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The application of Graph Theory to the brain connectivity patterns obtained from the analysis of neuroelectrical signals has
provided an important step to the interpretation and statistical analysis of such functional networks. The properties of a network
are derived from the adjacency matrix describing a connectivity pattern obtained by one of the available functional connectivity
methods. However, no common procedure is currently applied for extracting the adjacency matrix from a connectivity pattern. To
understand how the topographical properties of a network inferred by means of graph indices can be affected by this procedure,
we compared one of the methods extensively used in Neuroscience applications (i.e. fixing the edge density) with an approach
based on the statistical validation of achieved connectivity patterns. The comparison was performed on the basis of simulated data
and of signals acquired on a polystyrene head used as a phantom. The results showed (i) the importance of the assessing process
in discarding the occurrence of spurious links and in the definition of the real topographical properties of the network, and (ii)
a dependence of the small world properties obtained for the phantom networks from the spatial correlation of the neighboring
electrodes.

1. Introduction

The concept of brain connectivity (i.e., how the cortical
areas communicate one to each other during the execution
of a specific task) is central for the understanding of the
organized behavior of cortical regions beyond the simple
mapping of their activity [1, 2]. In the last two decades,
several studies have been carried on in order to understand
neuronal networks at the basis of brain processes. These
networks are characterized by lots of interactions between
different and differently specialized cortical sites in relation
to the specific executed task.

Cortical connectivity estimation techniques aim at
describing interactions between cortical areas as connectivity
patterns holding the direction and strength of the informa-
tion flow between such areas. The functional connectivity

between cortical areas is then defined as the temporal
correlation between spatially neuronal events and it could be
estimated by using different methods both in time as well
as in frequency domain based on bivariate or multivariate
autoregressive models [3–6] applied to hemodynamic or
neuroelectrical signals. Past studies demonstrated that multi-
variate methods provide better estimates of connectivity pat-
terns than bivariate approaches [7], which cannot distinguish
between direct influence between two signals and the indirect
common influence from a third signal [8]. For this reason,
bivariate methods usually give rise to very dense patterns of
propagation, thus making it impossible to find the sources of
propagation [9, 10]. Different estimators, defined in time or
in frequency domain and based on a bivariate or multivariate
approach, rely on the concept of Granger causality between
time series [11]. According to Granger’s definition, an
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observed time series x(n) causes another series y(n) if the
inclusion of x(n)’s past into an autoregressive model of
y(n) significantly improves prediction of y(n). Among the
more advanced estimators based on this concept, partial
directed coherence (PDC) [5] is a spectral, multivariate
approach allowing to describe connectivity patterns with
a good accuracy and to distinguish direct from indirect
information flows [5, 12].

The extraction of salient characteristics from brain
connectivity patterns is a challenging topic, given the often
complex structure of the estimated cerebral networks. For
this reason, in the last ten years, a graph theoretical approach
was proposed for the characterization of the topographical
properties of real complex networks [13, 14]. In fact, it was
demonstrated that tools already implemented and used for
the treatments of graphs as mathematical objects could be
applied to functional connectivity networks estimated from
electroencephalographic (EEG), magnetoencephalographic
(MEG), or hemodynamic (fMRI) recordings [15–19]. The
use of characteristic indexes, borrowed by graph theory,
allows the evaluation of real networks in terms of density of
connections incoming or outcoming from a node, tendency
to cluster, centrality of some nodes or edges, and distances
between nodes [14, 20, 21].

