Research Article

Critical Point Theory Applied to a Class of the Systems of the Superquadratic Wave Equations

Tacksun Jung ${ }^{1}$ and Q-Heung Choi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Kunsan National University, Kunsan 573-701, South Korea
${ }^{2}$ Department of Mathematics Education, Inha University, Incheon 402-751, South Korea

Correspondence should be addressed to Q-Heung Choi, qheung@inha.ac.kr
Received 22 July 2008; Accepted 25 December 2008
Recommended by Martin Schechter

Abstract

We show the existence of a nontrivial solution for a class of the systems of the superquadratic nonlinear wave equations with Dirichlet boundary conditions and periodic conditions with a superquadratic nonlinear terms at infinity which have continuous derivatives. We approach the variational method and use the critical point theory which is the Linking Theorem for the strongly indefinite corresponding functional.

Copyright © 2008 T. Jung and Q.-H. Choi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the existence of a nontrivial solution for the following class of the systems of the superquadratic wave equations with Dirichlet boundary condition and periodic condition

$$
\begin{gather*}
u_{t t}-u_{x x}=a v+F_{u}(x, t, u, v), \quad \operatorname{in}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
v_{t t}-v_{x x}=b u+F_{v}(x, t, u, v), \quad \operatorname{in}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, t\right)=v\left(\pm \frac{\pi}{2}, t\right)=0, \tag{1.1}\\
u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t), \\
v(x, t+\pi)=v(x, t)=v(-x, t)=v(x,-t),
\end{gather*}
$$

where $F:[-(\pi / 2), \pi / 2] \times R \times R \times R \rightarrow R$ is a superquadratic function at infinity which
has continuous derivatives $F_{r}(x, t, r, s), F_{s}(x, t, r, s)$ with respect to r, s, for almost any $(x, t) \in$ $(-(\pi / 2), \pi / 2) \times R$. Moreover, we assume that F satisfies the following conditions:
(F1) $F(x, t, 0,0)=F_{x}(x, t, 0,0)=F_{t}(x, t, 0,0)=0 ; F_{x x}(x, t, 0,0)=F_{t t}(x, t, 0,0)=F_{x t}(x, t, 0$, $0)=0, F(x, t, r, s)>0$ if $(r, s) \neq(0,0), \inf _{(x, t) \in(-(\pi / 2), \pi / 2) \times R,|r|^{2}+|s|^{2}=R^{2}} F(x, t, r, s)>0$,
(F2) $\left|F_{r}(x, t, r, s)\right|+\left|F_{s}(x, t, r, s)\right| \leq c\left(|r|^{v}+|s|^{v}\right) \forall x, t, r, s$;
(F3) $r F_{r}(x, t, r, s)+s F_{s}(x, t, r, s) \geq \mu F(x, t, r, s) \forall x, t, r, s$;
(F4) $\left|F_{r}(x, t, r, s)\right|+\left|F_{S}(x, t, r, s)\right| \leq d\left(F(x, t, r, s)^{\delta_{1}}+F(x, t, r, s)^{\delta_{2}}\right)$;
where $c>0, d>0, R>0, \mu>2, v>1$ and $1 / 2<\delta_{1} \leq \delta_{2} \leq 1 / r$, for some $1<r<2$.
As the physical model for these systems we can find crossing two beams with travelling waves, which are suspended by cable under a load. The nonlinearity u^{+}models the fact that cables resist expansion but do not resist compression. Choi and Jung investigate in [1-3] the existence and multiplicity of solutions of the single nonlinear wave equation with Dirichlet boundary condition.

Let us set

$$
\begin{equation*}
\mathscr{L}(u, v)=(L u, L v), \quad L u=u_{t t}-u_{x x} \tag{1.2}
\end{equation*}
$$

Then, system (1.1) can be rewritten by

$$
\begin{gather*}
\curvearrowleft U=\nabla\left(\frac{1}{2}(A U, U)+F(x, t, u, v)\right), \\
U\left(\pm \frac{\pi}{2}, t\right)=\binom{0}{0}, \tag{1.3}\\
U(x, t+\pi)=U(x, t)=U(-x, t)=U(x,-t),
\end{gather*}
$$

where ∇ is the gradient operator, $U=\binom{u}{v}, A=\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right) \in M_{2 \times 2}(R)$.
We note that $\sqrt{a b},-\sqrt{a b}$ are two eigenvalues of the matrix $A=\left(\begin{array}{ll}0 & a \\ b & 0\end{array}\right)$, and that

$$
\begin{equation*}
-\sqrt{a b}\|U\|_{E}^{2} \leq(A U, U)_{R^{2}} \leq \sqrt{a b}\|U\|_{E}^{2}, \quad U=(u, v) \tag{1.4}
\end{equation*}
$$

Let $\lambda_{m n}$ be the eigenvalues of the eigenvalue problem $u_{t t}-u_{x x}=\lambda u$ in $(-(\pi / 2), \pi / 2) \times R$, $u(\pm(\pi / 2), t)=0, u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t)$.

