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1. Statement of the main results

1.1. Statement of the problems and the basic notation. Consider the differential equa-
tion

u(n) =
m∑

i=1

pi(t)u(i−1) + q(t) (1.1)

with the conjugate boundary conditions

u(i−1)(a)= 0 (i= 1, . . . ,m),

u( j−1)(b)= 0 ( j = 1, . . . ,n−m)
(1.2)

or the right-focal boundary conditions

u(i−1)(a)= 0 (i= 1, . . . ,m),

u( j−1)(b)= 0 ( j =m+ 1, . . . ,n).
(1.3)

Here n≥ 2, m is the integer part of n/2, −∞ < a < b < +∞, pi ∈ Lloc(]a,b[) (i= 1, . . . ,n),
q ∈ Lloc(]a,b[), and by u(i−1)(a) (by u( j−1)(b)) is understood the right (the left) limit of
the function u(i−1) (of the function u( j−1)) at the point a (at the point b).

Problems (1.1), (1.2) and (1.1), (1.3) are said to be singular if some or all coefficients
of (1.1) are non-integrable on [a,b], having singularities at the ends of this segment.
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The previous results on the unique solvability of the singular problems (1.1), (1.2) and
(1.1), (1.3) deal, respectively, with the cases where

∫ b

a
(t− a)n−1(b− t)2m−1[(−1)n−mp1(t)

]
+dt < +∞,

∫ b

a
(t− a)n−i(b− t)2m−i∣∣pi(t)

∣∣dt < +∞ (i= 2, . . . ,m),

∫ b

a
(t− a)n−m−1/2(b− t)m−1/2

∣∣q(t)
∣∣dt < +∞,

(1.4)

∫ b

a
(t− a)n−1[(−1)n−mp1(t)

]
+dt < +∞,

∫ b

a
(t− a)n−i

∣∣pi(t)
∣∣dt < +∞ (i= 2, . . . ,m),

∫ b

a
(t− a)n−m−1/2

∣∣q(t)
∣∣dt < +∞

(1.5)

(see [1, 2, 4, 3, 5, 6, 9–18], and the references therein).
The aim of the present paper is to investigate problem (1.1), (1.2) (problem (1.1),

(1.3)) in the case, where the functions pi (i = 1, . . . ,n) and q have strong singularities
at the points a and b (at the point a) and do not satisfy conditions (1.4) (conditions
(1.5)).

Throughout the paper we use the following notation.
[x]+ is the positive part of a number x, that is,

[x]+ = x+ |x|
2

. (1.6)

Lloc(]a,b[) (Lloc(]a,b])) is the space of functions y :]a,b[→ R which are integrable on
[a+ ε,b− ε] (on [a+ ε,b]) for arbitrarily small ε > 0.

Lα,β(]a,b[) (L2
α,β(]a,b[)) is the space of integrable (square integrable) with the weight

(t− a)α(b− t)β functions y :]a,b[→R with the norm

‖y‖Lα,β =
∫ b

a
(t− a)α(b− t)β

∣∣y(t)
∣∣dt
(
‖y‖L2

α,β
=
(∫ b

a
(t− a)α(b− t)β y2(t)dt

)1/2
)
.

(1.7)

L([a,b])= L0,0(]a,b[), L2([a,b])= L2
0,0(]a,b[).

L̃2
α,β(]a,b[) (L̃2

α(]a,b])) is the space of functions y ∈ Lloc(]a,b[) (y ∈ Lloc(]a,b])) such

that ỹ ∈ L2
α,β(]a,b[), where ỹ(t) = ∫ tc y(s)ds, c = (a+ b)/2 ( ỹ ∈ L2

α,0(]a,b[), where ỹ(t) =
∫ b
t y(s)ds).



R. P. Agarwal and I. Kiguradze 3

‖ · ‖L̃2
α,β

and ‖ · ‖L̃2
α

denote the norms in L̃2
α,β(]a,b[) and L̃2

α(]a,b]), and are defined by

the equalities

‖y‖L̃2
α,β
=max

{[∫ t

a
(s− a)α

(∫ t

s
y(τ)dτ

)2

ds

]1/2

: a≤ t ≤ a+ b

2

}

+ max

{[∫ b

t
(b− s)β

(∫ s

t
y(τ)dτ

)2

ds

]1/2

:
a+ b

2
≤ t ≤ b

}
,

‖y‖L̃2
α
=max

{[∫ t

a
(s− a)α

(∫ t

s
y(τ)dτ

)2

ds

]1/2

: a≤ t ≤ b

}
.

(1.8)

C̃n−1
loc (]a,b[) (C̃n−1

loc (]a,b])) is the space of functions y :]a,b[→ R (y :]a,b] → R) which
are absolutely continuous together with y′, . . . , y(n−1) on [a+ ε,b− ε] (on [a+ ε,b]) for
arbitrarily small ε > 0.

C̃n−1,m(]a,b[) (C̃n−1,m(]a,b])) is the space of functions y ∈ C̃n−1
loc (]a,b[) (y ∈ C̃n−1

loc (]a,
b])) such that

∫ b

a

∣∣y(m)(s)
∣∣2
ds < +∞. (1.9)

In what follows, when problem (1.1), (1.2) is discussed, we assume that in the case n= 2m
the conditions

pi ∈ Lloc
(
]a,b[

)
(i= 1, . . . ,m) (1.10)

are fulfilled, and in the case n= 2m+ 1 along with (1.10) the condition

limsup
t→b

∣∣∣∣(b− t)2m−1
∫ t

c
p1(s)ds

∣∣∣∣ < +∞, c = a+ b

2
(1.11)

is also satisfied.
As for problem (1.1), (1.3), it is investigated under the assumptions

pi ∈ Lloc
(
]a,b]

)
(i= 1, . . . ,m). (1.12)

A solution of problem (1.1), (1.2) (of problem (1.1), (1.3)) is sought in the space
C̃n−1,m(]a,b[) (in the space C̃n−1,m(]a,b])).

By hi :]a,b[×]a,b[→ [0,+∞[ (i= 1, . . . ,m) we understand the functions defined by the
equalities

h1(t,τ)=
∣∣∣∣
∫ t

τ
(s− a)n−2m[(−1)n−mp1(s)

]
+ds
∣∣∣∣,

hi(t,τ)=
∣∣∣∣
∫ t

τ
(s− a)n−2mpi(s)ds

∣∣∣∣ (i= 2, . . . ,m).

(1.13)
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1.2. Fredholm type theorems. Along with (1.1), we consider the homogeneous equation

u(n) =
m∑

i=1

pi(t)u(i−1). (1.10)

From [10, Corollary 1.1] it follows that if

pi ∈ Ln−m,m
(
]a,b[

)
(i= 1, . . . ,m),

(
pi ∈ Ln−m,0

(
]a,b[

)
(i= 1, . . . ,m)

) (1.14)

and the homogeneous problem (1.10), (1.2) (problem (1.10), (1.3)) has only a trivial solu-
tion in the space C̃n−1

loc (]a,b[) (in the space C̃n−1
loc (]a,b])), then for every q ∈ Ln−m,m(]a,b[)

(q ∈ Ln−m,0(]a,b[)) problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the
space C̃n−1

loc (]a,b[) (in the space C̃n−1
loc (]a,b])).

In the case where condition (1.14) is violated, the question on the presence of the
Fredholm property for problem (1.1), (1.2) (for problem (1.1), (1.3)) in some subspace
of the space C̃n−1

loc (]a,b[) (of the space C̃n−1
loc (]a,b])) remained so far open. This ques-

tion is answered in Theorem 1.3 (Theorem 1.5) formulated below which contains opti-
mal in a certain sense conditions guaranteeing the presence of the Fredholm property for
problem (1.1), (1.2) (for problem (1.1), (1.3)) in the space C̃n−1,m(]a,b[) (in the space
C̃n−1,m(]a,b])).

Definition 1.1. We say that problem (1.1), (1.2) (problem (1.1), (1.3)) has the Fredholm
property in the space C̃n−1,m(]a,b[) (in the space C̃n−1,m(]a,b])) if the unique solvability
of the corresponding homogeneous problem (1.10), (1.2) (problem (1.10), (1.3)) in this
space implies the unique solvability of problem (1.1), (1.2) (problem (1.1), (1.3)) in the
space C̃n−1,m(]a,b[) (in the space C̃n−1,m(]a,b])) for every q ∈ L̃2

2n−2m−2,2m−2(]a,b[) (for

every q ∈ L̃2
2n−2m−2(]a,b])) and for its solution the following estimate

∥∥u(m)
∥∥
L2 ≤ r‖q‖L̃2

2n−2m−2,2m−2

(∥∥u(m)
∥∥
L2 ≤ r‖q‖L̃2

2n−2m−2

)
(1.15)

is valid, where r is a positive constant independent of q.

Remark 1.2. If

q ∈ L2
2n−2m,2m

(
]a,b[

) (
q ∈ L2

2n−2m,0

(
]a,b[

))
(1.16)

or

q ∈ Ln−m−1/2,m−1/2
(
]a,b[

) (
q ∈ Ln−m−1/2,0

(
]a,b[

))
, (1.17)

then

q ∈ L̃2
2n−2m−2,2m−2

(
]a,b[

) (
q ∈ L̃2

2n−2m−2

(
]a,b]

))
(1.18)
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and from estimate (1.15) there respectively follow the estimates

∥∥u(m)
∥∥
L2 ≤ r0‖q‖L2

2n+2m,2m

(∥∥u(m)
∥∥
L2 ≤ r0‖q‖L2

2n−2m,0

)
,

∥∥u(m)
∥∥
L2 ≤ r0‖q‖Ln−m−1/2,m−1/2

(∥∥u(m)
∥∥
L2 ≤ r0‖q‖Ln−m−1/2,0

)
,

(1.19)

where r0 is a positive constant independent of q.