The computation of graph indexes can be performed on
adjacency matrices achieved by applying a threshold on the
estimated connectivity values obtained by means of different
estimators. The application of a thresholding procedure
allows to convert the connectivity values into edges. An
edge connecting two nodes exists if the connectivity value
between those nodes is above a certain threshold; otherwise
the edge is null. The choice of the threshold should not
depend on the application and if done in an arbitrary way
could affect the results. In fact, the threshold influences
the number of connections considered for the subsequent
graph analysis and thus affects the indices extracted from
the networks [22]. Different methodologies are available
for defining such threshold. A possible approach is to
select a fixed threshold. In this respect, three criteria are
typically adopted: 5% significant level as a threshold fixed
for discarding connectivity values from the random case
[23–25]; an arbitrary value in order to discard the weak
connections [26]; the largest possible threshold allowing all
nodes to be connected at least to another node in the network
[27]. The second way to extract a threshold is to fix the
average degree within the networks in order to maximize
the small-world properties of the network [28–32]. A third
way to define a threshold is to fix the edge density of the
network, that is, the number of existing edges divided by
the number of possible edges [32]. This approach is useful
if we are interested in comparing different conditions but
can produce modifications in the topology of the studied
network [22].

All the approaches described above are empirical and
do not take into account the intrinsic statistical significance
of the estimator used in functional connectivity estimation
process. In fact, when the adjacency matrix is achieved by
imposing a threshold and fixing the number of residual
connections of the network, we cannot exclude a priori that

a percentage of such residual connections is estimated by
chance. The idea is thus to take into account the statistical
significance of the estimator used for functional connectivity
estimation in the construction of adjacency matrix. In the
case of PDC, the threshold is extracted by applying a
percentile, for a defined significance level, on the distribution
achieved for such estimator in the null case. Thus, an edge
exists in the adjacency matrix describing the considered
network only if it is statistically different from the null case.

Due to the nonlinear dependence of PDC estimator from
the parameters of MVAR, the theoretical distribution of PDC
in the null case in not known, so it should be constructed
is an empiric way. The shuffling procedure, which has been
introduced in 2001 for the similar estimator of directed
transfer function (DTF) [33], allows to reconstruct the null
case distribution by iterating the estimation of PDC, each
time on different surrogate data sets obtained by shuffling
the phases of original traces, in order to disrupt the temporal
relations between them. In this way, it is possible to extract
a threshold value for each couple of nodes, each direction
and each frequency sample. Due to the high number of com-
parisons between the estimate and the null case distribution,
corrections for multiple comparisons have to be taken into
account. However, statistical theory offers a lot of solutions
for adequately managing the occurrence of type I errors
during the execution of multiple univariate tests [34, 35].

The general aim of this study is to understand how the
methods for extracting the adjacency matrix could affect
the graph theory indices and their interpretation, in order
to define a reliable approach for the derivation of salient
indices from connectivity networks estimated by means of
multivariate methods. In particular, we used two different
datasets with the purpose of comparing one of the methods
extensively used in graph theory applications for extracting
adjacency matrices from the connectivity patterns (i.e., the
method based on fixing the edge density) with the statistical
validation of achieved connectivity patterns by means of a
shuffling procedure. The first dataset we used consisted of a
set of random uncorrelated signals, which should represent
a null model for functional connectivity estimates and a
random case for graph theory indices. In fact, since no
correlation exists between signals, the connectivity estima-
tion process should almost entirely discard the information
flows between signals, leaving only a few percentage of
connections, estimated by chance and organized according to
a random network. This dataset can be seen as an ideal “null
case” model, but it does not take into account some factors
strictly related to an electroencephalographic recording, such
as the existence of a correlation between the recorded signals,
due to effects of volume conduction, to the spatial positions
of electrodes disposed on the scalp, and to the location of
the reference [36]. For this reason, we introduced a second
dataset, composed by signals recorded from a mannequin
head during a pseudo experiment. This situation represents
the null model for functional connectivity estimates inferred
by applying partial directed coherence on EEG signals
recorded at scalp level. In fact, the absence of physiological
content in the recorded signals allows to model the absence of
information flows between electrodes, but at the same time,
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the use of a real EEG cap, with electrodes positioned as 10–
20 systems and references placed at the earlobes, models the
effects of some factors typical of an EEG recording situation.