Our main result is the following.
Theorem 1.1. Let F satisfy the conditions (F1), (F2), (F3), and (F4). Assume that

$$
\begin{gather*}
\lambda_{m n}^{2}-a b \neq 0 \forall m, n \text { with }(m, n) \neq(0,0) \tag{1.5}\\
a>0, \quad b>0 \tag{1.6}\\
\sqrt{a b}<1 . \tag{1.7}
\end{gather*}
$$

Then, system (1.3) has a nontrivial solution (u, v).

In Section 2, we obtain some results on the nonlinear term F. In Section 3, we approach the variational method and recall the critical point theorem which is the linking theorem for the strongly indefinite functional. This plays a crucial role to find a nontrivial solution. In Section 4, we prove Theorem 1.1.

2. Some results on the nonlinear term F

The eigenvalue problem for $u(x, t)$,

$$
\begin{gather*}
u_{t t}-u_{x x}=\lambda u \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R, \\
u\left(\pm \frac{\pi}{2}, t\right)=0, \quad u(x, t+\pi)=u(x, t)=u(-x, t)=u(x,-t) \tag{2.1}
\end{gather*}
$$

has infinitely many eigenvalues

$$
\begin{equation*}
\lambda_{m n}=(2 n+1)^{2}-4 m^{2} \quad(m, n=0,1,2, \ldots), \tag{2.2}
\end{equation*}
$$

and corresponding normalized eigenfunctions $\phi_{m n}(m, n \geq 0)$ given by

$$
\begin{align*}
& \phi_{0 n}=\frac{\sqrt{2}}{\pi} \cos (2 n+1) x \text { for } n \geq 0, \tag{2.3}\\
& \phi_{m n}=\frac{2}{\pi} \cos 2 m t \cdot \cos (2 n+1) x \text { for } m>0, n \geq 0 .
\end{align*}
$$

Let Q be the square $[-(\pi / 2), \pi / 2] \times[-(\pi / 2), \pi / 2]$ and H_{0} the Hilbert space defined by

$$
\begin{equation*}
H_{0}=\left\{u \in L^{2}(Q) \mid u \text { is even in } x \text { and } t \text { and } \int_{Q} u=0\right\} . \tag{2.4}
\end{equation*}
$$

The set of functions $\left\{\phi_{m n}\right\}$ is an orthonormal basis in H_{0}. Let us denote an element u, in H_{0}, by

$$
\begin{equation*}
u=\sum h_{m n} \phi_{m n} . \tag{2.5}
\end{equation*}
$$

We define a subspace \boxplus of H_{0} as follows:

$$
\begin{equation*}
\mathscr{\Phi}=\left\{u \in \sum h_{m n} \phi_{m n}: \sum_{m n} \lambda_{m n}^{2} h_{m n}^{2}<+\infty\right\} . \tag{2.6}
\end{equation*}
$$

Then, this space is a Banach space with norm

$$
\begin{equation*}
\|u\|=\left[\sum \lambda_{m n}^{2} h_{m n}^{2}\right]^{1 / 2} . \tag{2.7}
\end{equation*}
$$

Let us set $E=\Phi \times \Phi$. We endow the Hilbert space E with the norm

$$
\begin{equation*}
\|(u, v)\|_{E}^{2}=\|u\|^{2}+\|v\|^{2} . \tag{2.8}
\end{equation*}
$$

We are looking for the weak solutions of (1.3) in $\Phi \times \Phi$, that is, (u, v) such that $u \in \Phi, v \in \Phi$, $L u=a v+F_{u}(x, t, u, v), L v=b u+F_{v}(x, t, u, v)$. Since $\left|\lambda_{m n}\right| \geq 1$ for all m, n, we have the following lemma.

Lemma 2.1. (i) $\|u\| \geq\|u\|_{L^{2}(Q)}$, where $\|u\|_{L^{2}(Q)}$ denotes the L^{2} norm of u.
(ii) $\|u\|=0$ if and only if $\|u\|_{L^{2}(Q)}=0$.
(iii) $u_{t t}-u_{x x} \in \mathscr{\otimes}$ implies $u \in \mathscr{\otimes}$.

Lemma 2.2. Suppose that c is not an eigenvalue of $L: \Phi \rightarrow H_{0}, L u=u_{t t}-u_{x x}$, and let $f \in H_{0}$. Then, one has $(L-c)^{-1} f \in \boldsymbol{\oplus}$.

