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Classic multidmg resistance (MDR) is a phenomenon by which cells nonspecifically 
extrude noxious agents from the cytoplasm before lethal concentrations build up. Some 
chemotherapeutically treated tumors exhibit these same dynamics. In tumor systems, the 
most common mechanism of facilitating MDR is the upregulation of the P-glycoprotein 
pump. This protein forms a transmembrane channel, and after binding the chemotherapeu- 
tic agent and 2ATP molecules, forces the noxious agent through the channel. Hydrolysis 
of ATP to ADP provides the energy component of this reaction. General mathematical 
models describing drug resistance are reviewed in this article. One model describing the 
molecular function of the P-glycoprotein pump in MDR cell lines is developed and pre- 
sented in detail. The pump is modeled as an energy-dependent facilitated diffusion process. 
A partial differential equation is linked to a pair of ordinary differential equations to form 
the core of the model. To describe MDR reversal, the model is extended by adding an 
inhibitor to the equation system. Equations for competitive, one-site non-competitive, and 
allosteric non-competitive inhibition are then derived. Numerical simulations have been 
run to describe P-glycoprotein dynamics both in the presence and absence of inhibition, 
and these results are briefly reviewed. The character of the pump and its response to 
inhibition are discussed within the context of the models. 
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INTRODUCTION 

In vitro experiments with tumor cell lines have 
revealed a series of very complicated mechanisms, 
both at the genetic and biochemical levels, 
that can account for drug resistance (Curt, 
et al., 1984; Schimke, 1984; Harris, 1984; Marx, 
1986; Wan and Atlunson, 1988). The most 
common include: (1) decreased drug uptake into 

the cytoplasm, (2) increased drug efflux from the 
cytoplasm, (3) increased degradation/metabolism of 
drug, (4) upregulation of the drug target, and 
(5) alteration in the drug target's biochemical 
properties. While some cells may become resistant 
to only single agent, in some cases a cell line 
may become resistant to many agents which are 
structurally and mechanistically diverse. This latter 
form of drug resistance is called multiple or 
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pleiotropic drug resistance (Pastan and Gottesman, 
1987; Moscow and Cowan, 1988; Gottesman and 
Pastan, 1988; Croop et al., 1988). 

Classical multidrug resistance (MDR) falls into 
this category, and the mechanism underlying it 
involves the overexpression of an energy-dependent 
efflux pump that spans the plasma membrane (Ling 
and Thompson, 1974; Juliano and Ling, 1976; Inaba, 
et al., 1979; Tsuruo, et al., 1982; Kartner et al., 
1983). The pump is a transmembrane glycoprotein 
referred to as p170 or P-glycoprotein. In the labora- 
tory, one often finds that stepwise selection of cells 
with one agent, say doxorubicin, leads to the genera- 
tion of a cell line that is also resistant to other natural 
product agents including anthracyclines, vinca alka- 
loids, podophyllotoxins, and colchicine (reviewed 
by Pastan and Gottesman, 1987; Gottesman and Pas- 
tan, 1988). The resultant cell line often expresses an 
active P-glycoprotein pump. 

Coincident with the development of the experi- 
mental data, a considerable amount of mathemat- 
ical theory has evolved to describe it. Therefore, 
to describe a particular model of the P-glycoprotein 
pump in detail (see below), I have decided to 'zoom 
in' on the appropriate models of MDR by mov- 
ing from the general case, the emergence of resis- 
tance, to models of tumor-wide resistance, to models 
of cellular resistance, to models of MDR and its 
reversal. 

GENERAL MODELS OF DRUG RESISTANCE 

Stochastic Models of Emergence 

Given the complexities in both definition and 
characterization of drug resistance, it has been 
difficult to develop manageable mathematical 
models to describe its emergence. Goldie and 
Coldman have proposed some of the most notable 
examples (Goldie and Coldman, 1979, 1984; Goldie 
et al., 1982; Coldman and Goldie, 1983; Coldman 
et al., 1985). Their models are phenomenological, 
in that they predict that single-agent resistance is 
a population-wide phenomenon, and depends upon 
an unspecified underlying genetic mutation. They 

predict that the frequency of cross-resistance to 
several agents is the product of the individual 
underlying single mutation frequencies, and account 
for multiple resistance on the tumor level in this 
manner. Additionally, in their earliest work, they 
assumed that 'resistant' meant completely resistant, 
i.e. that no clinically acceptable level of drug could 
kill the resistant subclone. This assumption has been 
relaxed in subsequent models. 