We estimated the functional connectivity patterns associ-
ated to both applications and we extracted the correspondent
adjacency matrices by means of two approaches: fixed edge
density k and shuffling procedure for a significance level
of 5%. This second approach was explored by applying no
corrections for multiple comparisons and by applying false
discovery rate (FDR) correction. Several graph indexes were
computed on binary adjacency matrices achieved with both
methodologies. The results, achieved on the two different
datasets by means of the two methods, were normalized
by means of 100 random graphs with the same number
of connections of the graphs obtained on simulated and
mannequin data. A statistical analysis of variance (ANOVA)
was performed on the results obtained by the two approaches
in each dataset to study the effect of the methodology applied
to the properties extracted from the networks.

2. Materials and Methods

2.1. Partial Directed Coherence. The PDC [5] is a full
multivariate spectral measure, used to determine the directed
influences between any given pair of signals in a multivariate
data set. PDC is a frequency domain representation of the
existing multivariate relationships between simultaneously
analyzed time series that allows the inference of functional
relationships between them. This estimator was demon-
strated to be a frequency version of the concept of Granger
causality [11], according to which a time series x[n] can
be said to have an influence on another time series y[n] if
the knowledge of past samples of x significantly reduces the
prediction error for the present sample of y. In this study, the
PDC technique was applied to the subset of signals S:

S = [s1(t), s2(t), . . . , sN (t)]T . (1)

Let us suppose that the following MVAR process is an
adequate description of the data set S:

p∑

k=0

ΛkS(t − k) = E(t) with Λ0 = I. (2)

In this expression, E(t) = [e1(t), e2(t), . . . , eN (t)]T is a vector
of multivariate zero-mean uncorrelated white noise process,
Λ1,Λ2, . . . ,Λp are the N × N matrices of model coefficients
and p is the model order, chosen, in this case, by means of
the Akaike information criteria (AIC) for MVAR processes
[37]. Once an MVAR model is adequately estimated, it
becomes the basis for subsequent spectral analysis. In order
to investigate the spectral properties of the examined process,
(2) is transformed to the frequency domain
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and Δt is the temporal interval between two samples.

It is then possible to define PDC as
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Such formulation was derived by the well-known concept of
partial coherence [5]. The PDC from j to i, πi j( f ) describes
the directional flow of information from the signal s j(n)
to si(n), whereupon common effects produced by other
electrodes sk(n) on the latter are subtracted leaving only a
description that is exclusive from s j(n) to si(n).

PDC values are in the interval [0, 1] and the normaliza-
tion condition

N∑

n=1

∣∣∣πnj( f )
∣∣∣

2
(6)

is verified. According to this condition, πi j( f ) represents
the fraction of the time evolution of electrode j directed to
electrode i, as compared to all of j’s interactions to other
electrodes.

Even if this formulation derived directly from infor-
mation theory, the original definition was modified in
order to give a better physiological interpretation to the
estimation results achieved on electrophysiological data. In
particular, two modifications have been proposed. First,
a new type of normalization, already used for another
connectivity estimator such as directed transfer function [4]
was introduced by dividing each estimated value of PDC for
the root squared sums of all elements of the relative row, then
a squared version of the PDC was introduced [38]:
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∣∣Λim
(
f
)∣∣2 .

(7)

The better performances of sPDC have been demonstrated
in simulation studies which revealed reduced error levels
both in the estimation of connectivity patterns on data
characterized by different lengths and SNR and in distinction
between direct and indirect paths [38]. Such formulation
was used in this study for the estimation of functional
connectivity.