Proof. Let $\lambda_{m n}$ be an eigenvalue of L. We note that $\left\{\lambda_{m n}:\left|\lambda_{m n}\right|<|c|\right\}$ is finite. Let

$$
\begin{equation*}
f=\sum h_{m n} \phi_{m n} \tag{2.9}
\end{equation*}
$$

then

$$
\begin{equation*}
(L-c)^{-1} f=\sum \frac{1}{\lambda_{m n}-c} h_{m n} \phi_{m n} \tag{2.10}
\end{equation*}
$$

Hence, we have the inequality

$$
\begin{equation*}
\left\|(L-c)^{-1} f\right\|^{2}=\sum \lambda_{m n}^{2} \frac{1}{\left(\lambda_{m n}-c\right)^{2}} h_{m n}^{2} \leq C \sum h_{m n}^{2} \tag{2.11}
\end{equation*}
$$

for some C, which means that

$$
\begin{equation*}
\left\|(L-c)^{-1} f\right\| \leq C_{1}\|f\|_{L^{2}(Q)}, \quad C_{1}=\sqrt{C} \tag{2.12}
\end{equation*}
$$

By (F1) and (F3), we obtain the lower bound for $F(x, t, u, v)$ in the term of $|u|^{\mu}+|v|^{\mu}$.
Lemma 2.3. Assume that F satisfies the conditions (F1) and (F3). Then, there exist $a_{0}, b_{0} \in R$ with $a_{0}>0$ such that

$$
\begin{equation*}
F(x, t, r, s) \geq a_{0}\left(|r|^{\mu}+|s|^{\mu}\right)-b_{0}, \quad \forall x, t, r, s \tag{2.13}
\end{equation*}
$$

Proof. Let r, s be such that $r^{2}+s^{2} \geq R^{2}$. Let us set $\varphi(\xi)=F(x, t, \xi r, \xi s)$ for $\xi \geq 1$. Then,

$$
\begin{equation*}
\varphi(\xi)^{\prime}=r F_{r}(x, t, \xi r, \xi s)+s F_{s}(x, t, \xi r, \xi s) \geq \frac{\mu}{\xi} \varphi(\xi) \tag{2.14}
\end{equation*}
$$

Multiplying by $\xi^{-\mu}$, we get

$$
\begin{equation*}
\left(\xi^{-\mu} \varphi(\xi)\right)^{\prime} \geq 0 \tag{2.15}
\end{equation*}
$$

hence $\varphi(\xi) \geq \varphi(1) \xi^{\mu}$ for $\xi \geq 1$. Thus, we have

$$
\begin{align*}
F(x, t, r, s) & \geq F\left(x, t, \frac{R r}{\sqrt{r^{2}+s^{2}}}, \frac{R s}{\sqrt{r^{2}+s^{2}}}\right)\left(\frac{\sqrt{r^{2}+s^{2}}}{R}\right)^{\mu} \tag{2.16}\\
& \geq c_{0}\left(\frac{\sqrt{r^{2}+s^{2}}}{R}\right)^{\mu} \geq a_{0}\left(|r|^{\mu}+|s|^{\mu}\right)-b_{0}
\end{align*}
$$

for some a_{0}, b_{0}, where $c_{0}=\inf \left\{F(x, t, r, s) \mid(x, t) \in Q, r^{2}+s^{2}=R^{2}\right\}$.
Lemma 2.4. Assume that F satisfies the conditions (F1), (F2), and (F3). Then,
(i) $\int_{Q} F(x, t, 0,0) d x d t=0, \int_{Q} F(x, t, u, v) d x d t>0$ if $(u, v) \neq(0,0)$,

$$
\operatorname{grad}\left(\int_{Q} F(x, t, u, v)\right) d x d t=o\left(\|(u, v)\|_{E}\right) \text { as }(u, v) \rightarrow(0,0) ;
$$

(ii) there exist $a_{0}>0, \mu>2$ and $b_{1} \in R$ such that

$$
\begin{equation*}
\int_{Q} F(x, t, u, v) d x d t \geq a_{0}\|(u, v)\|_{L^{\mu}}^{\mu}-b_{1} \quad \forall(u, v) \in E, \tag{2.17}
\end{equation*}
$$