Simple analyses highlight the limitations of this 
model. Assume a small viable mutation rate (i.e. 
1 mutation in lo6 mitoses). Tumors presenting at 
an early clinical stage (approximately 1 cm3) con- 
tain between 10' and lo9 cells. Therefore, these 
tumors have negligible chance of being homoge- 
neously chemosensitive. However, the likelihood is 
that multiply resistant subpopulations have not yet 
had a chance to emerge and grow. If one assumes, as 
Goldie and Coldman once did, that resistant cells are 
totally resistant, then one must conclude that upon 
presentation, the chances of curing any moderately 
sized tumor depend strictly on finding the correct 
combination of chemotherapeutic agents to over- 
come the singly resistant subclones that are present 
in that particular tumor. 

Goldie and Coldman address multiple drug 
resistance on the cellular level incidentally. They 
assume that individual subpopulations emerge 
independently, and that these subclones are resistant 
to structurally different drugs. MDR is then quite 
rare, the product of two independent mutations, 
yielding a cell that is doubly mutated. It is not 
a dynamic process and cannot evolve within one 
particular resistant subpopulation under selection 
pressure. Therefore, on a cellular level, the odds 
of achieving resistance to three or more drugs are 
astronomical. Thus, in their model, resistance to 
an array of drugs is a tumor-wide, not cellular, 
phenomenon. 

Day (1986) extended Goldie and Coldman's work 
to include asymmetry in growth, mutation, and death 
rates to show that in multiply resistant tumors, 
optimal treatment is always achieved with multi- 
ple drug regimens, and that the sequencing strategy 
employed depends upon the underlying transition 
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rates established independently for each subpopu- 
lation. However, Day states quite clearly that this 
type of model may be insufficient when considering 
MDR as expressed by the P-glycoprotein pump. 

Deterministic Models of Therapy 

Like the stochastic models outlined above, the deter- 
ministic models that portray drug resistance math- 
ematically define 'resistance' as a classifier, i.e. 
cells are either 'sensitive' or 'resistant'. There is no 
attempt to represent drug resistance as a continuous 
variable over a spectrum of response. The models 
usually define a resistant subpopulation in generic 
terms, e.g. by a decreased death rate in the presence 
of drug. Overall tumor growth is modeled as a pro- 
cess in which the two populations vie for survival in 
a hostile (drug-treated) environment. None of these 
models directly describes resistance mechanistically 
on the molecular level. 

In three related papers (Hokanson, et al., 1986; 
Birkhead et al., 1986; Gregory, et al., 1988) the 
rate of tumor growth and overall tumor volume 
at the time of presentation are used as predictors 
of response in the presence of single-drug ther- 
apy. However, the authors state explicitly that their 
original intention was to describe resistance phe- 
nomenologically, and that no attempt was made 
to model it mechanistically. As a case in point, 
they assumed that sensitivity and resistance are non- 
acquirable traits, fixed in an altering environment. 
This kind of assumption totally ignores the effects 
of gene amplification as seen in dihydrofolate reduc- 
tase (DHFR) upregulation in methotrexate treated 
tumors (Schimke, 1984), and no explicit definition 
or attempt to model MDR as a molecular mechanism 
is presented. 

In a more mechanistic model, Duc and Nick- 
011s (1987) link the pharmacokinetic profile of a 
single course of drug therapy to a standard tumor 
growth model. The distribution of drug is modeled 
deterministically using three physiological compart- 
ments (the plasma, the sensitive tumor, and the 
resistant tumor). They assumed that each tissue 
compartment exhibits first order kinetics, and that 

the sensitive and resistant tumor cell compartments 
are completely segregated, unable to communicate 
biophysically. A standard set of ordinary differential 
equations were then derived and solved. 