Theorem 1.3. Let there exist a0 ∈]a,b[, b0 ∈]a0,b[ and nonnegative numbers �1i, �2i (i=
1, . . . ,m) such that

(t− a)2m−ihi(t,τ)≤ �1i for a < t ≤ τ ≤ a0,

(b− t)2m−ihi(t,τ)≤ �2i for b0 ≤ τ ≤ t < b (i= 1, . . . ,m),
(1.20)

m∑

i=1

(2m− i)2n−i+1

(2m− 2i+ 1)!!
�1i < (2n− 2m− 1)!!,

m∑

i=1

(2m− i)2n−i+1

(2m− 2i+ 1)!!
�2i < (2n− 2m− 1)!!,

(1.21)

where (2n− 2i− 1)!! = 1.3···(2n− 2i− 1). Then problem (1.1), (1.2) has the Fredholm
property in the space C̃n−1,m(]a,b[).

Corollary 1.4. Let there exist nonnegative numbers λ1i, λ2i (i = 1, . . . ,m) and functions
p0i ∈ Ln−i,2m−i(]a,b[) (i= 1, . . . ,m) such that the inequalities

(−1)n−mp1(t)≤ λ11

(t− a)n
+

λ21

(t− a)n−2m(b− t)2m
+ p01(t),

∣∣pi(t)
∣∣≤ λ1i

(t− a)n−i+1
+

λ2i

(t− a)n−2m(b− t)2m−i+1
+ p0i(t) (i= 2, . . . ,m)

(1.22)

hold almost everywhere on ]a,b[, and

m∑

i=1

2n−i+1

(2m− 2i+ 1)!!
λ1i < (2n− 2m− 1)!!,

m∑

i=1

2n−i+1

(2m− 2i+ 1)!!
λ2i < (2n− 2m− 1)!!.

(1.23)

Then problem (1.1), (1.2) has the Fredholm property in the space C̃n−1,m(]a,b[).

Theorem 1.5. Let there exist a0 ∈]a,b[ and nonnegative numbers �i (i= 1, . . . ,m) such that

(t− a)2m−ihi(t,τ)≤ �i for a < t ≤ τ ≤ a0 (i= 1, . . . ,m), (1.24)
m∑

i=1

(2m− i)2n−i+1

(2m− 2i+ 1)!!
�i < (2n− 2m− 1)!!. (1.25)

Then problem (1.1), (1.3) has the Fredholm property in the space C̃n−1,m(]a,b]).
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Corollary 1.6. Let there exist nonnegative numbers λi (i = 1, . . . ,m) and functions p0i ∈
Ln−i,0(]a,b[) (i= 1, . . . ,m) such that the inequalities

(−1)n−mp1(t)≤ λ1

(t− a)n
+ p01(t),

∣∣pi(t)
∣∣≤ λi

(t− a)n−i+1
+ p0i(t) (i= 2, . . . ,m)

(1.26)

hold almost everywhere on ]a,b[, and

m∑

i=1

2n−i+1

(2m− 2i+ 1)!!
λi < (2n− 2m− 1)!!. (1.27)

Then problem (1.1), (1.3) has the Fredholm property in the space C̃n−1,m(]a,b]).

In connection with the above-mentioned Corollary 1.1 from [10], there naturally
arises the problem of finding the conditions under which the unique solvability of prob-
lem (1.1), (1.2) (of problem (1.1), (1.3)) in the space C̃n−1,m(]a,b[) (in the space
C̃n−1,m(]a,b])) guarantees the unique solvability of that problem in the space C̃n−1

loc (]a,b[)
(in the space C̃n−1

loc (]a,b])).
The following theorem is valid.

Theorem 1.7. If

pi ∈ Ln−i,2m−i
(
]a,b[

)
(i= 1, . . . ,m),

(
pi ∈ Ln−i,0

(
]a,b[

)
(i= 1, . . . ,m)

)
,

(1.28)

and problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the space C̃n−1,m(]a,
b[) (in the space C̃n−1,m(]a,b])), then this problem is uniquely solvable in the space C̃n−1

loc (]a,
b[) (in the space C̃n−1

loc (]a,b])) as well.

If condition (1.28) is violated, then, as it is clear from the example below, problem
(1.1), (1.2) (problem (1.1), (1.3)) may be uniquely solvable in the space C̃n−1,m(]a,b[)
(in the space C̃n−1,m(]a,b])) and this problem may have an infinite set of solutions in the
space C̃n−1

loc (]a,b[) (in the space C̃n−1
loc (]a,b])).

Example 1.8. Suppose

gn(x)= x(x− 1)···(x−n+ 1). (1.29)

Then

(−1)n−mgn
(
m− 1

2

)
= 2−n(2m− 1)!!(2n− 2m− 1)!!, (1.30)

g′n

(
m− 1

2

)
= 0 for n= 2m, g′n

(
m− 1

2

)
gn

(
m− 1

2

)
< 0 for n= 2m+ 1, (1.31)

(−1)n−mgn
(
k− 1

2

)
> (−1)n−mgn

(
m− 1

2

)
for k ∈ {0, . . . ,n} and m− k is even. (1.32)
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If

p1(t)= λ

(t− a)n
, pi(t)= 0 (i= 2, . . . ,n), (1.33)

and q(t)= (gn(ν)− λ)tν−n, where λ 	= 0, ν > 0, then (1.1) and (1.10) have the forms

u(n) = λ

(t− a)n
u+

(
gn(ν)− λ

)
(t− a)ν−n, (1.34)

u(n) = λ

(t− a)n
u. (1.340)

First we consider the case where

λ= gn

(
m− 1

2

)
. (1.35)

Then from (1.31) and (1.32) it easily follows that the characteristic equation

gn(x)= λ (1.36)

has only real roots xi (i= 1, . . . ,n) such that

x1 = x2 = 1
2

for n= 2,

x1 > ··· > xm−1 >m− 1
2
= xm = xm+1 > ··· > x2m for n= 2m,

x1 > ··· > xm >m− 1
2
> xm+1 > ··· > x2m+1 for n= 2m+ 1.

(1.37)

Hence it is evident that for n= 2 (1.340) does not have a solution belonging to the space
C̃1,1(]a,b[), and for n > 2 solutions of that equation from the space C̃n−1,m(]a,b[) consti-
tute an (n−m− 1)-dimensional subspace with the basis

(t− a)x1 , . . . , (t− a)xn−m−1 . (1.38)

Thus problem (1.340), (1.2) (problem (1.340), (1.3)) has only a trivial solution in the
space C̃n−1,m(]a,b[). We show that nevertheless problem (1.34), (1.2) (problem (1.34),
(1.3)) does not have a solution in the space C̃n−1,m(]a,b[). Indeed, if n = 2, then (1.34)
has the unique solution u(t)= (t− a)ν in the space C̃1,1(]a,b[), and this solution does not
satisfy conditions (1.2). If n > 2, then an arbitrary solution of (1.34) from C̃n−1,m(]a,b[)
has the form

u(t)=
n−m−1∑

i=1

ci(t− a)xi + (t− a)ν, (1.39)
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and this solution satisfies the boundary conditions (1.2) (the boundary conditions (1.3))
if and only if c1, . . . ,cn−m−1 are solutions of the system of linear algebraic equations

n−m−1∑

i=1

gk
(
xi
)
(b− a)xi ci =−gk(ν)(b− a)ν (k = 0, . . . ,n−m− 1)

(n−m−1∑

i=1

gk
(
xi
)
(b− a)xi ci =−gk(ν)(b− a)ν (k =m, . . . ,n− 1)

)
,

(1.40)

where g0(x)≡ 1, gk(x)= x(x− 1)···(x− k + 1) for x ≥ 1. However, this system does not
have a solution for large ν.

Note that in the case under consideration the functions pi (i= 1, . . . ,m) in view of con-
ditions (1.30) and (1.32) satisfy inequalities (1.22) (inequalities (1.26)), where λ11 = |λ|,
λ1i = λ21 = λ2i = 0 (i = 2, . . . ,m) (λ1 = |λ|, λi = 0 (i = 2, . . . ,m)), p0i(t) ≡ 0 (i = 1, . . . ,m),
and

m∑

i=0

2n−i+1

(2m− 2i+ 1)!!
λ1i = (2n− 2m− 1)!!

( m∑

i=0

2n−i+1

(2m− 2i+ 1)!!
λi = (2n− 2m− 1)!!

)
.

(1.41)

Therefore we showed that in Theorems 1.3, 1.5 and their corollaries none of strict in-
equalities (1.21), (1.23), (1.25), and (1.27) can be replaced by nonstrict ones, and in this
sense the above-given conditions on the presence of the Fredholm property for problems
(1.1), (1.2) and (1.1), (1.3) are the best possible.

Now we consider the case, where

0 < (−1)n−mλ < (−1)n−mgn
(
m− 1

2

)
. (1.42)

Then, in view of (1.30) and (1.33), the functions pi (i= 1, . . . ,m) satisfy all the conditions
of Corollaries 1.4 and 1.6, but condition (1.28) in Theorem 1.7 is violated. On the other
hand, according to conditions (1.31) and (1.32), the characteristic equation (1.36) has
simple real roots x1, . . . ,xn such that

x1 > ··· > xn−m >m− 1
2
> xn−m+1 > ··· > xn, (1.43)

at that

xn−m+1 >m− 1. (1.44)

So, the set of solutions of (1.340) from C̃n−1,m(]a,b[) constitutes an (n−m)-dimensional
subspace with the basis

(t− a)x1 , . . . , (t− a)xn−m , (1.45)
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and consequently, both problem (1.340), (1.2) and problem (1.340), (1.3) in the men-
tioned space have only trivial solutions. Hence in view of Corollaries 1.4 and 1.6 the
unique solvability of problems (1.34), (1.2) and (1.34), (1.3) follows in C̃n−1,m(]a,b[). Let
us show that these problems in C̃n−1

loc (]a,b]) have infinite sets of solutions. Indeed, for any
ci ∈R (i= 1, . . . ,n−m+ 1), the function

u(t)=
n−m+1∑

i=1

ci(t− a)xi + (t− a)ν (1.46)

is a solution of (1.34) from C̃n−1
loc (]a,b]), satisfying the conditions

u(i−1)(a)= 0 (i= 1, . . . ,m). (1.47)

This function satisfies the boundary conditions (1.2) (the boundary conditions (1.3)) if
and only if c1, . . . ,cn−m are solutions of the system of algebraic equations

n−m∑

i=1

gk
(
xi
)
(b− a)xi ci =

− gk
(
xn−m+1

)
(b− a)xn−m+1cn−m+1− gk(ν)(b− a)ν(k = 0, . . . ,n−m− 1)

(n−m∑

i=1

gk
(
xi
)
(b− a)xi ci =

− gk
(
xn−m+1

)
(b− a)xn−m+1cn−m+1− gk(ν)(b− a)ν(k = n−m, . . . ,m)

)

(1.48)

for any cn−m+1 ∈ R. However, this system has a unique solution for an arbitrarily fixed
cn−m+1. Thus problem (1.34), (1.2) (problem (1.34), (1.3)) has a one-parameter family of
solutions in the space C̃n−1

loc (]a,b]).