2.2. Statistical Validation of Connectivity Patterns. Random
correlation between signals induced by environmental noise
or by chance can lead to the presence of spurious links in the
connectivity estimation process. To assess the significance of
the estimated patterns, each value of functional connectivity
has to be statistically compared with a threshold level which
is related to the lack of transmission between the considered
signals at a certain probability. A possible procedure is to
generate an empirical distribution of the null case based
on the generation of sets of surrogate data [39] with the
same spectral properties of the original dataset, but with
no functional connections by construction, for example, by
randomly shuffling the time series of each channel. In this
study, original data were transformed from the time domain
to the frequency domain, by means of Fourier Transform;
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then, their phases were randomly shuffled without modifying
their amplitude, and finally the shuffled signals were back-
transformed in the time domain. This procedure is able to
keep the amplitude of the power spectrum of the time series
unaltered, but at the same time to disrupt any temporal
correlation between signals. A model was fit to surrogate
data set and connectivity estimates were derived from the
model. Iterating this process many times, each time on
a new surrogate data set, allowed to build an empirical
distribution of the null hypothesis for the causal estimator
[33]. Once obtained the empirical distribution, we assessed
the significance of the estimated connectivity patterns for
a given significance level. In particular, the threshold value
was evaluated for each couple of signals and for each
frequency by applying a percentile, corresponding to a
predefined significance level of 5%, on the null case empirical
distribution. Only the connections whose values exceeded
the threshold were considered significant.

2.3. Preventing the Occurrence of Type I Errors in Validation
Process. The statistical validation process has to be applied
on each couple of signals for each frequency sample. This
leads to the execution of a high number of simultaneous uni-
variate statistical tests, with consequences in the occurrence
of type I errors (false positives). The statistic theory provides
several techniques that can be usefully applied in the context
of the assessment of connectivity patterns in order to avoid
the occurrence of false positives [40]. The first one, proposed
by Bonferroni in 1936, is based on the consideration that
if we perform N independent univariate tests, each with a
significance probability β, the probability p that at least one
of the tests is significant is given by

p < Nβ. (8)

This means that if N = 20, tests are performed with the
usual probability β = 0.05, then on average one of them is
expected to become significant, just by chance. This means
that if N = 20, tests are performed with the usual probability
β = 0.05, at least one of them is expected to result, significant
by chance alone. So, if we want the probability p for which
this event could occur (i.e., one result being statistically
significant just by chance) to be equal to α, we can apply a
correction to β. The single test will then be performed at a
probability

β∗ = α

N
. (9)

This β∗ is the actual probability at which the statistical
tests have to be performed to conclude that all the tests are
performed at level of statistical significance α, Bonferroni
adjusted for multiple comparisons.

The Bonferroni method can be too conservative, for
instance when the statistical tests are highly dependent, like
in the case of physiological measurements. This may lead to
an increase of Type-II errors (false negatives). To mitigate
the severity of Bonferroni approach, the false discovery rate
(FDR) approach was proposed [34]. Such methodology is
based on the expected proportion of erroneous rejections

among all rejections. Considering V as the number of false
positives and S as the number of true positives, the FDR is
given by

FDR = E
[

V

V + S

]
. (10)

Let H1,H2, . . . ,Hm be the null hypothesis, with m as the
number of univariate test to be performed, and p1, p2, . . . , pm

their corresponding P values. These values were ordered in
increasing order as P(1) ≤ P(2) ≤ · · · ≤ P(m) and the value k
was chosen as the largest i for which

P(i) ≤ i

m
α. (11)

At the end, the hypothesis H(i) with i = 1, . . . , k
has to be rejected. In the case of independent tests, an
approximation for evaluating corrected significance level has
been introduced [35]:

β∗ = (m + 1)
2m

α. (12)

2.4. Graph Indexes. A graph consists of a set of vertices (or
nodes) and a set of edges (or connections) indicating the
presence of some sort of interaction between the vertices.
The adjacency matrix A contains the information about the
connectivity structure of the graph. When a directed edge
exists from the node j to the node i, the corresponding entry
of the adjacency matrix is Aij = 1, otherwise Aij = 0. In
graph theory, a path or a walk is a sequence of vertices in
which from each of its vertices there is an edge to the next
vertex in the sequence. Such adjacency matrix can be used for
the extraction of salient information about the characteristic
of the investigated network by defining several indices based
on the elements of such matrix.