Cell growth within each compartment was mod- 
eled independently. The presence of one population 
does not affect growth or loss in the other. The level 
of drug at each site was determined separately. The 
general growth-death model for cycle specific drugs 
took the following form: 

For cycle non-specific drugs the model looked like: 

where, F(N) represents a logistic growth modifier. 
The term k f ( t )  represents the time-dependent dis- 
tribution of drug in a particular tissue compartment. 
The loss terms in these equations represents cell 
death due to drug treatment. Resistance is modeled 
as a tumor-wide effect and is expressed entirely as a 
difference in the cell death rates. In these equations, 
that difference is accounted for by the term m,, 
which is large if the population is sensitive and small 
if it is resistant. 

One could modify this model to implicitly repre- 
sent classical MDR by asymmetrically representing 
the pharmacokinetics of two segregated tissue com- 
partments, e.g. by allowing for increased efflux of 
drug from the resistant tissue compartment. Then 
k f ( t ) ,  which represents whole tissue and not intra- 
cellular concentrations, would be modified to repre- 
sent tissue specific dynamics in the two populations. 
The authors do not address this particular aspect of 
resistance explicitly. 

The Hybrid 

Michelson and Slate (1989, 1991) developed a 
mathematical model which describes drug resis- 
tance in a more mechanistic manner, by defining 
it as any of the five physiologic pathways listed 
in the Introduction above. The model is a stochas- 
tic birth-death-migration process. As such, any 
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change in cellular status, e.g. growth, death, or 
acquisition/loss of resistance, is expressed stochas- 
tically for individual cells. However, as opposed to 
the classic stochastic process, the transition proba- 
bilities are dynamic, determined by the level of drug 
at the target site of the average tumor cell (usually 
the nucleus). 

The model assumes that: (1) Each transition occ- 
urs with a given probability distribution during a 
given time step, and that these probability distribu- 
tions are independent. (2) Each cell acts indepen- 
dently and does not depend on its neighbors for 
signals or controls. (3) The lifelength of each cell 
is a random variable and that it is identically and 
independently distributed throughout the cell popu- 
lation. (4) Drug is uniformly distributed throughout 
the tumor cell population, i.e. no spatial hindrance 
in access of drug to any cell is encountered. (5) Cell 
death is due strictly to the cytotoxic effects of the 
drug, and that the risk of cell death is proportional to 
the concentration of drug at the target site in the cell. 

Thus, to determine the transition probabilities as 
functions of drug concentration at the target site, the 
distribution of drug moieties throughout the aver- 
age cell is modeled using a standard concentration- 
dependent first-order compartment model. The com- 
partments of interest are the interstitial spaces, the 
cytoplasm, and the target site (usually the nucleus). 

While the variable expression of any of the resis- 
tance mediators listed in the Introduction may be 
due to any number of underlying processes (e.g. 
gene amplification, alterations in transcriptional or 
translational efficiency, etc.), this model deals only 
with their functional consequences (e.g, decreased 
uptake, increased efflux, differential target sensitiv- 
ity, etc.). The very simple assumption is that cell 
death is strictly proportional to the concentration of 
drug at the target site: If the concentration of an 
active agent at a cell's target site is high enough, 
the cell will very likely die, and the more drug that 
is present, the more likely death is to occur. 

Cell death thus becomes a probabilistic event, 
based entirely upon the ability of a drug to pene- 
trate, distribute, and accumulate at the target site in 
the average tumor cell. Using these models, we have 

shown that any cell which can pump out enough 
drug from the cytoplasm so that its concentration 
at the target site remains 'low enough', signifi- 
cantly enhances its chances for survival (Michelson 
and Slate, 1989; Slate and Michelson, 1991). And 
though the molecular structure of the P-glycoprotein 
pump is not explicitly addressed in this model, a 
simple first-order pump is included in the model as 
a first approximation of its dynamics. This type of 
hybrid model shifts our attention of the definition of 
drug resistance from a tumor-wide phenomenon to 
a more cellular-based mechanism. 