1.3. Existence and uniqueness theorems.

Theorem 1.9. Let there exist t0 ∈]a,b[ and nonnegative numbers �1i, �2i (i= 1, . . . ,m) such
that along with (1.21) the conditions

(t− a)2m−ihi(t,τ)≤ �1i for a < t ≤ τ ≤ t0,

(b− t)2m−ihi(t,τ)≤ �2i for t0 ≤ τ ≤ t < b
(1.49)

hold. Then for every q ∈ L̃2
2n−2m−2,2m−2(]a,b[) problem (1.1), (1.2) is uniquely solvable in

the space C̃n−1,m(]a,b[).

Corollary 1.10. Let there exist t0 ∈]a,b[ and nonnegative numbers λ1i, λ2i (i= 1, . . . ,m)
such that conditions (1.23) are fulfilled, the inequalities

(−1)n−m(t− a)np1(t)≤ λ11, (t− a)n−i+1
∣∣pi(t)

∣∣≤ λ1i (i= 2, . . . ,m) (1.50)
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hold almost everywhere on ]a, t0[, and the inequalities

(−1)n−m(t− a)n−2m(b− t)2mp1(t)≤ λ21,

(t− a)n−2m(b− t)2m−i+1
∣∣pi(t)

∣∣≤ λ2i (i= 2, . . . ,m)
(1.51)

hold almost everywhere on ]t0,b[. Then for every q ∈ L̃2
2n−2m−2,2m−2(]a,b[) problem (1.1),

(1.2) is uniquely solvable in the space C̃n−1,m(]a,b[).

Theorem 1.11. Let there exist nonnegative numbers �i (i = 1, . . . ,m) such that along with
(1.25) the conditions

(t− a)2m−ihi(t,τ)≤ �i for a < t ≤ τ ≤ b (i= 1, . . . ,m) (1.52)

hold. Then for every q ∈ L̃2
2n−2m−2(]a,b]) problem (1.1), (1.3) is uniquely solvable in the

space C̃n−1,m(]a,b]).

Corollary 1.12. Let there exist nonnegative numbers λi (i= 1, . . . ,m) such that condition
(1.27) holds, and the inequalities

(−1)n−m(t− a)np1(t)≤ λ1, (t− a)n−i+1
∣∣pi(t)

∣∣≤ λ1i (i= 2, . . . ,m) (1.53)

are fulfilled almost everywhere on ]a,b[. Then for every q ∈ L̃2
2n−2m−2(]a,b]) problem (1.1),

(1.3) is uniquely solvable in the space C̃n−1,m(]a,b]).

Remark 1.13. The above-given conditions on the unique solvability of problems (1.1),
(1.2) and (1.1), (1.3) are optimal since, as Example 1.8 shows, in Theorems 1.9, 1.11 and
Corollaries 1.10, 1.12 none of strict inequalities (1.21), (1.23), (1.25), and (1.27) can be
replaced by nonstrict ones.

Remark 1.14. If along with the conditions of Theorem 1.9 (of Theorem 1.11) condi-
tions (1.28) are satisfied as well, then for every q ∈ L̃2

2n−2m−2,m−2(]a,b[) (for every q ∈
L̃2

2n−2m−2(]a,b])) problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the
space C̃n−1

loc (]a,b[) (in the space C̃n−1
loc (]a,b])).

Remark 1.15. Corollaries 1.10 and 1.12 are more general than the results of paper [7]
concerning unique solvability of problems (1.1), (1.2) and (1.1), (1.3).

2. Auxiliary statements

2.1. Lemmas on integral inequalities. Throughout this section, we assume that −∞ <
t0 < t1 < +∞, and for any function u :]t0, t1[→ R, by u(t0) and u(t1) we understand the
right and the left limits of that function at the points t0 and t1.

Lemma 2.1. Let u∈ C̃loc(]t0, t1]) and

∫ t1

t0

(
t− t0

)α+2
u′2(t)dt < +∞, (2.1)
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where α 	= −1. If, moreover, either

α >−1, u
(
t1
)= 0 (2.2)

or

α <−1, u
(
t0
)= 0, (2.3)

then
∫ t1

t0

(
t− t0

)α
u2(t)dt ≤ 4

(1 +α)2

∫ t1

t0

(
t− t0

)α+2
u′2(t)dt. (2.4)

Proof. According to the formula of integration by parts, we have

∫ t1

s

(
t− t0

)α
u2(t)dt = 1

1 +α

[(
t1− t0

)1+α
u2(t1

)− (s− t0
)1+α

u2(s)
]

− 2
1 +α

∫ t1

s

(
t− t0

)1+α
u(t)u′(t)dt for t0 < s < t1.

(2.5)

However,

− 2
1 +α

(
t− t0

)1+α
u(t)u′(t)=

(
− 2

1 +α

(
t− t0

)1+α/2
u′(t)

)((
t− t0

)α/2
u(t)

)

≤ 2
(1 +α)2

(
t− t0

)α+2
u′2(t) +

1
2

(
t− t0

)α
u2(t).

(2.6)

Thus identity (2.5) implies

∫ t1

s

(
t− t0

)α
u2(t)dt ≤ 2

1 +α

[(
t1− t0

)1+α
u2(t1

)− (s− t0
)1+α

u2(s)
]

+
4

(1 +α)2

∫ t1

s

(
t− t0

)α+2
u′2(t)dt for t0 < s < t1.

(2.7)

If conditions (2.2) are fulfilled, then in view of (2.1), (2.7) results in (2.4).
It remains to consider the case when conditions (2.3) hold. Then due to (2.1) we have

∫ t1

t0

∣∣u′(t)
∣∣dt < +∞,

∣∣u(s)
∣∣≤

∫ s

t0

∣∣u′(t)
∣∣dt =

∫ s

t0

(
t− t0

)−α/2−1(
t− t0

)1+α/2∣∣u′(t)
∣∣dt

≤
(∫ s

t0

(
t− t0

)−α−2
dt
)1/2(∫ s

t0

(
t− t0

)2+α
u′2(t)dt

)1/2

≤ |1 +α|−1/2(s− t0
)−(α+1)/2

(∫ s

t0

(
t− t0

)2+α
u′2(t)dt

)1/2

for t0 < s < t1

(2.8)

and, consequently,

lim
s→t0

(
s− t0

)α+1
u2(s)= 0. (2.9)
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On the other hand, from (2.7) we have

∫ t1

s

(
t− t0

)α
u2(t)dt ≤ 2

|1 +α|
(
s− t0

)1+α
u2(s)

+
4

(1 +α)2

∫ t1

s

(
t− t0

)α+2
u′2(t)dt for t0 < s < t1.

(2.10)

If in this inequality we pass to the limit as s→ t0, then we get inequality (2.4). �

Lemma 2.2. Let u∈ C̃loc(]t0, t1]) and

∫ t1

t0

(
t− t0

)(α+1)/2∣∣u′(t)
∣∣dt < +∞, (2.11)

where α 	= −1. If, moreover, either conditions (2.2) or conditions (2.3) hold, then

∫ t1

t0

(
t− t0

)α
u2(t)dt ≤ 1

|1 +α|
(∫ t1

t0

(
t− t0

)(α+1)/2∣∣u′(t)
∣∣dt
)2

. (2.12)

Proof. If conditions (2.2) hold, then from identity (2.5) we find

∫ t1

s

(
t− t0

)α
u2(t)dt ≤ 2

1 +α

∫ t1

s

(
t− t0

)1+α∣∣u′(t)
∣∣∣∣u(t)

∣∣dt

= 2
1 +α

∫ t1

s

(
t− t0

)1+α∣∣u′(t)
∣∣
∣∣∣∣
∫ t1

t
u′(τ)dτ

∣∣∣∣dt

≤ 2
1 +α

∫ t1

s

(
t− t0

)(1+α)/2∣∣u′(t)
∣∣
(∫ t1

t

(
τ − t0

)(1+α)/2∣∣u′(τ)
∣∣dτ

)
dt

= 1
1 +α

(∫ t1

s

(
τ − t0

)(1+α)/2∣∣u′(τ)
∣∣dτ

)2

for t0 < t < t1.

(2.13)

Consequently, inequality (2.12) is valid.
Now we consider the case where conditions (2.3) hold. Then, taking into account

(2.11), we obtain

∣∣u(s)
∣∣≤

∫ s

t0

∣∣u′(t)
∣∣dt ≤ (s− t0

)−(1+α)/2
∫ s

t0

(
t− t0

)(1+α)/2∣∣u′(t)
∣∣dt for t0 < s < t1.