2.4.1. Adjacency Matrix Extraction. Once the functional
connectivity pattern is estimated, it is necessary to define
an associated adjacency matrix for each network, on which
graph theory will be applied to extract salient indices able to
characterize the network properties. The generic i jth entry
of a directed binary adjacency matrix is equal to 1 if there is a
functional link directed from the jth to the ith signal and to
0 if no link exists. As explained in Section 1, the construction
of an adjacency matrix can be performed by comparing each
estimated connectivity value to its correspondent threshold
value. In particular,

Gij =
{

1 −→ Aij ≥ τi j
0 −→ Aij < τi j

, (13)

where Gij and Aij represent the entry (i, j) of an adjacency
matrix G and a connectivity matrix A, respectively, and τi j
is the corresponding threshold. It is possible to derive the
adjacency matrix simply by applying the same threshold for
all the links of the network. In this case, (13) becomes

Gij =
{

1 −→ Aij ≥ τ
0 −→ Aij < τ

, (14)
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where τ represents the threshold to be applied to all the links
in the network.

Different approaches have been developed for evaluating
the threshold values, as already described in Section 1.
In particular, in this study, we compared a methodology
extensively used in literature and a more rigorous one
proposed as an alternative in this paper. According to the
first approach, the threshold is selected as the value which
imposes a predefined edge density k (i.e., a percentage
number of existing connections with respect to all possible
connections, given the number of nodes in the network) for
the resultant adjacency matrix. In this case, the threshold is
the same for all links. The second method is based on the
use of the intrinsic statistical significance of the estimator
used for functional connectivity estimation. The threshold is
evaluated as (1− α)th percentile extracted from the null case
distribution of PDC estimator built by means of the shuffling
procedure. α is the significance level imposed in the statistical
test and it was set at 0,05. In this case, a statistical threshold
is evaluated for each link.

2.5. Graph Theory Indices. Different indices can be defined
on the basis of the adjacency matrix extracted from a given
connectivity pattern. In this study, we evaluated the most
commonly used, described as follows.

2.5.1. Characteristic Path Length. The characteristic path
length is the average shortest path length in the network,
where the shortest path length between two nodes is the
minimum number of edges that must be traversed to get
from one node to another. It can be defined as follows:

L = 1
n

∑

i∈N
Li = 1

n

∑

i∈N

∑
j∈N , j /= i di j

n− 1
, (15)

where Li is the average distance between node i and all other
nodes and di j is the distance between node i and node j [14].

2.5.2. Clustering Coefficient. The clustering coefficient
describes the intensity of interconnections between the
neighbors of a node [41]. It is defined as the fraction of
triangles around a node or the fraction of node’s neighbors
that are neighbors of each other. The binary directed version
of clustering coefficient is defined as follows [21].

C = 1
n

∑

i∈N
Ci

= 1
n

∑

i∈N

ti(
kout
i + kin

i

)(
kout
i + kin

i − 1
)
− 2

∑
j∈N gi jg ji

,

(16)

where ti represents the number of triangles involving node
i, kin

i and kout
i are the number of incoming and outcoming

edges of nodes i, respectively, and gi j is the entry i j of
adjacency matrix.

2.5.3. Small Worldness. A network G is defined as small-
world network if LG ≥ Lrand and CG � Crand where LG and

Figure 1: Experimental setup employed for the simulated electrical
recording on a mannequin head by means of a 61-channel EEG cap.
The polystyrene mannequin head was posed in front of a screen to
include the interferences on signals due to the presence of a monitor.

CG represent the characteristic path length and the clustering
coefficient of a generic graph and Lrand and Crand represent
the correspondent quantities for a random graph. On the
basis of this definition, a measure of small-worldness of a
network can be introduced as follows:

S = CG/Crand

LG/Lrand
. (17)

So, a network is said to be a small world network if S > 1
[42].

2.6. Simulated Data. The first dataset we used to compare
the two approaches was generated to build the null case
(complete lack of correlation between the signals). To this
purpose, we generated random datasets of signals with the
same average amplitude and the same standard deviation
of the data acquired on the mannequin head (see following
paragraph for details) to avoid differences between the two
datasets due to different signals amplitudes. In particular,
each dataset is composed by 20 signals segmented in 50
trials of 3s each. 20 electrodes are the typical number of
sensors used for connectivity measures estimated by means
of multivariate method on scalp EEG signals.