There are, however, significant limitations inher- 
ent in this model. Clearly, in large, poorly vas- 
cularized tumors, cell-cell interactions (including 
'competition' for the drug) can not be ignored. 
Any claim that drug is equally distributed across a 
large tumor mass is self-evidently erroneous. How- 
ever, our goal was to determine whether, on the 
micropharmacological level - the level at which 
the P-glycoprotein pump works - the distribution 
of drug within the tumor cell yielded a potential pro- 
cess by which MDR was conferred, and whether the 
P-glycoprotein pump was a potential target for its 
reversal. It was this simple hypothesis that motivated 
the development of the more mechanistic models 
described below. 

SPECIFIC MODELS FOR MULTIDRUG 
RESISTANCE 

Intracellular Micropharmacology 

Demant et al. (1990) developed a model which 
asked whether endosomal transport of drug, as 
an alternative to the P-glycoprotein pump, could, 
under varying pH conditions, account for a major 
portion of drug efflux in MDR cell lines. Their 
model described three basic compartments: the 
extracellular medium, the cytoplasm, and the 
endosomal vesicles. Within the cytoplasm, the 
drug could exist in three distinct states: ( I )  free, 
(2) bound to low-affinity membrane binding sites, 
or (3) bound to high-affinity nuclear binding sites. 
Assuming that the amount of drug bound to 
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membrane sites is significantly smaller than the 
number of possible sites involved, i.e. ignoring 
saturation, and by assuming that equilibrium is 
rapidly achieved in the cytoplasm, Demant et al. 
derived a mass action-type equation for calculating 
the dissociation constant for membrane binding. 
Active transport across the membrane was then 
defined by Michaelis-Menten kinetics. From their 
model they concluded that active transport is, in fact, 
the primary efflux mechanism in MDR cell lines, 
and that diffusion and exocytosis are simply not fast 
enough to account for the rapid drug efflux observed 
experimentally. 

Michelson and Slate (1992, 19941, on the other 
hand, modeled the P-glycoprotein pump directly. 
Our model let drug leave the cytoplasm via normal 
diffusion processes and via the energy-dependent 
pump. The mathematical representation of the active 
transport mechanism is as a facilitated diffusion 
process and is discussed in detail below. 

Calculation of Pump KM 

Most mathematical models used to describe MDR 
transport on a molecular level assume that the pump 
binds to a cytotoxic target drug before actively 
transporting it out of the cytoplasm. The bind- 
ing and facilitation of the transport are biologi- 
cally identical to those observed in enzyme kinet- 
ics. Therefore, most (all?) theoreticians have based 
their descriptions of the pump and its dynamics on 
the Michaelis-Menten rate equation. Horio et al. 
(1990) developed a model to mimic an experiment in 
which apical-to-basal and basal-to-apical flux across 
MDCK epithelial cells was measured. Based upon 
differential flux characteristics and relative diffusion 
rates, they derived a final equation for the apparent 
KM of the system. 

In a similar system, Spolestra et al. (1992) 
modeled the pump as an experimental flow 
through process. Flux, defined as the time 
derivative, d / d t ,  represents net diffusion and 
Michaelis-Menten transport. By assuming equal 
membrane diffusibility, i.e. equal diffusion both 
into and out of the cell, they derived net 

flux estimates based upon the intracellular and 
extracellular concentration-time profiles observed 
in their experiments. Using standard Scatchard plots, 
they derived estimates for the number of binding 
sites available to the target drug and their average 
affinity. However, they also observed Hill slopes 
in their Scatchard lines markedly greater than one, 
making strict interpretation of their data difficult. 

Energy-Dependent Facilitated Diffusion 

Michelson and Slate (1992) developed a model of 
the MDR pump based upon the following washout 
experiment: tumor cells are pre-loaded with radioac- 
tively tagged drug, removed from the drug-loaded 
medium, washed, and restored to a new, drug-free 
medium. The intracellular drug concentrations are 
then monitored over time using flow cytometry, 
scintillation counters, etc. 

