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Bayes' theorem is a vehicle for incorporating prior knowledge in updating the degree of 
belief in light of data. For example, the state of tomorrow's weather can be predicted 
using belief or likelihood of tomorrow's weather given today's weather data. We give 
a brief review of the recent advances in the area with emphasis on high-level Bayesian 
image analysis. It has been gradually recognised that knowledge-based algorithms based 
on Bayesian analysis are more widely applicable and reliable than ad hoc algorithms. 
Advantages include the use of explicit and realistic statistic models making it easier to 
understand the working behind such algorithms and allowing confidence statements to be 
made about conclusions. These systems are not necessarily as time consuming as might 
be expected. However, more care is required in using the knowledge effectively for a 
given specific problem; this is very much an art rather than a science. 
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HIGH-LEVEL BAYESIAN IMAGE ANALYSIS 

In the last fifteen years, statistical approaches to 
image @alysis using the Bayesian paradigm have 
proved to be very successful. Initially, the method- 
ology Nas primarily developed for low-level image 
analysis but is increasingly used for high-level tasks. 

Usin4 the Bayesian paradigm one requires a prior 
model which represents our initial knowledge about 
the objqcts in a particular scene and a likelihood 
model virhich is the joint probability distribution of 
the image, dependent on the objects in the scene. 
By us in^ Bayes' theorem, we obtain the posterior 

distribution of the objects in the scence, which can 
be used for inference, e.g. segmentation and object 
recognition. 

In low-level image analysis, the prior could be 
say an Ising model, specifying that nearby pix- 
els will tend to have similar grey levels, i.e. the 
scene is composed mainly of large homogeneous 
objects. See, for example, Besag (1986), Geman 
and Geman (1984) and Grenander (1993) for details 
of the methodology. Indeed, this approach is often 
referred to as a 'context'-based approach in the 
remote-sensing literature where the use of 'context' 
means that neighbouring pixel information has been 
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used (e.g. Gong and Howarth, 1992; Dattatreya, 
1991; Masson and Pieczynski, 1993). Here we shall 
use 'context' to mean neighbouring object informa- 
tion, an approach concentrating on high-level image 
analysis tasks such as object recognition. However, 
neighbouring pixel information will still be incorpo- 
rated in the image model. 

An appropriate method for high-level Bayesian 
image analysis is the use of deformable templates 
pioneered by Grenander and his colleagues, and our 
description follows the common theme of Mardia 
et al. (1995). We assume that we are dealing with 
problems where we have prior knowledge on the 
composition of the scene to be able to formulate 
parsimonious geometric descriptions for shapes in 
the images. For example, in medical imaging, we 
can expect to know what the image contains, e.g. 
heart, brain scans, etc. Consider our prior knowl- 
edge about the objects under study to be represented 
by a parameterised ideal prototype or template So. 
Note that So could be a template of a single object 
or of many objects in a scene. A probability distri- 
bution is assigned to the parameters with density 
(or probability function) n(S), which models the 
allowed variations S of So. Hence, S is a random 
vector representing all possible templates with asso- 
ciated density n(S). It is through the prior model 
that we can express the contextual knowledge - for 
example, in face recognition, the location of the 
mouth must be approximately half-way between the 
eyes but not on the same level. Here S is a function 
of finite number of parameters, say 01, . . . , 8,. We 
will denote S by S(@, . . . , &). 

In addition to the prior model, the image model 
or full description of image is required. Let the 
observed image F be the matrix of grey levels x, 
where i = ( i l ,  i2) E (1, . . . , N } ~  are the N x N 
pixel locations. This image model or likelihood is 
the joint probability density function of the grey 
levels given the parameterised objects S, written as 
L(FIS). It expresses the dependence of the observed 
image on the deformed template. It is often conve- 
nient to generate an intermediate synthetic image 
G = {g,, i = 1, . . . , N2}  which specifies how the 
parameterisation of S determines an image. The 

specification could be the mean grey value in a 
region or texturing within regions, and may need 
to take into account aspect and occlusion in projec- 
tions of three-dimensional objects. The intermediate 
image may be generated deterministically written as 
G(S) or probabilistically according to the density 
n(G1S). The observed image F differs from G due 
to, for example, noise or blurring and so does not 
depend directly on S, except through G, so that 
L(F1G) = L(FIG, S). In many applications G is 
the reconstructed 'true' image and S is the interpre- 
tation. Texture is usually modelled adequately by a 
MRF (Markov random field) with a suitable choice 
of the MRF parameters for each object. Hence, in 
general it is possible to summarise each image fea- 
ture by a unique set of texture and shape parameter 
values. 