In the following, we will refer to this dataset as “simulated
data”.

2.7. Mannequin Data. We simulated an EEG recording on
a head of a synthetic mannequin by using a 61-channel
system (Brain Amp, Brain-Products GmbH, Germany). The
sampling frequency was set to 200 Hz. In order to keep the
impedance below the 10 kΩ, the mannequin was equipped
with a cap positioned over a humidified towel. It must be
noted that there were not electromagnetic sources inserted
within the mannequin’s head, that is instead composed
only by polystyrene. Thus, the mannequin head cannot
produce any possible electromagnetic signals on the electric
sensors disposed on the recording cap. Figure 1 presents the
experimental setup employed for the electrical recordings.
The mannequin was put in front of a screen to take into
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account the interferences of a monitor on EEG recording.
To avoid any differences between the two datasets we used
the same number of trials and samples per trial of simulated
data.

We referred to this dataset as “mannequin data.”

2.8. Signal Processing. Both datasets were subjected to the
same signal processing procedure, made by the following
steps:

(1) generation of 20 simulated signals (simulated data)
or selection of 20 channels randomly chosen among
the 61 used for the recording (mannequin data);

(2) functional connectivity estimation, performed by
means of sPDC;

(3) extraction of the correspondent binary adjacency
matrices by applying a threshold τ achieved in two
different ways:

(a) by means of shuffling procedure for a sig-
nificance level of 5% in two conditions: (i)
not corrected for multiple comparisons and
(ii) adjusted for multiple comparisons by false
discovery rate, and

(b) by fixing the edge density k to predefined values.
The levels of such values were chosen equal
to those achieved by the shuffling procedure,
to avoid different performances between the
two methods due to the selection of a different
density;

(4) extraction of the graph indices described above
from the adjacency matrices achieved with both
methodologies;

(5) normalization of the indices achieved at point 4 with
those extracted from 100 random graphs generated
by maintaining the same number of connections of
the correspondent adjacency matrix, to normalize the
values to the model dimension.

2.9. Analysis of Variance. The signal processing procedure
(point 1 to 5 of the previous paragraph) has been repeated
50 times to increase the power of the statistical test (ANOVA)
computed for comparing the two different modalities used
for the extraction of the adjacency matrices.

We computed a two-way ANOVA with each graph index
as dependent variable. The main factors were

(i) the method used for extracting adjacency matrices
(METHOD), with two levels;

(a) shuffling procedure,
(b) fixed Edge Density procedure;

(ii) the edge density (EDGE) corresponding to two cases:

(a) Case 1: percentage of edges survived to the
shuffling procedure for a significance level 5%
not corrected. This percentage was resulting

from the application of the shuffling proce-
dure and was consequently imposed also to
the fixed edges procedure, to avoid different
performances due to different densities,

(b) Case 2: percentage of edges survived to the
shuffling procedure for a significance level 5%
corrected by FDR. Same procedure described
above.

The ANOVA was applied to both simulated and mannequin
data.

3. Results

3.1. Simulated Data. To describe how we selected the edge
density to be used in the two approaches, we reported in
Figure 2 the histograms describing the distribution of the
edge density characterizing the adjacency matrices extracted
during different iterations of functional connectivity esti-
mation process on simulated data. The situations described
in the two panels represent the levels Case 1 (Figure 2(a))
and Case 2 (Figure 2(b)) used for the ANOVA analysis. In
particular, the average edge density resulting from the shuf-
fling procedure applied to simulated (random uncorrelated)
data was 7% for the not corrected case and 4% for the FDR
corrected case.

This first result confirmed the importance of statistical
validation process combined with the correction for multiple
comparisons. In fact, only the application of the shuffling
procedure in the FDR case allowed to discard spurious links
(obtained in this case on random, uncorrelated signals) at
the correct level (below 5%). The edge densities obtained for
the shuffling procedure, reported in Figure 2, were used also
in the fixed edges method, to avoid different performance
of the two methods to be due to the different number of
connections. In particular, in the fixed edges method, if the
imposed edge density is k, the threshold is chosen as the value
which allowed to keep the k higher connections of the graph.