Since the P-glycoprotein pump associated with 
MDR is an energy dependent process, we described 
total pump efflux using the following enzyme lunet- 
ics scheme: 

E is the concentration of the P-glycoprotein 
pump and S is the concentration of the substrate 
(chemotherapeutic drug). Both concentrations are 
measured at the cytoplasm-membrane interface. 
The rate equation for the first reaction is given by 
the typical Michaelis-Menten formula 

VATP-ATP v1 = 
KA + ATP 

The rate equation for the second reaction is given 
bv 

Because the total flux of substrate out of the cell is 
limited by the slower of the two rates, VI and V 2  
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we define VMAX, the maximum efflux rate, as the 
minimum of the VI and V2. Thus, the overall flux, 
F, is given by 

The level of ATP in a resting cell is maintained 
dynamically by conversion from ADP and free 
phosphate. For the purposes of the model, we 
assumed that the cell is a homogeneously mixed 
compartment packed with enzyme processes which 
maintain this homeostatic condition. We also 
assumed (for numerical purposes) that this array 
of enzyme reactions could be conglomerated into 
a single energy maintenance process which follows 
Michaelis-Menten kinetics. Mathematically, then, 
the energy pools of a resting cell can be 
described by: 

d ATP 
- - - - 

V'ATP V*ADP 

d t K'+ATP + K* +ADP 

dADP V'ATP - - - 
V* ADP 

d t  K'+ATP K * + A D P  
(7 ) 

where (V*, K*) and (V', K') are the Michaelis- 
Menten constants for the ADP-ATP conversion 
process. 

When a cell is challenged with a cytotoxic 
agent, the P-glycoprotein begins pumping the drug 
from the cytoplasm into the interstitial space. The 
ATP pool is decreased by two molecules for each 
molecule of drug pumped from the cytoplasm. 
Consequently, for each molecule of drug pumped 
from the cell two molecules of ADP are produced. 
Therefore, in a challenged cell: 

d ATP -- V'ATP V*ADP 
- -2F - +- 

d t K1+ ATP K*ADP 

dADP V' ATP 
- 

V* ADP 
= 2 F +  

d t K' + ATP K* + ADP 
(8) 

Here F represents the total flux 
cond) of the active drug. 

Thus, the entire pump and its 
machinery, are given as follows: 

(in molecules/se- 

energy dependent 

dATP 
- = -2F - 

V' ATP V* ADP 

d t K' + ATP + K* + ADP 

d ADP V' ATP 
- 

V*ADP 

d t = 2F + K' + ATP K* + ADP (9) 

where a is the normal diffusion rate constant for 
drug through the membrane (from the cytoplasm to 
the interstitial space) and x represents the perpen- 
dicular radial distance through the membrane from 
inside to out. 

The spatial characteristics of the model assume 
that the concentration of substrate in the cytoplasm 
is derived from a well-mixed compartment, and 
that the concentration of substrate at the internal 
membrane surface is representative of the entire 
cytoplasmic concentration. A similar assumption 
is made about the external cell surface. We also 
assumed a normalized cell volume so that we could 
deal with concentrations (data from the literature 
were available in those forms) in a straightforward 
manner. 

What this model says then, is that a drug would 
normally leave a preloaded cell via diffusion pro- 
portional to rate a. This assumption is similar to 
that made by Spolestra et al. (1992). Mathemati- 
cally, simple diffusion over a spatial distance, x (in 
our case, radially through a membrane) is described 
by the partial differential equation given in System 
(9) when F = 0. To facilitate this diffusion, i.e. to 
model the active P-glycoprotein pump, we added the 
flux term, F. The derivation of the flux term is the 
crux of the model. It is this term which explicitly 
accounts for the energy dependence of the pump and 
its binding characteristics for the drug. Suspected 
inhibitors designed to act on the pump should, there- 
fore, act on this flux term. Therefore, characteriza- 
tion of flux is necessary if one is to describe MDR 
reversal in a mechanistic way (see below). 