By Bayes' theorem, the posterior density 
n(S, G J F )  of the deformed template S and 
generated image G, given the observed image F is 
proportional to 

if the intermediate image is generated stochastically, 
and 

L(FI G(S))n(S) (2) 

if deterministic. Note that sometimes the construc- 
tion of an intermediate image is not necessary and 
we have 

n(S(F)  cc L(FIS)n(S). (3) 

In all these cases the solution to maximising the 
expression with respect to S and G is the maximum 
a posteriori (MAP) estimate of the true scene. The 
MAP is found either by a global search (which is 
often impractical due to the large number of param- 
eters) or by techniques such as simulated annealing 
(Geman and Geman, 1984) or iterative conditional 
modes (ICM) (Besag, 1986). Alternatively, Markov 
chain Monte Carlo (MCMC) algorithms provide 
efficient techniques for simulating from any arbi- 
trary posterior density. 

First, details on the different aspects of prior 
information are given followed by discussion of 
the intermediate image G. Then we describe an 
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MCMC procedure with illustration of a simple 
exampl based on a circle which underlies practical 
exampl s, e.g. the iris of the human eye, mushroom, 
pellet, 1 tc. This is followed by recent methods 
on mul(tip1e objects with occlusions and then a 
discussi/on of data fusion. We end with a general 
discussibn. 

PRIOR MODELS FOR OBJECTS 

The kep to successful inclusion of context in 
Bayesiap image analysis is through specification 
of the p ior  distribution. Many approaches have 
been droposed, including methods based on 
outlines! landmarks, geometric parameters and 
Gibbs' distributions. The prior can be specified 
either tl'prough a model with known parameters or 
with paq'ameters estimated from training data. 

Grenqnder and co-workers have constructed a 
general Gtatistical framework for image understand- 
ing usiqg deformable templates. Most frequently, 
they spqcify a series of points around the outline of 
the objqct and these are connected by straight-line 
segmends. Variability in the template is introduced 
by prerQultiplying the line segments by random 
scale-rotation matrices. 

A fe$ of the many applications considered by 
~renan*'s group include identification of leaves in 
noisy ir+ages with landmarks at points of high cur- 
vature l$ Knoerr (1988) and models for chairs and 
human $tomaches (Grenander and Keenan, 1989). 
Mardia pt al. (1 99 1 )  review certain aspects of this 
work anp give the corresponding distribution of the 
conditiobal autoregressive model on the landmarks. 
Kent et ~ 1 .  (1996) give details of the underlying con- 
ditional cyclic Markov random field. 

Sometimes it may be convenient to take a num- 
ber of ekpally spaced points around the outline of 
the object with no identifiable features. Grenander 
and Miller (1994) use this method for locating mito- 
chondriq on micrographs. In this case they assume 
a block eirculant Toeplitz covariance matrix for (u l ,  

vl, . . . , k, v ~ ) ~  to construct a Gaussian model. Here 
(u,, v,) 1 represents the jth edge of the outline the 

object in ?X2. A feature of this application was 
that the number of mitochondria in the image was 
unknown and so a random number of objects was 
included in the parameterisation. Green (1996), Bad- 
deley and van Lieshout (1994) and Mardia et al. 
(1997) also consider Bayesian models with unknown 
numbers of objects (see below). 

Another approach is of Cootes and his colleagues 
where principal components are used to construct 
a prior model when training data is available. We 
formulate their principal component model for a 
configuration X(2k x 1) of k landmarks in !X2 as 

where yi - N(0, hi), E - N 2 ~ ( 0 ,  021), 
independently and the vectors yi satisfy 

and hl 2 h2 2 . . . , > A,,. In addition, for invariance 
under rotation by 90" and for translation, the vectors 
yi satisfy respectively 

T y, v = 0 and y:(l,O, . . .  , 1,O) = 0, 

where v = (-PI, al, . . . , -Pk, a k ) T  with p = (a ] ,  
P I , .  . . , ak, ~ k ) ~ .  Here p 5 k and p is preferably 
taken to be quite small. Note that this approach 
allows us to give a model for flexible varying 
shapes, with often interpretable principal compo- 
nents. The interpretation of each component can be 
visualized by varying y, in equation (4) while fixing 
the other yj = 0, j # i. In practice, the popula- 
tion parameters must be estimated from a random 
sample. 

GEOMETRIC PARAMETER APPROACH 

An alternative approach is to provide a geometric 
template for S consisting of parametric components, 
e.g. line segments, circles, ellipses, arcs, etc. For 
example, Ripley and Sutherland (1990) use a circle 
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of random radius for the central disc of galaxies. 
Also, Phillips and Smith (1993) use simple geomet- 
ric shapes for facial features, following Yuille (1991) 
and Yuille et al. (1992). Baddeley and van Lieshout 
(1994) use circular templates to locate pellets in an 
image, where the number of pellets is unknown (see 
also below). 