(iii) $(u, v) \rightarrow \operatorname{grad}\left(\int_{Q} F(x, t, u, v)\right) d x d t$ is a compact map;
(iv) if $\int_{Q}\left[u F_{u}(x, t, u, v)+v F_{v}(x, t, u, v)\right] d x d t-2 \int_{Q} F(x, t, u, v) d x d t=0$, then $\operatorname{grad}\left(\int_{Q} F(x\right.$, $t, u, v) d x d t)=0$;
(v) if $\left\|\left(u_{n}, v_{n}\right)\right\|_{E} \rightarrow+\infty$ and $\left(\int_{Q}\left[u_{n} F_{u}\left(x, t, u_{n}, v_{n}\right)+v_{n} F_{v}\left(x, t, u_{n}, v_{n}\right)\right] d x d t-2 \int_{Q} F(x, t\right.$, $\left.\left.u_{n}, v_{n}\right) d x d t\right) /\|(u, v)\|_{E} \rightarrow 0$, then, there exists $\left(\left(u_{h_{n}}, v_{h_{n}}\right)\right)_{n}$ and $w \in E$ such that

$$
\begin{equation*}
\frac{\operatorname{grad}\left(\int_{Q} F\left(x, y, u_{n}, v_{n}\right) d x d t\right)}{\left\|\left(u_{h_{n}}, v_{h_{n}}\right)\right\|_{E}} \longrightarrow w, \quad \frac{\left(u_{h_{n}}, v_{h_{n}}\right)}{\left\|\left(u_{h_{n}}, v_{h_{n}}\right)\right\|_{E}} \rightharpoonup(0,0) \tag{2.18}
\end{equation*}
$$

Proof. (i) It follows from (F1) and (F2), since $1<v$;
(ii) by Lemma 2.3, for $U=(u, v) \in E$,

$$
\begin{equation*}
\int_{Q} F(x, t, U) d x d t \geq a_{0}\|U\|_{L^{\mu}}^{\mu} d x d t-b_{1} \tag{2.19}
\end{equation*}
$$

where $b_{1} \in R$, thus, (ii) holds;
(iii) it is easily obtained with standard arguments;
(iv) it is implied by (F3) and the fact that $F(x, t, u, v)>0$ for $(u, v) \neq(0,0)$;
(v) by Lemma 2.3 and (F3), for $U=(u, v)$,

$$
\begin{gather*}
\int_{Q}\left[u F_{u}(x, t, u, v)+v F_{v}(x, t, u, v)\right] d x d t-2 \int_{Q} F(x, t, u, v) d x d t \tag{2.20}\\
\quad \geq(\mu-2) \int_{Q} F(x, t, u, v) d x d t \geq(\mu-2)\left(a_{0}\|U\|_{L^{\mu}}^{\mu}-b_{1}\right)
\end{gather*}
$$

By (F2),

$$
\begin{equation*}
\left\|\operatorname{grad}\left(\int_{Q} F(x, t, u, v) d x d t\right)\right\|_{E} \leq C^{\prime}\left\|F_{U}(x, t, U)\right\|_{L^{r}} \leq\left. C^{\prime \prime}\| \| U\right|^{v} \|_{L^{r}} \tag{2.21}
\end{equation*}
$$

for some $1<r<2$ and suitable constants $C^{\prime}, C^{\prime \prime}$. To get the conclusion it suffices to estimate $\left\||U|^{\nu} /\right\| U\left\|_{E}\right\|_{L^{r}}$ in terms of $\|U\|_{L^{\mu}}^{\mu} /\|U\|_{E}$. If $\mu \geq r v$, then this is a consequence of Hölder inequality. If $\mu<r v$, by the standard interpolation arguments, it follows that $\left\|\left\|\left.U\right|^{\nu} /\right\| U\right\|_{E} \|_{L^{r}} \leq$ $C\left(\|U\|_{L^{\mu}}^{\mu} /\|U\|_{E}\right)^{\nu / \mu}\|U\|_{E^{\prime}}^{l}$, where l is such that $l=-1+\nu / \mu$. Thus, we prove (v).

Lemma 2.5. Assume that F satisfies the conditions $(F 1),(F 2),(F 3)$, and $(F 4)$. Then, there exist φ, $\psi:[0,+\infty] \rightarrow R$ continuous and such that $\psi(s) / s \rightarrow 0$ as $s \rightarrow 0, \varphi(s)>0$ if $s>0$,
(i) $\left\|\operatorname{grad} \int_{Q} F(x, t, u, v) d x d t\right\|_{E}^{2} \leq \psi\left(\int_{Q} F(x, t, u, v) d x d t\right), \forall(u, v) \in E$,
(ii) $\int_{Q}\left[u F_{u}(x, t, u, v)+v F_{v}(x, t, u, v)\right] d x d t-2 \int_{Q} F(x, t, u, v) d x d t \geq \varphi(u, v), \forall(u, v) \in E$.