(2.14)
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Hence it is obvious that u satisfies equality (2.9). On the other hand, (2.5) yields
∫ t1

s

(
t− t0

)α
u2(t)dt ≤ 1

|1 +α|
(
s− t0

)1+α
u2(s)

+
2

|1 +α|
∫ t1

s

(
t− t0

)(1+α)/2∣∣u′(t)
∣∣
(∫ t

t0

(
τ − t0

)(1+α)/2∣∣u′(τ)
∣∣dτ

)
dt

≤ 1
|1 +α|

(
s− t0

)1+α
u2(s)

+
1

|1 +α|
(∫ t1

t0

(
τ − t0

)(1+α)/2∣∣u′(τ)
∣∣dτ

)2

for t0 < s < t1.

(2.15)

If in this inequality we pass to the limit as s→ t0, then we obtain inequality (2.12). �

Lemma 2.3. Let α >−1 and

y ∈ L2
α+2,0

(]
t0, t1

[) (
y ∈ L(1+α)/2,0

(]
t0, t1

[))
. (2.16)

Then y ∈ L̃2
α(]t0, t1]) and

‖y‖L̃2
α
≤ 2

1 +α
‖y‖L2

α+2,0

(
‖y‖L̃2

α
≤ (1 +α)−1/2‖y‖L2

(1+α)/2,0

)
. (2.17)

Proof. By Lemma 2.1 (Lemma 2.2) and conditions (2.16), we have

∫ s

t0

(
t− t0

)α
(∫ s

t
y(τ)dτ

)2

dt ≤ 4
(1 +α)2

∫ s

t0

(
t− t0

)α+2
y2(t)dt for t0 ≤ s≤ t1

(∫ s

t0

(
t− t0

)α
(∫ s

t
y(τ)dτ

)2

dt ≤ 1
1 +α

(∫ s

t0

(
t− t0

)(1+α)/2∣∣y(t)
∣∣dt
)2

for t0 ≤ s≤ t1

)
,

(2.18)

which guarantees the validity of inequality (2.17). �

The following lemma easily follows from Lemma 2.3.

Lemma 2.4. Let α >−1, β >−1, and

y ∈ L2
α+2,β+2

(]
t0, t1

[) (
y ∈ L(1+α)/2,(1+β)/2

(]
t0, t1

[))
. (2.19)

Then y ∈ L̃2
α,β(]t0, t1[) and

‖y‖L̃2
α,β
≤ γ‖y‖L2

α+2,β+2

(
‖y‖L̃2

α,β
≤ γ‖y‖L(1+α)/2,(1+β)/2

)
, (2.20)

where

γ = 2
1 +α

(
2

t1− t0

)1+β/2

+
2

1 +β

(
2

t1− t0

)1+α/2

(
γ = (1 +α)−1/2

(
2

t1− t0

)(1+β)/2

+ (1 +β)−1/2
(

2
t1− t0

)(1+α)/2
)
.

(2.21)
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Lemma 2.5. Let u∈ C̃m−1
loc (]t0, t1[),

u(i−1)(t0
)= 0 (i= 1, . . . ,m),

∫ t1

t0

∣∣u(m)(t)
∣∣2
dt < +∞. (2.22)

Then

∫ t1

t0

u2(t)
(
t− t0

)2m dt ≤
(

2m

(2m− 1)!!

)2∫ t1

t0

∣∣u(m)(t)
∣∣2
dt. (2.23)

Proof. By virtue of Lemma 2.1 and conditions (2.22), we have

∫ t1

t0

∣∣u(i−1)(t)
∣∣2

(
t− t0

)2m−2i+2 dt ≤
4

(2m− 2i+ 1)2

∫ t1

t0

∣∣u(i)(t)
∣∣2

(
t− t0

)2m−2i dt < +∞ (i= 1, . . . ,m). (2.24)

The inequality (2.23) is now immediate. �

Remark 2.6. Inequality (2.23) cannot be replaced by the inequality

∫ t1

t0

u2(t)
(
t− t0

)2m dt ≤
[(

2m

(2m− 1)!!

)2

− ε

]∫ t1

t0

∣∣u(m)(t)
∣∣2
dt (2.25)

no matter how small ε > 0. Indeed, choose δ ∈]0,1[ so small that

22m
m∏

i=1

(2i− 1− δ)−2 >

(
2m

(2m− 1)!!

)2

− ε. (2.26)

Then the function u(t)= (t− a)m−(1−δ)/2 satisfies conditions (2.22) but inequality (2.25)
is violated.

From Lemma 2.5, by the change of variable, we obtain the following lemma.

Lemma 2.5′. Let u∈ C̃m−1
loc (]t0, t1[),

u(i−1)(t1
)= 0 (i= 1, . . . ,m),

∫ t1

t0

∣∣u(m)(t)
∣∣2
dt < +∞. (2.27)

Then

∫ t1

t0

u2(t)
(
t− t1

)2m dt ≤
(

2m

(2m− 1)!!

)2∫ t1

t0

∣∣u(m)(t)
∣∣2
dt. (2.28)

Lemma 2.7. Let u ∈ C̃m−1
loc (]t0, t1[) be a function satisfying conditions (2.22), and p ∈

Lloc(]t0, t1]) be such that

(
t− t0

)2m− j
∣∣∣∣
∫ t1

t
p(τ)dτ

∣∣∣∣≤ �0 for t0 < t ≤ t1, (2.29)
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where j ∈ {1, . . . ,m} and �0 > 0. Then

∣∣∣∣
∫ t1

t
p(s)u(s)u( j−1)(s)ds

∣∣∣∣≤ �0

[
ρ(t) +

(2m− j)22m− j+1

(2m− 1)!!(2m− 2 j + 1)!!
ρ
(
t1
)
]

for t0 < t ≤ t1,

(2.30)

where

ρ(t)=
∫ t

t0

∣∣u(m)(s)
∣∣2
ds. (2.31)

Proof. In view of the formula of integration by parts, we have

∫ t1

t
p(s)u(s)u( j−1)(s)ds= u(t)u( j−1)(t)

∫ t1

t
p(τ)dτ +

1∑

k=0

∫ t1

t

(∫ t1

s
p(τ)dτ

)
u(k)(s)u( j−k)(s)ds.

(2.32)

On the other hand, by conditions (2.22), the Schwartz inequality, and Lemma 2.5, it fol-
lows that

∣∣u(i−1)(t)
∣∣= 1

(m− i)!

∣∣∣∣
∫ t

t0
(t− s)m−iu(m)(s)ds

∣∣∣∣

≤ (t− t0
)m−i+1/2

ρ1/2(t) for t0 < t ≤ t1 (i= 1, . . . ,m),
∫ t1

t0

∣∣u(i−1)(s)
∣∣2

(s− a)2m−2i+2
ds≤ 2m−i+1

(2m− 2i+ 1)!!
ρ1/2(t1

)
(i= 1, . . . ,m).

(2.33)

If along with this we take into account inequality (2.29), we obtain

∣∣∣∣
∫ t1

t
p(s)u(s)u( j−1)(s)ds

∣∣∣∣

≤ �0ρ(t) + �0

1∑

k=0

∫ t1

t

(
s− t0

)2m− j∣∣u(k)(s)u( j−k)(s)
∣∣ds

≤ �0ρ(t) + �0

1∑

k=0

(∫ t1

t

∣∣u(k)(s)
∣∣2
ds

(s− a)2m−2k

)1/2(∫ t1

t

∣∣u( j−k)(s)
∣∣2
ds

(s− a)2m+2k−2 j

)1/2

≤ �0ρ(t) + �0ρ
(
t1
) 1∑

k=0

22m− j

(2m− 2k− 1)!!(2m− 2 j + 2k− 1)!!
for t0 < t ≤ t1.

(2.34)

Therefore, estimate (2.30) is valid. �

The following lemma can be proved similarly to Lemma 2.7.

Lemma 2.6′. Let u ∈ C̃m−1
loc (]t0, t1[) be a function satisfying conditions (2.27), and p ∈

Lloc([t0, t1[) be such that

(
t1− t

)2m− j
∣∣∣∣
∫ t

t0
p(τ)dτ

∣∣∣∣≤ �0 for t0 ≤ t < t1, (2.35)
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where j ∈ {1, . . . ,m} and �0 > 0. Then

∣∣∣∣
∫ t

t0
p(s)u(s)u( j−1)(s)ds

∣∣∣∣≤ �0

[
ρ(t) +

(2m− j)22m− j+1

(2m− 1)!!(2m− 2 j + 1)!!
ρ
(
t0
)
]

for t0 ≤ t < t1,

(2.36)

where

ρ(t)=
∫ t1

t

∣∣u(m)(s)
∣∣2
ds. (2.37)

2.2. A lemma on the properties of functions from the space C̃n−1,m(]a,b[). In this sec-
tion, as above, we assume that m is the integral part of the number n/2.

Lemma 2.8. Let

w(t)=
n−m∑

i=1

n−m∑

k=i
cik(t)u(n−k)(t)u(i−1)(t), (2.38)

where u ∈ C̃n−1,m(]a,b[), and each cik : [a,b]→ R is an (n− k− i+ 1)-times continuously
differentiable function. If, moreover,

u(i−1)(a)= 0 (i= 1, . . . ,m), limsup
t→a

∣∣cii(t)
∣∣

(t− a)n−2m
< +∞ (i= 1, . . . ,n−m), (2.39)

then

liminf
t→a

∣∣w(t)
∣∣= 0, (2.40)

and if

u(i−1)(b)= 0 (i= 1, . . . ,n−m), (2.41)

then

liminf
t→b

∣∣w(t)
∣∣= 0. (2.42)

The proof of this lemma is given in [12].