In these models, distributions are specified for 
the geometrical parameters, and the hierarchical 
approach of Phillips and Smith (1993) seems par- 
ticularly appropriate for context-based vision. Often 
templates are defined by both global and local 
parameters. The global parameters are on a more 
coarse scale and the local parameters give a more 
detailed description. The idea of a hierarchical 
model for templates is to specify the marginal dis- 
tribution of the global parameters and a condi- 
tional distribution for the local parameters given the 
global values. This hierarchical division of parame- 
ters can be extended to give a complete description 
of the local dependence structure between variables. 
Hence, conditionally, each parameter depends only 
on variables in the levels immediately above and 
below it. 

In general, we assume that templates can be 
summarised by a small number of parameters 8 = 
(0,. . . . , 0,) say, where variation in 8 will produce 
a wide range of deformations of the template. By 
explicitly assigning a prior to 8, we can quantify the 
relative probability of different deformations. The 
prior can be based on training data which may not 
be large. By simulation, we can check the possible 
shapes that could arise. 

For example, consider the mouth template of 
Phillips and Smith (1993) after Yuille et al. (1992). 
They use marginal normal distributions for (x, y) 
(location), 6, (rotation), b (half the width) and con- 
ditional normal distributions for alb (height given 
half-width), cla (depth given height) and d ( u  (cur- 
vature of parabola given height). Here x, y ,  6 and b 
are global, a is intermediate, and c and d are local. 

In more complicated image scenes where several 
templates are required, the organisation of the tem- 
plates can be considered at a higher level of hierar- 
chy. For example, there may be nesting relationships 

between the templates, which are subject to con- 
straints. For example, with human face templates 
there are global constraints such as the require- 
ment that the eyes, mouth and nose must be strictly 
contained within the head boundary, but this is 
deterministic not stochastic. We now discuss a spe- 
cific example relating to a mushroom but it could 
be the iris of an eye in medical context. 

MUSHROOM TEMPLATE MODEL AND ITS 
PRIOR DENSITIES 

For simplicity, we regard a mushroom as a circle 
(Mardia 1996). A simple two-dimensional template 
for a circle requires centre (Q1, 02) and log radius 03. 
This is also a small component of the eye template 
(see Yuille 1991; Phillips and Smith, 1993). Here 
we have three parameters. 

Next we discuss the prior distribution for 8. For an 
image F of size N x N, say, it is simplest to take 
(dl, 02) to be uniformly distributed over the square 
0 < O1 < N, 0 < 02 < N so that the density 
of (&, 82) is simply 1 1 ~ ~ .  Suppose the radius r 
has prior mean p with variance c2 .  Since r > 0, 
it is preferable to model O3 = logr by a normal 
distribution N(1og p ,  a2 /p2 )  since approximately 

var (H3) = (d log r/ d r):=p var(r) = a2 /p2 .  

That is, d3 has a lognormal distribution. Then the 
joint probability density function of 8 is 

pL n* (8) = C expi- - (d3  - log p)2}.  
2a2 

0 < Q , ,  02 < N, 63 > 0. ( 5  1 

Note that the model can be viewed as hierarchical 
in the sense that we can write it as 

so that the 'global' parameters (the location GI, 02) 
are followed by the 'local' parameter (the log radius 
Q3). This hierarchy is not very relevant here since 
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dependent of 61 and 02, but in general it is 
to describe location, scale and orientation 

parameters and other parameters as local 

THE INTERMEDIATE IMAGE G 

When (~bjects are characterised by a grey-level pat- 
tern ag well as a shape, this information may be 
incorpdrated by generating an intermediate image 
G whiah adds grey levels to the shape. One way of 
doing @s is to use a typical grey-level image of the 
object, called a grey-level template Go, which medi- 
ates beltween S and G. For example, if S specifies 
a defollpnation of the image plane, then G could be 
the co4esponding deformed version of Go. Another 
way ofgenerating G is by filling regions determined 
by S d t h  characteristic grey-level patterns. 

The* are at least three distinct approaches in 
the arep of grey-level templates, eigenfaces, inter- 
polatio+ with control points (e.g. pair of thin-plate 
splines and finite elements) and warping without 
controlpoints (Fourier deformation; see Amit et al., 
1991). ,An entirely different method of generating 
G is b(y parametric grey-level surfaces. We will 
describe some of these approaches. For details of 
these other approaches, see Mardia et al. (1995). 