The two approaches were statistically compared by
means of an ANOVA performed as described in Section 2
with each graph derived index as a dependent variable.
The indices were normalized with the values obtained from
100 random graphs generated by keeping the number of
connections of the correspondent adjacency matrix. This
process was repeated 50 times in order to increase the
robustness of the statistical analysis.

The ANOVA analysis was computed considering the
small-worldness index as dependent variable and the meth-
ods used for adjacency matrices extraction (METHOD) and
the edge density of the achieved adjacency matrix (EDGE) as
within main factors. The main factor METHOD was com-
posed by two levels: shuffling procedure, fixed edge density
method. The main factor EDGE was composed by two levels:
Case 1 (edge density associated to significance level 5%,
not corrected for multiple comparisons) and Case 2 (edge
density associated to significance level 5%, FDR corrected).
Results revealed a statistical influence of the main factors
METHOD (P < 0.00001, F = 34.87) and METHOD ×
EDGE (P < 0.00001, F = 13.46) on the small-worldness
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Figure 2: Distribution of the edge density characterizing the adjacency matrices extracted during the different iterations of the connectivity
estimation process on simulated data in two different cases: Case 1 (a) → percentage of edges survived to shuffling procedure for a
significance level of 5% not corrected for multiple comparison; Case 2 (b) → percentage of edges survived to shuffling procedure for a
significance level of 5% corrected for multiple comparisons by means of FDR.

index computed on connectivity networks inferred from
simulated data.

In Figure 3, we reported results of the ANOVA performed
on the small world index considering METHOD × EDGE
as main factor. The diagram shows the mean value for the
small-worldness computed on adjacency matrices extracted
by means of shuffling procedure (blue line) and fixed edge
density (red line), from the connectivity patterns estimated
on simulated data. The bar represented their relative 95%
confidence interval. Considering that the edge density is
equal by construction for the two methods, the diagram
shows significant differences between the two methods in
the description of the network in terms of small-worldness,
confirmed by the post hoc analysis computed by means
of Tukey’s test (∗ symbol in Figure 3). In fact, the use of
the method based on a fixed edge density revealed small-
world properties of the network obtained from uncorrelated
signals, for both density values. On the contrary, the
application of the shuffling procedure allowed to correctly
identify the absence of small-worldness in the network.

To understand if the erroneous attribution of small-
worldness to the networks achieved by means of the
fixed edge density method is mainly due to the clustering
coefficient or to the characteristic path length, correlations
between the small-worldness index and these two indices
were computed for the two different edge densities. The
results achieved in the Case 2 (edge density as Figure 2(b))
were shown in Figure 4. The diagram showed the scatter plot
of small worldness versus clustering coefficient (Figure 4(a))
and small-worldness versus path length (Figure 4(b)) for
each iteration of the adjacency matrix extraction process
computed by means of the fixed edge density method, in
the case of edge density correspondent to those achieved in
Case 2 (edge density as Figure 2(b)). The line in the figure
represents the linear fitting computed on the data. In the
box, the associated values of correlation (r) and r-square
(r2) were reported. From these results, it can be inferred

that the small-worldness of networks achieved by means of
fixed edge density method in Case 2 can be mainly due to
the clustering coefficient, with a correlation of 0.93 and a r-
square of 0.86. A minor dependence of small-worldness from
path length index is highlighted by low values of correlation
coefficient (−0.36) and r-square (0.13). The same effect can
be described for Case 1 (small-worldness versus clustering
r = 0.91, r2 = 0.82; small-worldness versus path length
r = −0.38, r2 = 0.15).