2.3. Lemmas on the sequences of solutions of auxiliary problems. Suppose

a < t0k < t1k < b (k = 1,2, . . .), lim
k→+∞

t0k = a, lim
k→+∞

t1k = b. (2.43)

For the differential equation

u(n) =
m∑

i=1

pi(t)u(i−1) + qk(t) (2.44)
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we consider the auxiliary boundary conditions

u(i−1)(t0k
)= 0 (i= 1, . . . ,m), u(i−1)(t1k

)= 0 (i= 1, . . . ,n−m), (2.45)

u(i−1)(t0k
)= 0 (i= 1, . . . ,m), u(i−1)(b)= 0 (i= 1, . . . ,n−m), (2.46)

for every natural k.
Throughout this section, when problems (1.1), (1.2) and (2.44), (2.45) are discussed,

we assume that

pi ∈ Lloc
(
]a,b[

)
(i= 1, . . . ,m), q,qk ∈ L̃2

2n−2m−2,2m−2

(
]a,b[

)
, (2.47)

and in the case n= 2m+ 1 in addition we assume the conditions

ρi
def= sup

{
(b− t)2m−i

∣∣∣∣
∫ t

t1
pi(s)ds

∣∣∣∣ : t0 ≤ t < b
}
< +∞ (i= 1, . . . ,m), (2.48)

where t1 = (a+ b)/2.
As for problems (1.1), (1.3) and (2.44), (2.46), they are considered in the case, where

pi ∈ Lloc
(
]a,b]

)
(i= 1, . . . ,m), q,qk ∈ L̃2

2n−2m−2,0

(
]a,b[

)
. (2.49)

Lemma 2.9. Let for every natural k, problem (2.44), (2.45) have a solution uk ∈ C̃n−1
loc (]a,

b[), and there exist a nonnegative constant r0 such that

∫ t1k

t0k

∣∣u(m)
k (t)

∣∣2
dt ≤ r2

0 (k = 1,2, . . .). (2.50)

Let, moreover,

lim
k→+∞

∥∥qk − q
∥∥
L̃2

2n−2m−2,2m−2
= 0, (2.51)

and the homogeneous problem (1.10), (1.2) have only a trivial solution in the space
C̃n−1,m(]a,b[). Then problem (1.1), (1.2) has a unique solution u such that

∥∥u(m)
∥∥
L2 ≤ r0, (2.52)

lim
k→+∞

u(i−1)
k (t)= u(i−1)(t) (i= 1, . . . ,n) uniformly in ]a,b[. (2.53)

(That is, uniformly on [a+ δ,b− δ] for an arbitrarily small δ > 0).

Proof. For an arbitrary (m− 1)-times continuously differentiable function v :]a,b[→ R,
we set

Λ(v)(t)=
m∑

i=1

pi(t)v(i−1)(t). (2.54)

Suppose t1, . . . , tn are the numbers such that

(a+ b)/2= t1 < ··· < tn < b, (2.55)
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and gi(t) (i= 1, . . . ,n) are the polynomials of (n− 1)th degree, satisfying the conditions

gi
(
ti
)= 1, gi

(
t j
)= 0 (i 	= j; i, j = 1, . . . ,n). (2.56)

Then for every natural k, the representation

uk(t)=
n∑

j=1

(
uk
(
t j
)− 1

(n− 1)!

∫ t j

t1

(
t j − s

)n−1(
Λ
(
uk
)
(s) + qk(s)

)
ds
)
gj(t)

+
1

(n− 1)!

∫ t

t1
(t− s)n−1(Λ

(
uk
)
(s) + qk(s)

)
ds

(2.57)

is valid.
For an arbitrary δ ∈]0,(b− a)/2[, we have

∣∣∣∣
∫ t

t1
(t− s)n−i

(
qk(s)− q(s)

)
ds
∣∣∣∣

= (n− i)
∣∣∣∣
∫ t

t1
(t− s)n−i−1

(∫ s

t1

(
qk(τ)− q(τ)

)
dτ
)
ds
∣∣∣∣

≤ n
∫ t1

a+δ
(s− a)m−i(s− a)n−m−1

∣∣∣∣
∫ t1

s

(
qk(τ)− q(τ)

)
dτ
∣∣∣∣ds

≤ n
(∫ t1

a+δ
(s− a)2m−2ids

)1/2
(∫ t1

a+δ
(s− a)2n−2m−2

∣∣∣∣
∫ t1

s

(
qk(τ)− q(τ)

)
dτ
∣∣∣∣

2

ds

)1/2

≤ n
∣∣∣
(
t1− a

)2m−2i+1− δ2m−2i+1
∣∣∣

1/2∥∥qk − q
∥∥
L̃2

2n−2m−2,2m−2

for a+ δ ≤ t ≤ t1 (i= 1, . . . ,n− 1),
∣∣∣∣
∫ t

t1
(t− s)n−i

(
qk(s)− q(s)

)
ds
∣∣∣∣≤n

∣∣∣
(
b− t1

)2n−2m−2i+1− δ2n−2m−2i+1
∣∣∣

1/2∥∥qk−q
∥∥
L̃2

2n−2m−2,2m−2

for t1 ≤ t ≤ b− δ (i= 1, . . . ,n− 1).
(2.58)

Hence, by condition (2.51), we find

lim
k→+∞

∫ t

t1
(t− s)n−i

(
qk(s)− q(s)

)
ds= 0 (i= 1, . . . ,n) uniformly in ]a,b[. (2.59)

Analogously we can show that if t0 ∈]a,b[, then

lim
k→+∞

∫ t

t0

(
s− t0

)(
qk(s)− q(s)

)
ds= 0 uniformly on I

(
t0
)
, (2.60)

where I(t0)= [t0, (a+ b)/2] for t0 < (a+ b)/2 and I(t0)= [(a+ b)/2, t0] for t0 > (a+ b)/2.
In view of inequalities (2.50), the identities

u(i−1)
k (t)= 1

(m− i)!

∫ t

t jk
(t− s)m−iu(m)

k (s)ds ( j = 0,1; i= 1, . . . ,m; k = 1,2, . . .) (2.61)
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yield

∣∣u(i−1)
k (t)

∣∣≤ ri
[
(t− a)(b− t)

]m−i+1/2
for t1k ≤ t ≤ t2k (i= 1, . . . ,m; k = 1,2, . . .), (2.62)

where

ri = r0

(m− i)!
(2m− 2i+ 1)−1/2

(
2

b− a

)m−i+1/2

(i= 1, . . . ,m). (2.63)

By virtue of the Arzela-Ascoli lemma and conditions (2.50), (2.62), the sequence (uk)+∞
k=1

contains a subsequence (uk� )
+∞
�=1 such that (u(i−1)

k�
)+∞
�=1 (i= 1, . . . ,m) are uniformly converg-

ing on ]a,b[. Suppose

lim
�→+∞

uk� (t)= u(t). (2.64)

Then u :]a,b[→R is (m− 1)-times continuously differentiable and

lim
�→+∞

u(i−1)
k�

(t)= u(i−1)(t) (i= 1, . . . ,m) uniformly on ]a,b[. (2.65)

If along with this we take into account conditions (2.43) and (2.59), then from (2.57) and
(2.62) we find

u(t)=
n∑

j=1

(
u
(
t j
)− 1

(n− 1)!

∫ t j

t1

(
t j − s

)n−1(
Λ(u)(s) + q(s)

)
ds
)
gj(t)

+
1

(n− 1)!

∫ t

t1
(t− s)n−1(Λ(u)(s) + q(s)

)
ds for a < t < b,

(2.66)

∣∣u(i−1)(t)
∣∣≤ ri

[
(t− a)(b− t)

]m−i+1/2
for a < t < b (i= 1, . . . ,m), (2.67)

u∈ C̃n−1
loc (]a,b[), and

lim
�→+∞

u(i−1)
k�

(t)= u(i−1)(t) (i= 1, . . . ,n− 1) uniformly in ]a,b[. (2.68)

On the other hand, for any t0 ∈]a,b[ and a natural �, we have

(
t− t0

)
u(n−1)
k�

(t)= u(n−2)
k�

(t)−u(n−2)
k�

(
t0
)

+
∫ t

t0

(
s− t0

)(
Λ
(
uk�
)
(s) + qk� (s)

)
ds. (2.69)

Hence, due to (2.60) and (2.68), we get

lim
�→+∞

u(n−1)
k�

(t)= u(n−1)(t) uniformly in ]a,b[. (2.70)
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By (2.68) and (2.70), (2.50) results in (2.52). Therefore, u∈ C̃n−1,m([a,b[). On the other
hand, from (2.66) it is obvious that u is a solution of (1.1). In the case, where n = 2m,
from (2.67) equalities (1.2) follow, that is, u is a solution of problem (1.1), (1.2).

Let us show that u is a solution of that problem in the case n= 2m+ 1 as well. In view
of (2.67), it suffices to prove that u(m)(b)= 0. First we find an estimate for the sequence
(u(m+1)

k )+∞
k=1. For this, without loss of generality we assume that

t1 < t1k (k = 1,2, . . .). (2.71)

By (2.51), (2.57), and (2.62), we have

∣∣u(m+1)
k (t)

∣∣≤ ρ0 +
1

(m− 1)!

∣∣∣∣
∫ t

t1
(t− s)m−1Λ

(
uk
)
(s)ds

∣∣∣∣+
1

(m− 1)!