Defor4ed Grey-level Template Image 

Mardiaand Hainsworth (1993) work with a template 
image, Go, which is a typical (or average) grey-level 
image $f the object and contains a set of labelled 
landmajks. The coordinates of the observed image 
are madped to the coordinates of the template image 
to make the corresponding landmarks coincide. A 
pair of Uhin-plate splines (Bookstein, 1989) provides 
the defqrmation @ and we have the generated image 
g(t) = &,(@(t) ) ,  where g and go are grey levels of 
the image G and Go, respectively. 

Here S(8) contains the parameters 8 as the land- 
marks Alus a deformation parameter controlling the 
level of deformation. Changes in So are due to land- 

hich enclose a region. Once we go from So 
eformation of Go to G is induced. 

FIGURE 1 Textured image of a mushroom 

Parametric Grey-level Image 

In G, bivariate surfaces of grey level positions may 
be used to assign grey levels to pixels. Ripley and 
Sutherland (1990) use a function which looks like 
the bivariate normal distribution for pixels inside the 
central disc of a galaxy. This model represents the 
decay of starlight away from the centre of the disc. 

We explain a texture model with a simplified 
mushroom as an example. Recall that a mushroom 
is a circle, so that the circle So contains a circle of 
radius 1 centred at the origin. Here S is the shifted 
scaled circle. In other examples, proper deformation 
will be allowed. We now allow 'texture' for the 
mushroom in Figure 1. The texture can be modelled 
in S by the surface 

where the site i = (il, i2), (el, 62) denotes the 
centre and t,, . . . , r6 are the regression parameters. 
These parameters in practice are fitted, e.g. by the 
least squares method. We will discuss this example 
further below. 

INFERENCE 

Inference about the scene is made through the 
posterior distribution of S obtained from equations 
(1)-(3). The full range of Bayesian statistical 
inference tools can be used and, as stated above, 
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the maximum of the posterior density (the MAP 
estimate) is most frequently used. Depending on 
the number of parameters, maximisation techniques 
such as a steepest ascent algorithm or simulated 
annealing could be straightforwardly used. Also, 
MCMC methods may be useful (e.g. Smith and 
Roberts, 1993; Green, 1996; Besag et al., 1996) or 
approximations to the maxima such as ICM (Besag, 
1986) could be used. There may be alternative 
occasions when particular template parameters are 
of great interest, in which case one would simulate 
the appropriate marginal posterior densities through 
MCMC (Phillips and Smith, 1993). 

We illustrate these ideas through the mushroom 
example discussed before. Let us denote the circle 
template by S(Q) which segments the image into two 
regions: inside the circle S and outside S. Suppose 
the image is subject to observational noise. The 
simplest possible model is 

where x, r !R2 denotes the 'grey level' at the ith pixel 
in an N  x N grid. In the simplest version of the 
model, we suppose that the t are independent 

N ( 0 ,  r:) if i E S and N(0, s f )  if i @ S. 

The parameters ( v l ,  7:) and (v?,  r i )  summarise 
the textural difference between the object S and its 
background. Hence 

More realistic models might include autocorrelation 
between the errors or an allowance for blurring or 
both. 

Posterior Density 

By Bayes' theorem, the posterior density of S given 
the data n is 

Hence we get 

n ( W )  

with support 0  < 01,  Q2 < N,  O3 > 0. One possi- 
ble estimate of 8 is given by the mean of 8 when 
the posterior distributions of 8lx. One way to cal- 
culate this mean is by a simulation method which 
does not depend on the complicated normalising 
constant in ~ ( 8 1 ~ ) .  (For discrete values of Q1, 02 
and Q3, a grid search is an alternative approach.) 
We now describe an iterative procedure using the 
Hastings-Metropolis algorithm. This procedure gen- 
erates a Markov chain whose equilibrium distribu- 
tion is the posterior distribution of 81x. 

For simplicity write n(8/x) as n(8) for this dis- 
cussion, and choose an arbitrary initial estimate of 
8. Then at each iteration, generate en,,, a new set of 
values from 

N(Oold, C), C = diag (of, a;, a:). say, 

with density 

where cold denotes the value of 8 at the previous 
iteration. This distribution is called the 'proposal' 
distribution and its parameters a:, o:, oi should be 
chosen to approximately match the variance of the 
posterior distribution. Calculate the 'Hastings ratio' 

where now 
r 
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for 0 < Qnew,l, Qnew,2 < N, Onew,3 > 0. Note that here 
the pro osal density is symmetric, g(801d18new) = 

g(8newl old), SO that p = n(&ew)/r(801d). 
We ccept 8 = One, with probability min (1, I 

p) othqrwise keep 8 = cold, i.e. if p > 1, we 
take 8 = One, whereas if p < 1, we perform a 
further randomization by drawing a random sample 
from ufiiform (0, l), and accept 8 = One, with 
probability p.  Typically, a bum-in period is allowed 
in initiall simulations and the average is taken of the 
remainibg simulations. 