'Numerical simulations were run to confirm the 
reasonableness of the model. A drug washout 
experiment was mimicked. The pre-loaded cells 
were allowed to equilibrate in fresh medium, and 
the cytoplasmic concentration profiles for the target 



DRUG RESISTANCE AND ITS REVERSAL 

FIGURE I Concentration-time curves for simole diffusion kinetics from the cytoplasm. Time axis is inea,ured in hours, and the 
half-life of the active agent in the cytoplasm is 12 hours. 

drug were plotted over time (see Figures 1-3). 
Without the pump, the half-life of drug, as defined 
by pure diffusion from the cytoplasm, was 12 hours 
(Figure 1). With the pump, the half-life was about 
30 minutes (similar to the dynamics we have 
observed in laboratory experiments; see Figure 2 
and note the change of time scale). Rate constants 
for these simulation studies were derived from 
both laboratory measurements and from standard 
literature estimates (cited in the references of 
Michelson and Slate, 1992). 

These estimates include: (1) The diffusion rate 
out of the cell (assumed to have exponential chape 

and a half-life of about 12 hours); (2) the rate lim- 
iting velocity of the entire pumping system (i.e. the 
minimum of V1 and V 2 ) ,  given as 64 micromolar per 
minute - V A  is approximately 375 micromolar per 
minute for ATP and V g  is 64 micromolar per minute 
for vincristine; (3) K M ,  the Michaelis-Menten bind- 
ing constant for drug - K M  = 0.6-0.7 micromolar 
for vincristine and approximately I .  1 micromolar for 
vinblastine; (4) KATP, the Michaelis-Menten bind- 
ing constant for ATPase activity of the pump, is 
approximately 150 micromolar; (5) Initial equilib- 
rium levels of ATP in the cell are between 500 and 
600 micromolar. 
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FIGURE 2 Concentration-time curves for facilitated diffusion kinetics from the cytoplasm. Time axis is measured in minutes, 
and the half-life of the active agent in the cytoplasm is approximately 30 minutes (corresponding to laboratory measurements with 
Adriamycin). 

The most difficult parameters to estimate were 
the Michaelis-Menten parameters for the conglome- 
rated enzyme system which maintains the ATP-ADP 
balance in the cell. To maintain the cell, hundreds of 
energy consuming processes occur simultaneously. 
The restoration of ATP levels is carried out via a 
number of pathways, some of which are specific for 
the energy-expending activity involved, some not. 
The simulations assumed that in the unchallenged 

cell, ATP and ADP are in a fairly steady state. 
The Michaelis-Menten constants are 300 micromo- 
lar for the ATP to ADP reaction and 270 micromolar 
for the ADP to ATP reaction. These values were 
based on conglomerate estimates for pyruvate trans- 
ferase, polyphosphate kinase, and adenylate kinase 
as derived from standard enzyme tables. 

One of the questions raised during our analysis was 
whether the energy dependence of the pump provided 
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FIGURE 3 
measured in 
of the curve. 

\ 
ENERGY DEPRESSED FACILITATED DIFFUSION 

0 . 0  

0 1 1 3 4 5  C 7  0 s 1 0 1 : 1  

Time (Hrs) 

Concentration-time curves for facilitated diffusion kinetics from the cytoplasm in energy-deprived cells. Time axis is 
hours, and the half-life of the active agent in the cytoplasm is approximately 2 hours. Note, the non-exponential shape 

a wasonable target for inhibition and reversal of 
MDR. To that end we simulated a cell depleted of 
all its ATP while keeping the ADP levels constant. 
This is a worst case scenario for this type of therapy. 
The results of this study are shown in Figure 3, which 
shows the time-dependent concentration curve for the 
substrate drug in an energy deprived cell. Further 
analyses suggest that as long as the rate at which ADP 
and inorganic phosphate can be joined to re-establish 