Proof. (i) By (F4), for all $U=(u, v) \in E$,

$$
\begin{align*}
\left\|\operatorname{grad}\left(\int_{Q} F(x, t, U) d x d t\right)\right\|_{E} & \leq\left\|F_{U}(x, t, U)\right\|_{L^{r}} \\
& \leq C_{1}\left\|F(x, t, U)^{\delta_{1}}+F(x, t, U)^{\delta_{2}}\right\|_{L^{r}} \\
& \leq C_{2}\left(\left\|F(x, t, U)^{\delta_{1}}\right\|_{L^{r}}+\left\|F(x, t, U)^{\delta_{2}}\right\|_{L^{r}}\right) \\
& \leq C_{3}\left(\left\|F(x, t, U)^{\delta_{1}}\right\|_{L^{1 / \delta_{1}}}+\left\|F(x, t, U)^{\delta_{2}}\right\|_{L^{1 / \delta_{2}}}\right) \\
& \leq C_{4}\left(\|F(x, t, U)\|_{L^{1}}^{\delta_{1}}+\|F(x, t, U)\|_{L^{1}}^{\delta_{2}}\right) \\
& =C_{5}\left(\left(\int_{Q} F(x, t, U) d x d t\right)^{\delta_{1}}+\left(\int_{Q} F(x, t, U) d x d t\right)^{\delta_{2}}\right), \tag{2.22}
\end{align*}
$$

where $1<r<1 / \delta_{1}, 1 / \delta_{2}<2, C_{1}, C_{2}, C_{3}, C_{4}$ and C_{5} are constants. Since $\delta_{1}, \delta_{2}>1 / 2$, we prove (i).
(ii) By (F3),

$$
\begin{gather*}
\int_{Q}\left[u F_{u}(x, t, u, v)+v F_{v}(x, t, u, v)\right] d x d t-2 \int_{Q} F(x, t, u, v) d x d t \tag{2.23}\\
\quad \geq(\mu-2) \int_{Q} F(x, t, U) d x d t \geq(\mu-2)\left(a_{0}\|U\|_{L^{\mu}}^{\mu}-b_{1}\right)
\end{gather*}
$$

Thus, we prove (ii).

3. Variational approach and linking theorem

Now we are looking for the weak solutions of system (1.3). We shall approach the variational method and recall the linking theorem for the strongly indefinite functional. We observe that the weak solutions of (1.3) coincide with the critical points of the corresponding functional

$$
\begin{gather*}
I: E \longrightarrow R \in C^{1,1} \\
I(U)=\frac{1}{2} \int_{Q} \rho U \cdot U d x d t-\frac{1}{2} \int_{Q}(A U, U)_{R^{2}} d x d t-\int_{Q} F(x, t, u, v) d x d t \tag{3.1}
\end{gather*}
$$

Now, we recall the linking theorem for strongly indefinite functional (cf. [4]).
Lemma 3.1 (linking theorem). Let E be a real Hilbert space with $E=E_{1} \oplus E_{2}$ and $E_{2}=E_{1}^{\perp}$. one supposes that
(I1) $I \in C^{1}(E, R)$, satisfies $(P . S .)^{*}$ condition;
(I2) $I(u)=1 / 2(L u, u)+b u$, where $L u=L_{1} P_{1} u+L_{2} P_{2} u$ and $L_{i}: E_{i} \rightarrow E_{i}$ is bounded and self-adjoint, $i=1,2$;
(I3) b^{\prime} is compact;
(I4) there exists a subspace $\tilde{E} \subset E$ and sets $S \subset E, T \subset \tilde{E}$ and constants $\alpha>w$ such that:
(i) $S \subset E_{1}$ and $\left.I\right|_{S} \geq \alpha$;
(ii) T is bounded and $\left.I\right|_{\partial T} \leq w$;
(iii) S and ∂T link.

Then, I possesses a critical value $c \geq \alpha$.
Let E^{-}, E^{0}, E^{+}be the subspace of E on which the functional $U \mapsto(1 / 2) \int_{Q} \mathscr{L} U \cdot U$ is positive definite, null, negative definite, and E^{-}, E^{0} and E^{+}are mutually orthogonal. Let P^{+} be the projection for E onto E^{+}, P^{0} the one from E onto E^{0}, and P^{-}the one from E onto E^{-}. Let $\left(E_{n}\right)_{n}$ be a sequence of closed subspaces of E with the conditions

$$
\begin{equation*}
E_{n}=E_{n}^{-} \oplus E^{0} \oplus E_{n}^{+}, \quad \text { where } E_{n}^{+} \subset E^{+}, E_{n}^{-} \subset E^{-} \forall n, \tag{3.2}
\end{equation*}
$$

(E_{n}^{+}and E_{n}^{-}are subspaces of E), $\operatorname{dim} E_{n}<+\infty, E_{n} \subset E_{n+1}, \cup_{n \in N} E_{n}$ is dense in E.