For $is MCMC algorithm to work in practice, 
we need suitable choices for a ' s  so that the proposal 
density hill roughly approximate the posterior distri- 
bution. Also we need to judge when convergence has 
taken place. (See Besag et al., 1996; Green, 1995.) 

Aboqe, we have updated all components of 8 at 
once. Alternatively, it is possible to update the com- 
ponents of 8 one at a time using individual proposal 

densitie6 g, (@new, l e ~ i d , ~  1, i.e. @ n e w ,  - N(&i,, , a;). 
Hence we change only one component of 8 at a time, 
i.e. in tqm to complete a sweep. For this example, 

where 4, = {@new,k, k < j ,  Ooid,k, k > j } ,  j = 1, 2, 
3. Then we select 8, = $,,,, with probability min 

(1, P, ) .  
For a 32 x 32 mushroom image with 31% clas- 

sificatiop error (vl = 100, v2 = 120, t2 = 400), 
el = 11.27, Q2 = 12.67, r = 8.39 and 100000 
iteratioqs with 100 bum-in iterations, the estimated 
posteriot means of dl, 02 and r were found to be ,. 
i1 = 111.21, 62 = 12.83, i = 8.47 respectively 
with theiir respective standard errors 0.13, 0.15 and 
0.10. The standard errors are the standard deviation 
of the shmpling values of 82, r in the MCMC 
and these represent an upper bound. This example 
highlights the strength of the MCMC method in pro- 
viding ioformation on the whole posterior density. 

MULTIPLE OBJECTS AND OCCLUSION 

Most of his work has been reviewed in terms of one 
templatd However, a scene can be composed of a 

known number of templates or one multiple-object 
template with straightforward adaptation. 

In this section, So will denote a collection of 
different type of objects with S as their deformed 
observed version of S. Similarly, Go will denote 
textured templates from So with their observed 
textured objects G. Again, we will use an illustration 
of the recognition of image of mushrooms (Figure 2) 
arising in robotics in a harvesting situation. Here 
the parameter vector 8 will be denoted by different 
notation depending on its context. 

More difficult is the situation where an unknown 
number of objects are in the scene. The parame- 
ters space is then a mixture of discrete and con- 
tinuous components and suitable techniques based 
on the Bayesian paradigm have been proposed by 
Grenander and Miller (1994) (using jump diffu- 
sions), Baddeley and van Lieshout (1994) (using 
spatial birth-death processes) and Green (1995) 
(using reversible jump MCMC methodology). The 
computational issues are somewhat complicated but 
nevertheless can be dealt with in reasonable compu- 
tational time. 

By suitably specifying the prior model and includ- 
ing penalty terms in the likelihood, issues such as 
overlap of objects or non-allowable neighbouring 
objects could be built into the procedure. Hence, 
the specification of high-level contextual informa- 
tion should be reasonably straightforward, although 
it will be very much application dependent. For 
example, Grenander and Miller (1994) have built 
in penalties to prevent overlapping of mitochon- 
dria on the micrograph images. Mardia et al. (1997) 
have provided an 'integrated' approach for occluded 
multiple objects of different types which we now 
describe. It builds on the work of Baddeley and van 
Lieshout (1994). 

Suppose in the image F with grey levels .x = 

{x,, i E F), there are m objects cl. . . . , c,, (in is 
unknown) which are any combination of q specific 
types (ol, . . . . o 4 ), e.g. q = 3 for circle, ellipse, 
triangle. For simplicity, let us assume initially that 
the objects undergo only similarity transformations 
so that if co is a template then we observe s(co) 
with some error where s denotes a similarity 
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(b) (c) 

FIGURE 2 (a) Mushroom image. (b) Rigid recognition. (c) Deformed recognition 

transformation. For the m objects, c k  is a deformed 
version of sk(c;), k = 1.  . . . , rn. Suppose each 
object c k  (like the mushroom before) has a textural 
information with regression parameters t,. To allow 
for occlusion, let there be an object configuration 
having order @(c) in the scene representing for each 
objective c, what is visible. Then it is possible to 
show that the posterior density will be given as 
(Mardia et al., 1997). 

where a2 is the variance of the Gaussian noise 
present in the image F. Each term in this density 
is the prior information on specific aspects of the 
image which we now describe. 