ATP exceeds the rate at which the pump can bind and 
extrude the substrate drug (64 micromolar per minute 
in these particular studies) then the ATP levels of the 
cell can be maintained at levels high enough to assure 
adequate pumping. And even though the pump is not 
as efficient as that observed in the unperturbed state 
(compare Figures 2 and 3), it is probably efficient 
enough to insure decreased levels of drug at the 
cellular target sites. 
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MODEL FOR REVERSAL OF MDR 

Though the energy specific pathway may represent a 
potential target for resistance reversal, this strategy 
completely ignores the fact that manipulating cellu- 
lar energy systems needs to be exquisitely precise 
for one to minimize toxicity in vivo. Our objection 
to this means of MDR reversal, however, is based 
more upon the theoretical fact that, with respect to 
ATP levels, the pump is, in fact, a self-regulating 
mechanism. 

Once a cytotoxic challenge begins, and if suf- 
ficient levels of ATP and target drug are around, 
the pump will become saturated, forcing flux to 
some positive constant, F*, which is less than or 
equal to VMAX. During the transition phase from a 
completely inactive pump to one which is totally sat- 
urated, the steady-state concentrations of ATP and 
ADP shift in their phase space towards the ADP 
axis. If there is enough ATP present, when the pump 
is fully saturated flux equals F*, and a steady state is 
established. If the level of drug in the cytoplasm is 
such that the energy control mechanisms can main- 
tain ATP levels sufficient for the pump to function, 
all the drug will be pumped out, flux will tend to 
zero, and the original ATP-ADP steady state will be 
re-established. If, on the other hand, ATP levels are 
depressed or the amount of drug in the cytoplasm is 
such that pumping it out begins to exhaust the ATP 
pool, then flux will decrease appropriately (via the 
VMAX term), and the pump slows. When that occurs, 
overall flux is re-established at a new lower level, 
and when all the drug is pumped out of the cell, the 
flux again tends to zero, and the original ATP-ADP 
steady state is re-established. 

Given that the energy pool is probably a subopti- 
mal target for MDR reversal, the question arose as 
to how one would inhibit the P-glycoprotein pump. 
A possible inhibitor could: 

1. Attack the outward diffusion kinetics through the 
membrane, 

2. Attack the transport activity of the pump at the 
inner surface of the membrane (e.g. its ability to 
bind drug), And/or 

3. Attack the efflux efficiency of the pump by 'clog- 
ging' the transmembrane pore complex extracel- 
lularly . 
Strategy 2 is the one being pursued most actively 

in the clinic. Essentially, this is the motivation 
for trying the calcium channel blocker, verapamil, 
and other channel-type inhibitors as MDR reversal 
agents. To accommodate these newer therapeutic 
strategies, we extended our original model to include 
theoretical reversal agents (Michelson and Slate, 
1994). 

Suppose one introduces a competitive inhibitor, 
I ,  into the system. Then, to accommodate this inhi- 
bition, the V2 equation above (equation 5), must be 
altered as follows: 

where K1 is the dissociation constant of the P- 
glycoprotein-inhibitor complex. Efflux thus becomes 

Adding inhibitor diffusion and efflux to the original 
system yields: 

dADP -- V*ADP 
- 2(F1+ F2) - 

d t K* + ADP (12) 

where /3 is the diffusion constant for the inhibitor, F 1  
is the efflux of the active drug, and F2 is the efflux 
of the inhibitor. Since the same fixed number of ATP 
molecules is required to transport each molecule 
out of the cytoplasm (whether S or I), and since 
the two substrates are competitive inhibitors, a total 
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efflux term, 2(F1+ F z ) ,  must be added to the energy 
conversion equations. 

A similar analysis was performed for a non- 
competitive inhibitor. By replacing V 2  in equation 
(5) with 

one re-derives the diffusion equation with new flux 
terms 

Simple inspection of equations (10) and 
shows that the difference between a competitive 
inhibitor and non-competitive one is that a competi- 
tive inhibitor increases KM by a factor of (1 +I/KI), 
shifting the half-maximum concentration to the right 
in concentration space. A non-competitive inhibitor, 
on the other hand, decreases the transport (reaction) 
rate, VMAX, by a factor of 1/(1 + I/KI). In each 
case, the concentration of I is normalized to its own 
binding affinity, I/Kr. For pure competition, the 
substrate competes with the competitive inhibitor, 
and will eventually overcome the inhibition given a 
high enough concentration. For the non-competitive 
inhibitor, no amount of substrate can overcome the 
blockade; the actual reaction rate is depressed as 
long as inhibitor is present. 