∣∣∣∣
∫ t

t1
(t− s)m−1qk(s)ds

∣∣∣∣

for t1 ≤ t ≤ t1k (k = 1,2, . . .),
(2.72)

∥∥qk
∥∥
L̃2

2n−2m−2,2m−2
≤ ρ0 (k = 1,2, . . .), (2.73)

where ρ0 is a positive constant independent on k. On the other hand, it is evident that

∣∣∣∣
∫ t

t1
(t− s)m−1Λ

(
uk
)
(s)ds

∣∣∣∣≤
m∑

i=1

∣∣∣∣
∫ t

t1
(t− s)m−1pi(s)u

(i−1)
k (s)ds

∣∣∣∣. (2.74)

If m> 1, then in view of (2.48) we find

∣∣∣∣
∫ t

t1
(t− s)m−1pi(s)u

(i−1)
k (s)ds

∣∣∣∣

=
∣∣∣∣
∫ t

t1

[
(t− s)m−1u(i)

k (s)− (m− 1)(t− s)m−2u(i−1)
k (s)

](∫ s

t1
pi(τ)dτ

)
ds
∣∣∣∣

≤ ρi

∫ t

t1

[
(b− s)i−m−1

∣∣u(i)
k (s)

∣∣+ (m− 1)(b− s)i−m−2
∣∣u(i−1)

k (s)
∣∣
]
ds

≤ ρi

(∫ t

t1
(b− s)−2ds

)1/2
[(∫ t

t1

∣∣u(i)
k (s)

∣∣2
ds

(b− s)2m−2i

)1/2

+ (m− 1)

(∫ t

t1

∣∣u(i−1)
k (s)

∣∣2
ds

(b− s)2m−2i+2

)1/2]

for t1 ≤ t ≤ t1k (i= 1, . . . ,m).
(2.75)

However, by Lemma 2.5′ and conditions (2.50),

∫ t

t1

∣∣u( j)
k (s)

∣∣2
ds

(b− s)2m−2 j ≤
∫ t1k

t1

∣∣u( j)
k (s)

∣∣2
ds

(
t1k − s

)2m−2 j ≤ 22m−2 j r2
0 for t1 ≤ t ≤ t1k ( j = 0, . . . ,m). (2.76)

Thus

∣∣∣∣
∫ t

t1
(t− s)m−1Λ

(
uk
)
(s)ds

∣∣∣∣≤ ρ(b− t)−1/2 for t1 ≤ t ≤ t1k, (2.77)
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where

ρ =m2mr0

m∑

i=1

ρi. (2.78)

And if m= 1, then due to (2.48) and (2.50) we obtain

∣∣∣∣
∫ t

t1
(t− s)m−1Λ

(
uk
)
(s)ds

∣∣∣∣

=
∣∣∣∣
∫ t

t1
p1(s)uk(s)ds

∣∣∣∣

=
∣∣∣∣uk(t)

∫ t

t1
p1(τ)dτ −

∫ t

t1

(∫ s

t1
p1(τ)dτ

)
u′k(s)ds

∣∣∣∣

≤ ρ1

(
(b− t)−1

∫ t1k

t

∣∣u′k(s)
∣∣ds+

∫ t

t1
(b− s)−1

∣∣u′k(s)
∣∣ds
)

≤ ρ1

[
(b− t)−1(t1k − t

)1/2
(∫ t1k

t

∣∣u′k(s)
∣∣2
ds
)1/2

+ (b− t)−1/2
(∫ t

t1

∣∣u′k(s)
∣∣2
ds
)1/2

]

≤ 2ρ1r0(b− t)−1/2 for t1 ≤ t ≤ t1k,
(2.79)

that is, again estimate (2.77) is valid.
For m> 1, due to condition (2.73) we have

∣∣∣∣
∫ t

t1
(t− s)m−1qk(s)ds

∣∣∣∣= (m− 1)
∣∣∣∣
∫ t

t1
(t− s)m−2

(∫ s

t1
qk(τ)dτ

)
ds
∣∣∣∣

≤ (m− 1)
∫ t

t1
(b− s)m−2

(∫ s

t1

∣∣qk(τ)
∣∣dτ

)
ds

≤ (m− 1)(b− t)−1/2
∥∥qk
∥∥
L̃2

2n−2m−2,2m−2

≤ (m− 1)ρ0(b− t)−1/2 for t1 ≤ t < b.

(2.80)

And for m= 1, we have

∫ b

t

∣∣∣∣
∫ τ

t1
qk(s)ds

∣∣∣∣dτ ≤ (b− t)1/2‖q‖L̃2
0,0
≤ ρ0(b− t)1/2 for t1 ≤ t < b. (2.81)

Evidently,

u(m)
k (t)=

∫ t

t1k
u(m+1)
k (τ)dτ, (2.82)

since u(m)
k (t1k) = 0. If m > 1, then from (2.82), on account of inequalities (2.72), (2.77),

and (2.80), we get

∣∣u(m)
k (t)

∣∣≤
∫ t1k

t

[
ρ0 +

(
ρ+ ρ0

)
(b− s)−1/2]ds≤ ρ∗(b− t)1/2 for t1 ≤ t ≤ t1k, (2.83)
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where ρ∗ = ρ0(b− t1)1/2 + 2(ρ+ ρ0). If m= 1, then by virtue of inequalities (2.72), (2.77),
and (2.81), from (2.82) we find

∣∣u(m)
k (t)

∣∣≤
∫ t1k

t

[
ρ0 + ρ(b− s)−1/2 +

∣∣∣∣
∫ s

t1
qk(τ)dτ

∣∣∣∣
]
ds

≤
[
ρ0
(
b− t1

)1/2
+ 2ρ+ ρ0

]
(b− t)1/2 for t1 ≤ t ≤ t1k,

(2.84)

that is, again estimate (2.83) is valid.
By virtue of (2.43), (2.68) and (2.70), (2.83) implies

∣∣u(m)(t)
∣∣≤ ρ∗(b− t)1/2 for t1 ≤ t < b, (2.85)

and consequently, u(m)(b)= 0. Thus we proved that u is a solution of problem (1.1), (1.2)
also in the case n= 2m+ 1. In the space C̃n−1,m(]a,b[) problem (1.1), (1.2) does not have
another solution since in that space the homogeneous problem (1.10), (1.2) has only a
trivial solution.

To complete the proof of the lemma, it remains to show that condition (2.53) is sat-
isfied. Assume the contrary. Then there exist δ ∈]0,(b− a)/2[, ε > 0, and an increasing
sequence of natural numbers (k�)+∞

�=1 such that

max

{ n∑

i=1

∣∣u(i−1)
k�

(t)−u(i−1)(t)
∣∣ : a+ δ ≤ t ≤ b− δ

}
> ε (� = 1,2, . . .). (2.86)

By virtue of the Arzela-Ascoli lemma and condition (2.50), the sequences (u(i−1)
k�

)+∞
�=1

(i = 1, . . . ,m), without loss of generality, can be assumed to be uniformly converging on
]a,b[. Then, in view of what we have shown above, conditions (2.68) and (2.70) hold.
But this contradicts condition (2.86). The obtained contradiction proves the validity of
the lemma. �

Analogously we can prove the following lemma.

Lemma 2.10. Let for every natural k, problem (2.44), (2.46) have a solution uk ∈ C̃n−1
loc (]a,

b]), and there exist a nonnegative constant r0 such that inequalities (2.50) are fulfilled. Let,
moreover,

lim
k→+∞

∥∥qk − q
∥∥
L̃2

2n−2m−2,0
= 0, (2.87)

and the homogeneous problem (1.10), (1.3) in the space C̃n−1,m(]a,b]) have only a trivial
solution. Then problem (1.1), (1.3) in the space C̃n−1,m(]a,b]) has a unique solution u, sat-
isfying estimate (2.52) and

lim
k→+∞

u(i−1)
k (t)= u(i−1)(t) (i= 1, . . . ,n) uniformly in ]a,b]. (2.88)
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2.4. Lemmas on a priori estimates.

Lemma 2.11. Let conditions (1.20) and (1.21) be fulfilled, where hi (i= 1, . . . ,m) are func-
tions given by equalities (1.13), a0 ∈]a,b[, b0 ∈]a0,b[, and �1i, �2i (i = 1, . . . ,m) are non-
negative numbers. Then there exists a positive constant r0 such that for any t0 ∈]a,a0[,
t1 ∈]b0,b[, and q ∈ L̃2

2n−2m−2,2m−2(]a,b[), an arbitrary solution u ∈ Cn−1
loc (]a,b[) of (1.1),

satisfying the conditions

u(i−1)(t0
)=0 (i= 1, . . . ,m),

u( j−1)(t1
)=0 ( j = 1, . . . ,n−m),

(2.89)

satisfies also the condition

∫ t1

t0

∣∣u(m)(t)
∣∣2
dt ≤ r0

(∣∣∣∣∣

m∑

i=1

∫ b0

a0

(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

∣∣∣∣∣+‖q‖2
L̃2

2n−2m−2,2m−2

)
. (2.90)

To prove Lemma 2.11, we need the following lemma.

Lemma 2.12. If u∈ Cn−1
loc (]a,b[), then for any s and t ∈]a,b[ the equality

(−1)n−m
∫ t

s
(τ − a)n−2mu(n)(τ)u(τ)dτ =wn(t)−wn(s) +μn

∫ t

s

∣∣u(m)(τ)
∣∣2
dτ (2.91)

is valid, where

μ2m = 1, μ2m+1 = 2m+ 1
2

, w2m(t)=
m∑

j=1

(−1)m+ j−1u(2m− j)(t)u(t),

w2m+1(t)=
m∑

j=1

(−1)m+ j
[
(t− a)u(2m+1− j)(t)− ju(2m− j)(t)

]
u( j−1)(t)− t− a

2

∣∣u(m)(t)
∣∣2
.

(2.92)

This lemma is a particular case of Lemma 4.1 in [8].

Proof of Lemma 2.11. By virtue of inequalities (1.21), there exists γ ∈]0,1[ such that

m∑

i=1

(2m− i)22m−i+1

(2m− 2i+ 1)!!(2m− 1)!!
�ji < μn− γ ( j = 1,2). (2.93)

Put

r0 = 22m+2(1 + b− a)2γ−2. (2.94)
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Assume now that for some t0 ∈]a,a0[, t1 ∈]b0,b[, and q ∈ L̃2
2n−2m−2,2m−2(]a,b[) problem

(1.1), (2.89) has a solution u. Multiplying (1.1) by (−1)n−m(t− a)n−2mu(t) and then inte-
grating from t0 to t1, by Lemma 2.12 we obtain

t0− a

2

∣∣u(m)(t0
)∣∣2

+μn

∫ t1

t0

∣∣u(m)(t)
∣∣2
dt

= (−1)n−2m
m∑

i=1

∫ t1

t0
(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

+ (−1)n−2m
∫ t1

t0
(t− a)n−2mq(t)u(t)dt.