The first term of equation (11) specifies the 
prior probability density for the pose of an object. 
For simplicity, a single object is considered. Let 
an object be represented by a set of vertices 
{gO(l). . . . . gO(iz)} = co. Its template So can 
represent a number of different types of q objects. 
Then any affine shape s with shift p, scale p and 
rotation 8. given by {sgO(l). . . . , sgO(n)) can be 
described in the polar system by 

sgO(p) = P + I-co + P R ~ ( P ) ( ~ ~ ~ { @ ( P )  + 0). 

sin{B(p) + B))~. 13 = I .  . . . , n ,  (12) 

where p g  + ~ ~ ( p ) ( c o s Q ( ~ ) ,  s ~ n Q ( p ) ) ~  is the 
expression for Therefore the first term in 
equation (1 1) can be written as 

p(slcg) = P ( F  p, 81yo, R') (13) 

where R0 = ( ~ ' ( 1 ) .  . . . . ~ ~ ( 1 2 ) ) ~ .  This function can 
be described as the prior density for the pose of an 
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object. ote that here the parameters 8 consist of p ,  

Sup se if we want to incorporate deformation, 
we can use the following prior which we describe 
for a $ingle object. Consider R(p), the random 
realization of p = 1, . . . , n ,  i.e. 

Then w/: can model sg(p) as R = (R(1), . . . , ~ ( n ) ) ~  
with debsity (Mardia et al., 1997) 

where 4 = (RO(l), . . . , ~ ' ( n ) ) ~ ,  a1 and a;, are two 
deform4tion parameters, h 1 ,, are fixed numbers 
(both uqually taking values one) and reflect the fact 
that the different parts of the object boundary may 
have djfferent degrees of susceptibility to defor- 
mation. Thus {R(p)} is a one-dimensional cyclic 
Markov random field. Therefore the deformed object 
c can bq expressed as c = s(cO) + E  where E is noise, 
dependdnt on a ,  and a2. This constitutes the third 
term in equation (10). 

The $econd prior of the posterior density deals 
with mbdelling the configuration of all observable 
objects kn a scene, where the objects may overlap. 
Recall that there are m objects, ck with centers pk, 
k = 1, . . . , m in the scene. It is possible to express 
the degliee of overlap by the following prior, 

where 2 is the partition function, yl and M are two 
parameters where yl describes the potential for the 

each object and M d(ck, el), the inter- 
tential between neighbouring pairs ck and 

is over all pairs of neighbouring objects 
k < I, i.e. for fixed k, only overlapping 

objects to ck (neighbours) contribute to the sum. It 
should be noted that as yl increases, the number of 
objects decreases whereas when M increases, over- 
lap decreases, i.e. d(.) will increase when the area 
of overlap between two objects increases, which 
means that higher probabilities are allowed for less 
overlapping pairs. For more details see Baddeley 
and van Leishout (1994) and Mardia et al. (1997). 

The next component of the posterior density 
describes the prior for the object order. Since objects 
can overlap each other in a scene, then in an 
object configuration, some objects may not be fully 
observable. Therefore it is natural to represent over- 
lapping objects analytically. Given an image, with 
m objects, it is possible to label the image with an 
order @(c) = (el < c2 < . . . < c,). For example, if 
ck < el, k < I, then it indicates that some part of the 
region observable by c~ is unobservable because it 
is below the region described by el Thus to obtain 
a labelled image y = y(c, @(c)), using this ordering 
the region determined by ck is set to state k and so 
on, i.e. pixels in ck are set to k. 

The next part of the posterior density deals with 
the texture and response functions of objects in an 
image. The labelled image y = y(c, @(c)) has m + 1 
states, with y, = 0 representing background pixel 
and y, = k representing kth object in @(c). Therefore 
there will be (m + 1) response functions f k(i, rk), 
k = 0, 1, . . . , m with parameter vector tk. 

The final part of the posterior density describes 
the likelihood of an observed image x = {x,, i E F ]  
which has an underlying configuration c = (el, 
c2, . . . , c,,) with order @(c). Then the conditional 
density of y given c with order @(c) is expressed 

as ~ ( x l c ,  @(el, t )  = k ~ f  (x~Ic, r), where r 
is the parameter vector of the model. This model 
can be a very general 'blur-free' noise model. For 
simplicity, consider the case of additive Gaussian 
noise x, = f (i, c, @(c), r)  + E,, where the E ,  

are independent Gaussian variables with zero mean 
and variance a h n d  f ( i ,  c, @(c), t) ,  the noise-free 
response function at pixel i. Then the labelled image 
y = y(c, @(c)) with (m + I )  response functions can 
be written for y, = k as x, = f k (i, tk) + E , ,  where 
q ,  k = 0, 1, . . . , m, is the parameter vector for the 



7 2  K. V. MARDIA 

noise-free response function of the kth object in the 
order. The likelihood of x given (c, q5(c)) is 

ltxic, @(c), t, 02)  cx exp { 

We now discuss some other priors. For pose, we 
use the prior for a single mushroom (above) and 
we use a discrete uniform distribution for the radii. 
Regarding the prior for the ordering of objects, we 
will regard all orderings to be equally likely. For 
texture the prior can be taken as uniform on a 
restricted range and the prior for the noise variance 
can be a non-informative prior. 