Let $P_{E_{n}}$ be the orthogonal projections from E onto E_{n}.
Let us prove that the functional I satisfies the linking geometry.

Lemma 3.2. Assume that the conditions (1.5), (1.6), and (1.7) hold. Then, for any F with (F1), (F2), (F3), and (F4),
(i) there exist a small number $\rho>0$ and a small ball $B_{\rho} \subset E^{+}$with radius ρ such that if $U \in \partial B_{\rho}$, then

$$
\begin{equation*}
\alpha=\inf I(U)>0 \tag{3.3}
\end{equation*}
$$

(ii) there is an $e \in E^{+}, R>\rho$ and a large ball D_{R} with radius $R>0$ such that if

$$
\begin{equation*}
W=\left(\bar{D}_{R} \cap\left(E^{0} \oplus E^{-}\right)\right) \oplus\{r e \mid 0<r<R\} \tag{3.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{U \in \partial W} I(U) \leq 0 \tag{3.5}
\end{equation*}
$$

Proof. (i) By (1.7) and (i) of Lemma 2.4, we can find a small number ρ such that, for $U \in E^{+}$,

$$
\begin{align*}
I(U) & =\frac{1}{2} \int_{Q} \rho U \cdot U-\frac{1}{2} \int_{Q}(A U, U)_{R^{2}}-\int_{Q} F(x, t, u, v) d x d t \\
& \geq \frac{1}{2}\left(1-\frac{\sqrt{a b}}{\lambda_{00}}\right)\|U\|_{E}^{2}-0\left(\|U\|_{E}\right) . \tag{3.6}
\end{align*}
$$

Since $\sqrt{a b}<1=\lambda_{00}$, there exist a small number $\rho>0$ and a small ball $B_{\rho} \subset E^{+}$with radius ρ such that if $U \in \partial B_{\rho}$, then $\inf I(U)>0$. Thus, the assertion (1) holds;
(ii) let us choose an element $e \in E^{+}$. Let $U \neq(0,0) \in E^{0} \oplus E^{-} \oplus\{r e \mid r>0\}$. We note that

$$
\begin{align*}
& \text { if } U \in E^{+} \text {, then } \int_{Q}\left(\mathscr{L} U \cdot U-(A U, U)_{R^{2}}\right) d x d t \geq \tau_{1}\|U\|_{E^{\prime}}^{2} \\
& \text { if } U \in E^{-} \text {, then } \int_{Q}\left(\mathscr{L} U \cdot U-(A U, U)_{R^{2}}\right) d x d t \leq-\tau_{2}\|U\|_{E}^{2} \tag{3.7}
\end{align*}
$$

for some $\tau_{1}>0, \tau_{2}>0$. Let us choose a sequence $\left(U_{n}\right)_{n}, U_{n}=\left(u_{n}, v_{n}\right) \neq(0,0) \in E^{0} \oplus E^{-} \oplus\{r e \mid$ $r>0\}$ such that $\left\|U_{n}\right\|_{E} \rightarrow \infty$. Let us set $\breve{U}_{n}=U_{n} /\left\|U_{n}\right\|_{E}$. By Lemma 2.3, we have that

$$
\begin{align*}
\frac{I\left(U_{n}\right)}{\left\|U_{n}\right\|_{E}^{2}} & \leq\|\perp-A\|\left\|P^{+} \breve{U}_{n}\right\|_{E}^{2}-a_{0}\left\|\breve{U}_{n}\right\|_{L^{\mu}}^{\mu}\left\|U_{n}\right\|_{E}^{\mu-2}+\frac{b_{0}}{\left\|U_{n}\right\|^{2}}-\tau_{2}\left\|P^{-} \breve{U}_{n}\right\|_{E}^{2} \\
& =\|\perp-A\| \frac{r^{2}\|e\|_{E}^{2}}{\left\|U_{n}\right\|_{E}^{2}}-a_{0}\left\|\breve{U}_{n}\right\|_{L^{\mu}}^{\mu}\left\|U_{n}\right\|_{E}^{\mu-2}+\frac{b_{0}}{\left\|U_{n}\right\|^{2}}-\tau_{2}\left\|P^{-} \breve{U}_{n}\right\|_{E}^{2} \tag{3.8}
\end{align*}
$$