(2.95)

According to Lemmas 2.7, 2.6′, and conditions (1.20), we have

(−1)n−m
∫ a0

t0
(t− a)n−2mp1(t)u2(t)u(t)dt ≤

∫ a0

t0
(t− a)n−2m[(−1)n−mp1(t)

]
+u

2(t)dt

≤ (2m− 1)22m

[
(2m− 1)!!

]2 �11

∫ a0

t0

∣∣u(m)(t)
∣∣2
dt,

∣∣∣∣
∫ a0

t0
(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

∣∣∣∣

≤ (2m− i)22m−i+1

(2m− 1)!!(2m− 2i+ 1)!!
�1i

∫ a0

t0

∣∣u(m)(t)
∣∣2
dt (i= 2, . . . ,m),

(−1)n−m
∫ t1

b0

(t− a)n−2mp1(t)u2(t)dt ≤
∫ t1

b0

(t− a)n−2m[(−1)n−mp1(t)
]

+u
2(t)dt

≤ (2m− 1)22m

[
(2m− 1)!!

]2 �21

∫ t1

b0

∣∣u(m)(t)
∣∣2
dt,

∣∣∣∣
∫ t1

b0

(t− a)n−2mpi(t)u(i−1)(t)u(t)dt
∣∣∣∣

≤ (2m− i)22m−i+1

(2m− 1)!!(2m− 2i+ 1)!!
�2i

∫ t1

b0

∣∣u(m)(t)
∣∣2
dt (i= 2, . . . ,m).

(2.96)

If along with this we take into account inequalities (2.93), we find

(−1)n−2m
m∑

i=1

∫ t1

t0
(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

≤
∣∣∣∣∣

m∑

i=1

∫ b0

a0

(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

∣∣∣∣∣

+
(
μn− γ

)(∫ a0

t0

∣∣u(m)(t)
∣∣2
dt+

∫ t1

b0

∣∣u(m)(t)
∣∣2
dt
)

≤
∣∣∣∣∣

m∑

i=1

∫ b0

a0

(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

∣∣∣∣∣+
(
μn− γ

)∫ t1

t0

∣∣u(m)(t)
∣∣2
dt.

(2.97)
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On the other hand, if we put c = (a+ b)/2, then again on the basis of Lemmas 2.7 and
2.6′ we get

∣∣∣∣
∫ t1

t0
(t− a)n−2mq(t)u(t)dt

∣∣∣∣

≤
∣∣∣∣
∫ c

t0
(t− a)n−2mq(t)u(t)dt

∣∣∣∣+
∣∣∣∣
∫ t1

c
(t− a)n−2mq(t)u(t)dt

∣∣∣∣

=
∣∣∣∣
∫ c

t0

[
(n− 2m)u(t) + (t− a)n−2mu′(t)

](∫ c

t
q(s)ds

)
dt
∣∣∣∣

+
∣∣∣∣
∫ t1

c

[
(n− 2m)u(t) + (t− a)n−2mu′(t)

](∫ t

c
q(s)ds

)
dt
∣∣∣∣

≤
[

(n− 2m)
(∫ c

t0

u2(t)dt
(t− a)2m

)1/2

+
(∫ c

t0

u
′2(t)dt

(t− a)2m−2

)1/2
]

×
(∫ c

t0
(t− a)2n−2m−2

(∫ c

t
q(s)ds

)2

dt

)1/2

+ (b− a)

[
(n− 2m)

(∫ t1

c

u2(t)dt
(b− t)2m

)1/2

+
(∫ t1

c

u
′2(t)dt

(b− t)2m−2

)1/2
]

×
(∫ t1

c
(b− t)2m−2

(∫ t

c
q(s)ds

)2

dt

)1/2

≤ 2m+1(1 + b− a)

[(∫ c

t0

∣∣u(m)(t)
∣∣2
dt
)1/2

+
(∫ t1

c

∣∣u(m)(t)
∣∣2
dt
)1/2

]
‖q‖L̃2

2n−2m−2,2m−2

≤ γ

2

∫ t1

t0

∣∣u(m)(t)
∣∣2
dt+ 22m+1(1 + b− a)2γ−1‖q‖2

L̃2
2n−2m−2,2m−2

.

(2.98)

In view of inequalities (2.97), (2.98) and notation (2.94), equality (2.95) results in esti-
mate (2.90). �

The proof of the following lemma is analogous to that of Lemma 2.11.

Lemma 2.13. Let conditions (1.12), (1.24), and (1.25) hold, where hi (i= 1, . . . ,m) are func-
tions given by equalities (1.13), a0 ∈]a,b[, and �i (i = 1, . . . ,m) are nonnegative numbers.
Then there exists a positive constant r0 such that for any t0 ∈]a,a0[ and q ∈ L̃2

2n−2m−2(]a,b]),
an arbitrary solution u∈ Cn−1

loc (]a,b]) of (1.1), satisfying the conditions

u(i−1)(t0
)= 0 (i= 1, . . . ,m), u( j−1)(b)= 0 ( j =m+ 1, . . . ,n), (2.99)

also satisfies the condition

∫ b

t0

∣∣u(m)(t)
∣∣2
dt ≤ r0

(∣∣∣∣∣

m∑

i=1

∫ b

a0

(t− a)n−2mpi(t)u(i−1)(t)u(t)dt

∣∣∣∣∣+‖q‖2
L̃2

2n−2m−2

)
. (2.100)
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Lemma 2.14. Let conditions (1.10), (1.20), and (1.21) hold, and in the case, where n is
odd, in addition condition (1.11) be fulfilled, where hi (i = 1, . . . ,m) are functions given by
equalities (1.13), a0 ∈]a,b[, b0 ∈]a0,b[, and �1i, �2i (i= 1, . . . ,m) are nonnegative numbers.
Let, moreover, the homogeneous problem (1.10), (1.2) in the space C̃n−1,m(]a,b[) have only a
trivial solution. Then there exist δ ∈]0,(b− a)/2[ and r > 0 such that for any t0 ∈]a,a+ δ],
t1 ∈ [b− δ,b[, and q ∈ L̃2

2n−2m−2,2m−2(]a,b[) problem (1.1), (2.89) is uniquely solvable in

the space C̃n−1
loc (]a,b[) and its solution admits the estimate

(∫ t1

t0

∣∣u(m)(t)
∣∣2
dt
)1/2

≤ r‖q‖L̃2
2n−2m−2,2m−2

. (2.101)

Proof. First note that for arbitrarily fixed t0 ∈]a,a+ δ[, t1 ∈]b− δ,b[, and q ∈ L([t0, t1])
problem (1.1), (2.89) is regular and has the Fredholm property in the space C̃n−1([t0, t1]).

Assume now that the lemma is not true. Then by virtue of the above-analysis, for an
arbitrary natural k there exist

t0k ∈
]
a,a+

b− a

2k

[
, t1k ∈

]
b− b− a

2k
,b
[

, (2.102)

and a function qk ∈ L̃2
2n−2m−2,2m−2(]a,b[) such that problem (2.44), (2.45) has a solution

uk ∈ C̃n−1
loc (]a,b[) satisfying the inequality

(∫ t1k

t0k

∣∣u(m)
k (t)

∣∣2
dt
)1/2

> k
∥∥qk
∥∥
L̃2

2n−2m−2,2m−2
. (2.103)

Suppose

vk(t)=
(∫ t1k

t0k

∣∣u(m)
k (t)

∣∣2
dt
)−1/2

uk(t), q0k(t)=
(∫ t1k

t0k

∣∣u(m)
k (t)

∣∣2
dt
)−1/2

qk(t).

(2.104)

Then vk is a solution of the problem

v(n) =
m∑

i=1

pi(t)v(i−1) + q0k(t),

v(i−1)(t0k
)= 0 (i= 1, . . . ,m), v(i−1)(t1k

)= 0 (i= 1, . . . ,n−m).

(2.105)

Moreover,

∫ t1k

t0k

∣∣v(m)
k (t)

∣∣2
dt = 1,

∥∥q0k
∥∥
L̃2

2n−2m−2,2m−2
<

1
k

(k = 1,2, . . .). (2.106)
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On the other hand, by Lemmas 2.9 and 2.11, we have

lim
k→+∞

v(i−1)
k (t)= 0 uniformly in ]a,b[ (i= 1, . . . ,n),

1≤ r0

(∣∣∣∣∣

m∑

i=1

∫ b0

a0

(t− a)n−2mpi(t)v
(i−1)
k (t)vk(t)dt

∣∣∣∣∣+ k−2

)
(k = 1,2, . . .),

(2.107)

where r0 is a positive constant independent of k. Thus if we pass to the limit in the last
inequality as k→ +∞, then we obtain the contradiction 1≤ 0, which proves the lemma.

�

Analogously we can prove the following lemma if we apply Lemmas 2.10 and 2.13
instead of Lemmas 2.9 and 2.11.

Lemma 2.15. Let conditions (1.12), (1.24), and (1.25) hold, where hi (i= 1, . . . ,m) are func-
tions given by equalities (1.13), a0 ∈]a,b[, and �i (i = 1, . . . ,m) are nonnegative numbers.
Let, moreover, the homogeneous problem (1.10), (1.3) in the space C̃n−1,m(]a,b]) have only a
trivial solution. Then there exist δ ∈]0,b− a[ and r > 0 such that for any t0 ∈]a,a+ δ] and
q ∈ L̃2

2n−2m−2(]a,b]) problem (1.1), (2.99) is uniquely solvable in the space C̃n−1
loc (]a,b]) and

its solution admits the estimate

(∫ b

t0

∣∣u(m)(t)
∣∣2
dt
)1/2

≤ r‖q‖L̃2
2n−2m−2

. (2.108)

3. Proof of the main results

Proof of Theorem 1.3 (Theorem 1.5). Suppose problem (1.10), (1.2) (problem (1.10),
(1.3)) has only a trivial solution, and r and δ are the numbers appearing in Lemma 2.14
(in Lemma 2.15). Set

t0k = a+
δ

k
, t1k = b− δ

k
(k = 1,2, . . .). (3.1)

By Lemma 2.14 (Lemma 2.15) for every natural k problem (1.1), (2.45) (problem (1.1),
(2.46)) in the space C̃n−1

loc (]a,b[) (in the space C̃n−1
loc (]a,b])) has a unique solution uk and

(∫ t1k

t0k

∣∣u(m)
k (t)

∣∣2
dt
)1/2

≤ r‖q‖L̃2
2n−2m−2,2m−2

((∫ b

t0k

∣∣u(m)
k (t)

∣∣2
dt
)1/2

≤ r‖q‖L̃2
2n−2m−2

)
.