Recognition Procedure 

This section describes the general strategy for object 
recognition with respect to the above model. The 
recognition process is split into two steps; the first 
will be called rigid or initial recognition and the 
second the deformation of the rigid recognition. 
Rigid recognition: Assume that there is no 
deformation, then the reconstruction stage will 
involve estimating m, cp, s, and the order 
@(sI (c : ) ,  . . . , s,(c:,)). For this process an iterative 
algorithm of Baddeley and van Leishout (1994) is 
used and briefly described below. The modified 
posterior density is then proportional to 

0 [ ~ ~ = ' = , P ( s ~ I c ~ ) I P ( s ~ ( c ~ ) .  k = 1, . . . . ~ ) P ( X I ~ , : ( C ~ ) ,  

@(s~(c:), k = 1, . . . , m)). (17) 

Consider a new object (s, cO) with (s, co) # ( sk ,  
c:), k = 1, . . . , m. The decision to accept or delete 
the new object thus modifying or keeping the object 
ordering depends if the likelihood increases. (This 
algorithm can be described as iterative conditional 
ascent (ICA) algorithm.) That is, accepthsert a new 
object c0 if 

0 
log[P((sk, c i ) ,  k = 1, . . . , m, c , @(nem)Ix)/'P((s~, 

0 
ck), k = 1 . . . 9 m, @(cur) Ix)I > to 

rejecddelete the old object cy if 

log[P((sk, ck), k = 1, . . . . i - 1, i + 1, . . . , m. 

41 lx)/P((sk, ck), i = 1, . . . , m, @(cur)ix)l > to3 

where to  is a threshold which is selected empiri- 
cally by trial and error, is the current value 
of @(c), and @, is @ after deleting object i. Thus a 
new order @(c) with its corresponding configuration 
is obtained. More details can be found in Mardia 
et 01. (1997). The steps can be implemented using 
either the coordinate-wise optimisation or the steep- 
est ascent method. 
Deformation of the rigid recognition: Using the 
information obtained from the initial recognition 
process, the deformed recognition is carried out 
by deforming the objects using the prior given by 
equation (4). In the above procedure, the parameters 
al ,  a2, y1, y2, tr have been assumed to be known. 
To estimate these parameters, the general iterative 
procedure of Baddeley and van Lieshout (1994) can 
be employed at appropriate stages leading to either 
a pseudo-likelihood estimator or a maximum likeli- 
hood estimator. Full details are given in Qian and 
Mardia (1995). 

Mushroom recognition 

Consider an image of mushrooms in a growing bed 
(Figure 2), captured by a video camera. The res- 
olution is of 512 x 512 and each pixel is repre- 
sented in one of the 256 grey levels. The following 
assumptions are made: (a) the mushroom surfaces 
can be modelled by response functions given before 
by equation (6); (b) the mushroom boundaries are 
deformed versions of the circle so there is only 
one pure object; (c) all pixels are possible locations, 
with seven possible radii, ranging from 11 pixels 
to 17 pixels; and (d) the interaction function in the 
object process is given by 

d(Pi 3 ~ j )  

IIPi - P,iIl 
7 I IIPi-PjII < P i + ~ j  

0, otherwise. (1 8) 
As seen in Figure 2(a), mushroom surfaces 

occupy a large part of the image frame. The 
initial recognition process was carried out from 
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the c nfiguration of an empty set, which gave 
the es imate of the background grey level to be 
very 1 ge. The iterative process was carried out as I 
followb: For each pixel, the average of observations 
over its 24 neighbours in a 5 x 5 window was 
calculqted and if this average was > 100, a 
mushr~om of size 14 at this pixel was assigned. If 
the di$tance between two such mushrooms was < 
7, ona of them was deleted at random. Thus an 
arbitrm order for these mushrooms was obtained 
and a corresponding labelled image was created. 
Using the method of least squares, the regression 
coefficbents were estimated. The two parameters 
yl and y2 in the Markov object process (equation 
(15)) *ere both set to 100, since there were many 
overlatping objects. The value of to = 10 was 
select@ after trial and error. 