Since $\left\|U_{n}\right\|_{E} \rightarrow \infty$, two possible cases arise. For the case $\left\|\breve{U}_{n}\right\|_{L^{\mu}} \rightarrow 0$ it follows that $\breve{U}_{n} \rightharpoonup 0$, hence $P^{+} \breve{U}_{n} \rightarrow 0$ and $P^{0} \breve{U}_{n} \rightarrow 0$. Thus $\left\|P^{-} \breve{U}_{n}\right\|_{E} \rightarrow 1$. Hence

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty} \frac{I\left(u_{n}\right)}{\left\|U_{n}\right\|_{E}^{2}} \leq-\tau_{2} \tag{3.9}
\end{equation*}
$$

For the case $\left\|\breve{U}_{n}\right\|_{L^{\mu}} \geq \varepsilon>0$ (3.6) implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{I\left(u_{n}\right)}{\left\|U_{n}\right\|_{E}^{2}}=-\infty \tag{3.10}
\end{equation*}
$$

Thus, we can choose a large number $R>0$ and a large ball $D_{R} \subset E^{0} \oplus E^{-}$with radius $R>0$ such that if $\left.W=\bar{D}_{R} \cap\left(E^{0} \oplus E^{-}\right)\right) \oplus\{r e \mid 0<r<R\}$, then $\sup _{U \in \partial W} I(U) \leq 0$. So the assertion (ii) holds.

We shall prove that the functional I satisfies the $(P . S .)_{c}^{*}$ condition with respect to $\left(E_{n}\right)_{n}$ for any $c \in R$.

Lemma 3.3. Assume that the conditions (1.5), (1.6), and (1.7) hold. Then, for any F with (F1), (F2), (F3), and (F4), the functional I satisfies the (P.S. $)_{c}^{*}$ condition with respect to $\left(E_{n}\right)_{n}$ for any real number c.

Proof. Let $c \in R$ and $\left(h_{n}\right)$ be a sequence in N such that $h_{n} \rightarrow+\infty,\left(U_{n}\right)_{n}$ be a sequence such that

$$
\begin{equation*}
U_{n}=\left(u_{n}, v_{n}\right) \in E_{h_{n}}, \forall n, I\left(U_{n}\right) \longrightarrow c, P_{E_{h_{n}}} \nabla I\left(U_{n}\right) \longrightarrow 0 \tag{3.11}
\end{equation*}
$$

We claim that $\left(U_{n}\right)_{n}$ is bounded. By contradiction we suppose that $\left\|U_{n}\right\|_{E} \rightarrow+\infty$ and set $\widehat{U}_{n}=U_{n} /\left\|U_{n}\right\|_{E}$. Then

$$
\begin{align*}
\left\langle P_{E_{h_{n}}} \nabla I\left(U_{n}\right), \widehat{U}_{n}\right\rangle & =\left\langle\nabla I\left(U_{n}\right), \widehat{U}_{n}\right\rangle \\
& =2 \frac{I\left(U_{n}\right)}{\left\|U_{n}\right\|_{E}}-\frac{\int_{Q} \nabla F\left(x, t, U_{n}\right) \cdot U_{n} d x d t-2 \int_{Q} F\left(x, t, U_{n}\right) d x d t}{\left\|U_{n}\right\|_{E}} \longrightarrow 0 \tag{3.12}
\end{align*}
$$

hence

$$
\begin{equation*}
\frac{\int_{Q} \nabla F\left(x, t, U_{n}\right) \cdot U_{n} d x d t-2 \int_{Q} F\left(x, t, U_{n}\right) d x d t}{\left\|U_{n}\right\|_{E}} \longrightarrow 0 \tag{3.13}
\end{equation*}
$$

By (v) of Lemma 2.4,

$$
\begin{equation*}
\frac{\operatorname{grad}_{Q} F\left(x, t, U_{n}\right) d x d t}{\left\|U_{n}\right\|_{E}} \text { converges } \tag{3.14}
\end{equation*}
$$

and $\hat{U}_{n} \rightarrow 0$. We get

$$
\begin{equation*}
\frac{P_{E_{k_{n}}} \nabla I\left(U_{n}\right)}{\left\|U_{n}\right\|_{E}}=P_{E_{h_{n}}}\left\llcorner\hat{U}_{n}-A \hat{U}_{n}-\frac{P_{E_{k_{n}}} \operatorname{grad}\left(\int_{Q} F\left(x, t, U_{n}\right) d x d t\right)}{\left\|U_{n}\right\|_{E}} \longrightarrow 0,\right. \tag{3.15}
\end{equation*}
$$