(3.2)

Hence by Lemma 2.9 (by Lemma 2.10) it follows that problem (1.1), (1.2) (problem (1.1),
(1.3)) in the space C̃n−1,m(]a,b[) (in the space C̃n−1,m(]a,b])) is uniquely solvable and its
solution admits estimate (1.15). Therefore problem (1.1), (1.2) (problem (1.1), (1.3)) has
the Fredholm property since the constant r does not depend on q. �
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Proof of Corollary 1.4. By conditions (1.23), there exist positive constants �1i, �2i (i= 1, . . . ,
m), satisfying inequalities (1.21), such that

λ1i < (2m− i)�1i, λ2i < (2m− i)�2i (i= 1, . . . ,m). (3.3)

Choose a0 ∈]a,b[ and b0 ∈]a0,b[ so that

λ1i

2m− i
+ λ2i

∫ a0

a

(s− a)2m−ids
(b− s)2m−i+1

+
∫ a0

a
(s− a)n−i p0i(s)ds < �1i (i= 1, . . . ,m),

λ2i

2m− i
+ λ1i

∫ b

b0

(b− s)2m−ids
(s− a)n−i+1

+
∫ b

b0

(b− s)2m−i p0i(s)ds < �2i (i= 1, . . . ,m).

(3.4)

Then, according to (1.13), inequalities (1.22) yield inequalities (1.20). Therefore all the
conditions of Theorem 1.3 are fulfilled which guarantee the validity of Corollary 1.4. �

Analogously, Corollary 1.6 follows from Theorem 1.5 since conditions (1.26) and
(1.27) guarantee conditions (1.24) and (1.25) for some a0 ∈]a,b[ and �i > 0 (i= 1, . . . ,m).

Proof of Theorem 1.7. It is sufficient to show that if u∈ C̃n−1
loc (]a,b[) is a solution of prob-

lem (1.10), (1.2) (problem (1.10), (1.3)), then

∫ b

a

∣∣u(m)(t)
∣∣2
dt < +∞. (3.5)

For an arbitrary t0 ∈]a,b[ we have

u(m)(t)=
n∑

j=m+1

(
t− t0

) j−m−1

( j−m− 1)!
u( j−1)(t0

)

+
1

(n−m− 1)!

∫ t

t0
(t− s)n−m−1

( m∑

i=1

pi(s)u(i−1)(s)

)
ds.

(3.6)

Hence, according to conditions (1.2) and (1.28) (conditions (1.3) and (1.28)), it is obvi-
ous that u(m) ∈ L([a,b]). Put

p(t)=
m∑

i=1

(t− a)n−i
∣∣pi(t)

∣∣,

v(t)=
∫ t

a

∣∣u(m)(s)
∣∣ds, w

(
t0
)=

n∑

j=m+1

(
t0− a

) j−m−1

( j−m− 1)!

∣∣u( j−1)(t0
)∣∣,

(3.7)

and choose t0 ∈]a,b[ such that

∫ t0

a
p(s)ds <

1
2
. (3.8)
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Then in view of (1.2), ((1.3)), and (3.5) we find

∣∣u(i−1)(t)
∣∣= 1

(m− i)!

∣∣∣∣
∫ t

a
(t− s)m−iu(m)(s)ds

∣∣∣∣≤ (t− a)m−iv(t) (i= 1, . . . ,m),

∣∣u(m)(t)
∣∣≤w

(
t0
)

+
∫ t0

t

p(s)v(s)
s− a

ds for a < t ≤ t0,

v(t)≤w
(
t0
)
(t− a) +

∫ t

a

(∫ t0

τ

p(s)v(s)
s− a

ds
)
dτ

=w
(
t0
)
(t− a) + (t− a)

∫ t0

t

p(s)v(s)
s− a

ds+
∫ t

a
p(s)v(s)ds

≤w
(
t0
)
(t− a) + (t− a)

∫ t0

t

p(s)v(s)
s− a

ds+
1
2
v(t) for a < t < t0,

(3.9)

and, consequently,

v(t)
t− a

≤w
(
t0
)

+ 2
∫ t0

t
p(s)

v(s)
s− a

ds for a < t < t0. (3.10)

The last inequality, by the Gronwall-Bellman lemma, results in

v(t)
t− a

≤w
(
t0
)

exp
(

2
∫ t0

t
p(s)ds

)
≤w

(
t0
)

exp(1) for a < t ≤ t0. (3.11)

Due to this inequality, from (3.9) we get

∣∣u(m)(t)
∣∣≤ (1 + exp(1)

)
w
(
t0
)

for a < t ≤ t0. (3.12)

Analogously we can show that u(m) is bounded in the neighborhood of the point b. There-
fore condition (3.5) is satisfied. �

Proof of Theorem 1.9. By Theorem 1.3, from inequalities (1.21) and (1.49) it follows that
problem (1.1), (1.2) has the Fredholm property. Thus to prove Theorem 1.9, it suffices to
show that the homogeneous problem (1.10), (1.2) in the space C̃n−1,m(]a,b[) has only a
trivial solution.

Suppose u∈ C̃n−1,m(]a,b[) is a solution of problem (1.10), (1.2). Put

ρ1(t)=
∫ t

a

∣∣u(m)(τ)
∣∣2
dτ, ρ2(t)=

∫ b

t

∣∣u(m)(τ)
∣∣2
dτ, ρ =

∫ b

a

∣∣u(m)(τ)
∣∣2
dτ. (3.13)

Multiplying (1.10) by (−1)n−m(t− a)n−2mu(t) and then integrating from s to t, by Lemma
2.12 we obtain

wn(t)−wn(s) +μn

∫ t

s

∣∣u(m)(τ)
∣∣2
dτ

= (−1)n−m
m∑

i=1

∫ t

s
(τ− a)n−2mpi(τ)u(i−1)(τ)u(τ)dτ for a < s≤ t < b,

(3.14)
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where μn and wn are the number and the function, respectively, given by equalities (2.92).
Moreover, it follows from Lemma 2.8,

liminf
s→a

∣∣wn(s)
∣∣= 0, liminf

t→b

∣∣wn(t)
∣∣= 0. (3.15)

By virtue of Lemmas 2.7, 2.6′, and conditions (1.49), we have

(−1)n−m
∫ t

s
(τ − a)n−2mpi(τ)u(i−1)(τ)u(τ)dτ

≤
[
ρ1(s) +

(2m− i)22m−i+1

(2m− 1)!!(2m− 2i+ 1)!!
ρ1
(
t0
)
]
�1i

+

[
ρ2(t) +

(2m− i)22m−i+1

(2m− 1)!!(2m− 2i+ 1)!!
ρ2
(
t0
)
]
�2i for a<s≤ t0≤ t<b (i=1, . . . ,m).

(3.16)

Due to (1.21), the number γ ∈]0,1[ can be chosen so that inequalities (2.93) would be
satisfied.

According to (2.93) and (3.16), (3.14) implies

wn(t)−wn(s) +μn

∫ t

s

∣∣u(m)(τ)
∣∣2
dτ

≤
( m∑

i=1

�1i

)
ρ1(s) +

( m∑

i=1

�2i

)
ρ2(t) +

(
μn− γ

)(
ρ1
(
t0
)

+ ρ2
(
t0
))

=
( m∑

i=1

�1i

)
ρ1(s) +

( m∑

i=1

�2i

)
ρ2(t) +

(
μn− γ

)
ρ.

(3.17)

Hence, by equalities (3.15), we find

μnρ ≤
(
μn− γ

)
ρ, (3.18)

and consequently, ρ = 0. However,

∣∣u(t)
∣∣≤ ρ

(m− 1)!
(t− a)m−1/2 for a < t < b, (3.19)

and therefore, u(t)≡ 0. �

The proof of Theorem 1.11 is analogous to that of Theorem 1.9. The only difference
is that instead of Theorem 1.3, inequalities (1.21) and (1.49) Theorem 1.5, inequalities
(1.25) and (1.52) are applied.

To convince ourselves of the validity of Corollary 1.10 (Corollary 1.12), it suffices to
note that inequalities (1.23), (1.50), and (1.51) (inequalities (1.27) and (1.53)) guarantee
inequalities (1.21), (1.49) (inequalities (1.25), (1.52)), where

�1i = λ1i

2m− i
, �2i = λ2i

2m− i

(
�i = λi

2m− i

)
(i= 1, . . . ,m). (3.20)
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Remark 3.1. From Lemmas 2.3 and 2.4 it follows that if either condition (1.16) or condi-
tion (1.17) is fulfilled, then condition (1.18) holds as well, and the inequalities

‖q‖L̃2
2n−2m−2,2m−2

≤ γ‖q‖L2
2n−2m,2m

(
‖q‖L̃2

2n−2m−2
≤ γ‖q‖L2

2n−2m,0

)
,

‖q‖L̃2
2n−2m−2,2m−2

≤ γ‖q‖Ln−m−1/2,m−1/2

(
‖q‖L̃2

2n−2m−2
≤ γ‖q‖Ln−m−1/2,0

) (3.21)

are valid, respectively, where γ is a positive constant independent of q. Thus in those cases
estimate (1.15) yields estimates (1.19), where r0 = γr. Therefore Remark 1.2 is valid.
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