Figqre 2(b) shows the result of the above pro- 
cedure after ten iterations. In fact, the restored 
configlpration does not change after six iterations. 
From $igure 2(b) it was observed that almost all the 
mushr@oms were picked out at approximately the 
right 18cations. Therefore their deformations in the 
recogdtion procedure were considered, but without 
addingfdeleting any object. A search around each 
current mushroom to find the best location, the best 
size add the best order was done. The initial order 
of the configuration is that shown in Figure 2(b). 
The two deformation parameters a1 and a2 are both 
set to qe 1. The result after three iterations is shown 
in Figqre 2(c). Note that satisfactory results of loca- 
tions qnd sizes have been obtained, as well as the 
boundqries of those mushrooms. In particular, from 
these r$constructions we can now obtain the size dis- 
tributiqn of the mushrooms. Further work involves 
making the algorithm more efficient as well as use 
of an MCMC method in estimating the size distribu- 
tions of mushrooms, etc. from the posterior density. 
Again, note that the same technique applies to mul- 
tiple objects as in cell recognition. 

DATA FUSION 

Specia! problems arise in fusing different modalities. 
Hum ejt al. (1996) and Mardia et al. (1996a) have 

given a review as well as proposing a method of fus- 
ing images assuming that they are already registered. 
The algorithm is developed within a hierarchical 
Bayesian framework and modelled using a Markov 
random field (MRF). There are three stages to the 
hierarchy. At the highest level, it is assumed that 
there exists a super-population image, Z, which is a 
fused classification image, and can be described as 
the 'truth underlying the data'. The prior knowledge 
that the ground truth is a classified image can be 
modelled by the Ising model, with a smoothing 
parameter, b say. The second level of the hierarchy 
contains ideal images, Xi, which are essentially the 
super-population image observed under M different 
modalities. Finally, the lowest level represents the 
data images, Yi, which are ideal images that have 
been degraded in some way due to the process by 
which the data are recorded. A Gaussian form is 
used to model the relationship between each level 
of the hierarchy. The full posterior density is, 

where i = 1, . . . , M ,  < i, j > sums over the eight 
neighbours of pixel i and o2 and y2 represent the 
signal noise variance in the data and error variance 
of the super-population image respectively. H is a 
simple blurring kernel applied to pixels in the ideal 
images and K is a mapping operator which enables 
the comparison of pixels in the ideal images with 
groups on pixels in the fused image. The solution 
can be found through iterative conditional modes 
(ICM). 

The method is illustrated using a pair of medical 
images - Two magnetic resonance images (MRI) 
obtained from different acquisition techniques. 
Figures 3(a) and (b) show two MRI data-scan 
images of size 256 x 256 obtained using different T I  - 
and T2-weighted spin echo acquisition, respectively. 
It can be seen that the contrast between the tissue 
types, white and grey matter, is different for each 



K. V. MARDIA 

FIGURE 3 Observed Magnetic resonance images: (a) observed 256 x 256 MRI; (b)  observed 256 x 256 MRI; (c) final classification: 
(d) reconstruction for first modality; (e) reconstruction for second modality. 
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F I G U M  4 Classification showing breakdown of individual classes: (a) classes Z (512 x 512 pixels); (b) 'air'; (c) 'skull'; (d) 'CSF'; 
(e) 'grey matter'; (f) 'white matter'. 
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image and that the cerebrospinal fluid (CSF) (dark 
grey regions in Figure 3(a)) seems more defined in 
Figure 3(a) than in (b), due to the contrast between 
the CSF and the surrounding tissue. Figures 3(d) and 
(e) show the intermediate ideal images and the final 
fused classification image is given in Figure 3(c). 
The individual classes of the fused image Figure 
3(c) have been given in Figures 4(b)-(0 and these 
represent the classes air, skull, CSF, grey matter and 
white matter, respectively. 

DISCUSSION 

We have concentrated on some aspects of high- 
level imaging with parametric deformable templates. 
There are various other developments such as for 
image sequences (see, for example, Mardia et al., 
1992 and Phillips and Smith, 1993). Special prob- 
lems arise such as in functional imaging. Perfor- 
mance of methodology and robust methods for 
imaging is another area (see Haralick and Meer, 
1994). Various consortiums are developing a human 
atlas (see Grenander and Miller, 1994). There is con- 
siderable statistical advances in tomography recon- 
struction problems (see Green, 1994). For other 
advancements see, for example, Mardia and Kanji 
(1993), Mardia (1994), Mardia and Gill (1995) and 
Mardia et al. (1996). 

For recent work on non-parametric deformable tem- 
plates see Jain et al. (1996) and for graphical templates 
for model registration see Amit and Kong (1996). For 
vehicle segmentation and classification using para- 
metric deformable templates see Mardia et al. (1992) 
and Dubuisson Jolly et al. (1996). The discussion 
paper by Besag et c d .  (1996) on MCMC methods is 
highly recommended. A new innovation in the MCMC 
strategy is exact sampling with coupledMarkov chains 
of Propp and Wilson (1996) which describes on its 
own when to stop and that outputs sample in exact 
accordance with the desired distribution. 
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