so $\left(P_{E_{k_{n}}} \mathcal{L} \widehat{U}_{n}-A \widehat{U}_{n}\right)_{n}$ converges. Since $\left(\widehat{U}_{n}\right)_{n}$ is bounded and $\mathcal{L}-A$ is a compact mapping, up to subsequence, $\left(\widehat{U}_{n}\right)_{n}$ has a limit. Since $\widehat{U}_{n} \rightarrow(0,0)$, we get $\widehat{U}_{n} \rightarrow(0,0)$, which is a contradiction to the fact that $\left\|\widehat{U}_{n}\right\|_{E}=1$. Thus $\left(U_{n}\right)_{n}$ is bounded. We can now suppose that $U_{n} \rightharpoonup U$ for some $U \in E$. Since the mapping $U \mapsto \operatorname{grad}\left(\int_{Q} F(x, t, U) d x d t\right)$ is a compact mapping, $\operatorname{grad}\left(\int_{Q} F\left(x, t, U_{n}\right) d x d t\right) \rightarrow \operatorname{grad}\left(\int_{Q} F(x, t, u, v) d x d t\right)$. Thus, $\left(P_{E_{k_{n}}}\left(\mathcal{L} U_{n}-A U_{n}\right)\right)_{n}$ converges. Since $\mathscr{\perp}-A$ is a compact operator and $\left(U_{n}\right)_{n}$ is bounded, we deduce that, up to a subsequence, $\left(U_{n}\right)_{n}$ converges to some U strongly with $\nabla I(U)=\lim \nabla I\left(U_{n}\right)=0$. Thus, we prove the lemma.

4. Proof of Theorem 1.1

Assume that the conditions (1.5), (1.6), and (1.7) hold and F satisfies (F1), (F2), (F3), and (F4). We note that $I(0,0)=0$. By (iii) of Lemma 2.4, $U \mapsto \operatorname{grad}\left(\int_{Q} F(x, t, u, v) d x d t\right)$ is a compact mapping. By Lemma 3.2, there exists a small number $\rho>0$ and a small ball $B_{\rho} \subset E^{+}$with radius ρ such that if $U \in \partial B_{\rho}$, then $\alpha=\inf I(U)>0$, and there is an $e \in E^{+}, R>\rho>0$ and a large ball D_{R} with radius $R>0$ such that if

$$
\begin{equation*}
W=\left(\bar{D}_{R} \cap\left(E^{0} \oplus E^{-}\right)\right) \oplus\{r e \mid 0<r<R\}, \tag{4.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\sup _{U \in \partial W} I(U) \leq 0 . \tag{4.2}
\end{equation*}
$$

Let us set $\beta=\sup _{W} I$. We note that $\beta<+\infty$. Let $\left(E_{n}\right)_{n}$ be a sequence of subspaces of E satisfying (3.2). Clearly $E^{0} \subset E_{n}$ for all n, and ∂B_{ρ} and ∂W link. We have, for all $n \in N$,

$$
\begin{equation*}
\sup _{\partial W \cap E_{n}} I<\inf _{\partial B_{\rho} \cap E_{n}} I . \tag{4.3}
\end{equation*}
$$

Moreover, by Lemma 3.3, $I_{n}=\left.I\right|_{E_{n}}$ satisfies the (P.S. $)_{c}^{*}$ condition for any $c \in R$. Thus by Lemma 3.1 (linking theorem), there exists a critical point U_{n} for I_{n} with

$$
\begin{equation*}
\alpha \leq \inf _{\partial B_{\rho} \cap E_{n}} I \leq I\left(U_{n}\right) \leq \sup _{W \cap E_{n}} I \leq \beta . \tag{4.4}
\end{equation*}
$$

Since I_{n} satisfies the (P.S. $)_{c}^{*}$ condition, we obtain that, up to a subsequence, $U_{n} \rightarrow U$, with U a critical point for I such that $\alpha \leq I(U) \leq \beta$. Hence, $U \neq(0,0)$. Thus, system (1.5) has a nontrivial solution. Thus Theorem 1.1 is proved.

References

[1] Q.-H. Choi and T. Jung, "An application of a variational reduction method to a nonlinear wave equation," Journal of Differential Equations, vol. 117, no. 2, pp. 390-410, 1995.
[2] S. Chun, Q.-H. Choi, and T. Jung, "Multiple periodic solutions of a semilinear wave equation at double external resonances," Communications in Applied Analysis, vol. 3, no. 1, pp. 73-84, 1999.
[3] Q.-H. Choi and T. Jung, "Multiplicity results for nonlinear wave equations with nonlinearities crossing eigenvalues," Hokkaido Mathematical Journal, vol. 24, no. 1, pp. 53-62, 1995.
[4] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65 of CBMS Regional Conference Series in Mathematics, The American Mathematical Society, Providence, RI, USA, 1986.