The questions we then asked were, What should 
the initial loading of an inhibitor be given its 
(1) inhibitive character and (2) its affinity for the 
binding site? Is one type of inhibitor better than any 
other? Does one need to worry about the timing and 
strategy for administration? 

We found that over a fixed range of initial loading 
and inhibitor affinities, non-competitive inhibitors 
are more efficacious than competitive inhibitors, 
but that these advantages are only evident at the 
lower loading concentrations. If enough competi- 
tive inhibitor can get into the tumor cells prior to 
drug therapy, and if it can be maintained there at 
high enough levels despite the pump's activity, then 

competitive inhibitors with proper pharmacokinetic 
profiles may be acceptable as clinically relevant 
MDR reversal agents. 

We also looked at the question of whether a 
one site non-competitive inhibitor - one which is 
pumped out of cell - is significantly different from 
an inhibitor which is not pumped from the sys- 
tem, an allosteric non-competitive inhibitor. Our 
simulation studies showed that if an inhibitor is 
not extruded by the pump, then its advantage over 
a compound with similar inhibitory properties is 
exerted only at high affinity-low concentration com- 
binations. If both inhibitors are of low affinity or if 
the concentration of each is high enough, no real 
advantage was observed. 

IMPLICATIONS OF THE THEORY 

A cautionary word is in order before one ven- 
tures to interpret the theoretical results described 
above. First, the models of Spolestra, Horio, and 
Michelson and Slate are all variations upon the 
Michaelis-Menten transport theme. Each, in its own 
way, describes transport as a saturable, rate-limited, 
phenomenon depending upon the mass-action chem- 
istry of the pump molecule. The differences between 
the three models reside in the detailed descriptions 
of diffusion, energy dependence, etc. Each is based 
upon an experimental design of choice. 

Second, these models are evolving constantly. 
For example, Michelson and Slate's earlier results 
(1989, 1991) did not adequately mimic the activity 
or inhibition of P-glycoprotein pump. We did not 
account for the stereochemistry of the ATP binding 
sites, the nature of the inhibitor (competitive, non- 
competitive, or allosteric), the stoichiometry of the 
drug binding site(s), etc. When we added these 
extra layers of complexity to our theory, a more 
sophisticated model emerged (Michelson and Slate, 
1992, 1994). More complicating factors have yet to 
be included. 

For example, in the Michelson and Slate model 
(1994) outlined above, we modeled diffusion as 
the only other mechanism by which inhibitor is 
lost. This is especially important when considering 
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the case of a two-site allosteric non-competitive 
compound. But suppose the inhibitos is the tar- 
get of biochemical degradation, metabolism, etc. 
Then one should expect that target drug efflux will 
accelerate with inhibitor degradation. and might 
even approach that observed when a one-site non- 
competitive inhibitor is used. In a worst case sce- 
nario, if the degradation rate of the two-site inhibitor 
is faster than the efflux rate of the one-site inhibitor, 
the effectivity of the stable one-site inhibitor might 
surpass that of the two-site one. 

The models that have been developed thus far can 
only be used to make simple predictions about how 
MDR reversal agents could be optimally employed 
to block pumping activity. In order to create a 
more realistic model, one must consider other com- 
plexities of P-glycoprotein function. For example, 
How many binding sites are there and what are 
their structures? How does binding affect ATPase 
activity? Are all P-glycoprotein molecules identi- 
cal? How does post-translational modification of the 
protein affect its transport and binding characteris- 
tics? It is the evolution of these questions, derived 
from the experimentalist, that drives the theorist to 
develop newer mathematical models of MDR and 
its reversal. 
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