 not only
are the membership functions μ(EC1) and μ(EC2) maximized but also the non-membership
functions ν(EC1) and ν(EC2) are minimized and degree of acceptance of the IF objectives is
measured by α∗as well as degree of rejection of the IF objectives is measured by β∗. As a result
of that, IFO obtains more optimized values than FO.
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11.3. Solution of the Model of (5.1)

In this case our objective is to analyze the expected annual cost of different stochastic models
when their cost components are not deterministic but several triangular fuzzy numbers and
thus the model becomes more practical and realistic.

To solve the model of (5.1) we use the method described in Section 7.
The lead time demand follows uniform, exponential, and normal distribution,

respectively, and thus the expected demand short at the end of the cycle, takes up the value
according to (10.2), (10.4), and (10.5), respectively.

In case of Uniform demand,

D1 = 2750; K1 = (10, 15, 20); h̃1 = (0.25, 0.35, 0.45);

θ1 = 0.8; μ1 =
(a1 + b1)

2
; ν1 = 0.02;

π̃1 = (1, 2, 3); h̃′1 = (0.15, 0.20, 0.25); a1 = 10;

b1 = 50; p1 = 3;

D2 = 2800; K̃2 = (14, 16, 18); h̃2 = (0.65, 0.85, 1.05);

θ2 = 0.5; μ2 =
(a2 + b2)

2
; ν2 = 0.03;

π̃1 = (2, 3, 4); h̃′2 = (0.45, 0.55, 0.65);

a2 = 15; b2 = 60; p2 = 4.

(11.8)
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Table 4: Expected Annual costs of different stochastic models.

Prob. distribution EC ($) Q1 Q2 s1 s2

UNIFORM 1459.05 491.64 256.26 49.74 59.41
EXPONENTIAL 1260.15 502.27 750.00 2.9 3.01
NORMAL 831.05 335.5 305.79 20.86 10.55

In case of Exponential demand,

D1 = 2750; K̃1 = (10, 12, 14); h̃1 = (1, 2, 3); θ1 = 0.7; λ1 = 1;

ν1 = 0.02; π̃1 = (1, 2, 3); h̃′1 = (0.15, 0.20, 0.25); p1 = 4;

D2 = 2700; K̃2 = (8, 10, 12); h̃2 = (0.6, 0.8, 1); θ2 = 0.8; λ2 = 1.1; ν2 = 0.02;

π̃2 = (1, 2, 3); h̃′2 = (0.15, 0.20, 0.25); p2 = 3.
(11.9)

In case of Normal demand,

D1 = 2750; K̃1 = (10, 15, 20); h̃1 = (0.25, 0.3, 0.35); θ1 = 0.3;

ν1 = 0.02; π̃1 = (1, 2, 3); h̃′1 = (0.15, 0.25, 0.35); μ1 = 20; σ1 = 2; p1 = 2;

D2 = 2700; K̃2 = (20, 25, 30); h̃2 = (0.45, 0.55, 0.65); θ2 = 0.4; λ2 = 1.1;

ν2 = 0.01; π̃2 = (2, 3, 4); h̃′2 = (0.35, 0.45, 0.55); μ2 = 10; σ1 = 1; p2 = 5
(11.10)

(all the cost-related parameters are measured in “$”).

12. Conclusion

Paknejad et al.’s model is considered in this paper, as a single objective stochastic inventory
model where the lead-time demand follows normal distribution, and with varying defective
rate, expected annual cost is measured. Our objective is to minimize the expected annual
cost. Itemwise multiobjective models for both exponential and uniform lead-time demand
are taken and the results are compared numerically both in fuzzy optimization and in
intuitionistic fuzzy optimization techniques. From our numerical as well as graphical
presentations, it is clear that intuitionistic fuzzy optimization obtains better results than fuzzy
optimization. Thus expected annual cost is more minimized in case of intuitionistic fuzzy
optimization than the usual fuzzy optimization technique. Finally the model considers for
several fuzzy costs and numerical values for uniform, exponential, and normal lead-time
demand are compared. Necessary graphical presentations are also given besides numerical
illustrations. This model can also be extended taking lead-time demand as fuzzy random
variables.
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