3.2. Mannequin Data. The simulated dataset used as null
model for functional connectivity estimations represents
an ideal case, because it does not take into account the
spatial correlation between neighboring electrodes which
always occurs during an EEG recording. For this reason,
we used a second dataset, composed by signals acquired
simultaneously from a mannequin head equipped with a
cap positioned over a humidified towel, which, with its
absence of physiological signals but with its correlation
between neighboring electrodes, represents the null model
for connectivity inferred from signals acquired during an
EEG experiment. In the second dataset, we randomly
selected 20 channels among the 61 acquired (same number
of signals used for simulated data) and subjected them
to functional connectivity estimation process. Then the
correspondent adjacency matrix was extracted by means of
the two considered methods and some graph indices, such
as small-worldness, path length, and clustering coefficient,
were computed. The indices were normalized with the values
obtained from 100 random graphs generated by keeping
the number of connections of the correspondent adjacency
matrix. This process was repeated 50 times in order to
increase the robustness of the following statistical analysis.

The shuffling procedure was applied for a significance
level of 5%, both in the not corrected case and in the case
of FDR correction. In Figure 5, we reported two histograms
describing the distribution of the edge density characterizing



8 Computational and Mathematical Methods in Medicine

Case 1 Case 2

Edge density

0

0.5

1

1.5

2

2.5

3

3.5

4

Sm
al

l-
w

or
ld

n
es

s

Fixed edge density

∗

∗

Shuffling

Figure 3: Results of ANOVA performed on the small-world
index computed on networks inferred from simulated data, using
METHOD and EDGE as within main factors. The diagram shows
the mean value for the small-worldness computed on the adjacency
matrices extracted by means of the shuffling procedure (blue line)
and fixed edge density method (red line) in Case 1 (edge density
as described in Figure 2(a)) and Case 2 (edge density as described
in Figure 2(b)). The bars represent their relative 95% confidence
intervals. The green dotted line represents the threshold above
which a network is said to be “small world.” The symbol (∗)
indicates a statistical difference between shuffling procedure and
fixed edge density method, highlighted by Tukey’s post hoc test
(P < 0.05).

the adjacency matrices extracted during the different itera-
tions of functional connectivity estimation process on man-
nequin data, for the uncorrected case (Case 1, Figure 5(a))
and for the FDR corrected case (Case 2, Figure 5(b)). In
particular, the average edge density was 22% for the not
corrected case and 16% for the case corrected by means of
FDR. This result showed the effect on connectivity measures
due to the spatial correlation of neighboring electrodes. In
fact, the statistical validation process combined with the
correction for multiple comparisons couldn’t completely
discard spurious links due to random fluctuations of the
signals (residual edge density above 5%). The same edge
densities, reported in Figure 5, were used in the second
method in order to avoid differences between the two
methods due to the different number of connections.

The same statistical analysis described in the previous
paragraph for simulated data was computed on graph
indices extracted from mannequin data networks. In the
ANOVA, computed considering the small worldness as
dependent variable and the methods use for adjacency
matrices extraction (METHOD) and the edge density of the
achieved adjacency matrix (EDGE) as within main factors,
the main factor METHOD was composed by two levels:
shuffling procedure and fixed edge density method. The
main factor EDGE was composed by two levels: Case 1 (edge
density as in Figure 5(a)) and Case 2 (edge density as in
Figure 5(b)). Results revealed statistical influence of the main

factors METHOD (P = 0.00001, F = 23.42), EDGE (P <
0.00001, F = 104.47), and METHOD× EDGE (P < 0.00021,
F = 15.99) on the small-worldness index computed on
connectivity networks inferred from mannequin data.

In Figure 6, we reported results of the ANOVA performed
on the small world index considering METHOD × EDGE
as main factor. The diagram shows the mean value for the
small-worldness computed on adjacency matrices extracted,
by means of shuffling procedure (blue line) and fixed edge
density (red line), from the connectivity patterns estimated
on mannequin data. The bar represented their relative 95%
confidence interval. The small-world index is above 1 for
both methodologies, with statistically higher values for fixed
edge density in respect to shuffling procedure in Case 2 as
confirmed by the post hoc analysis computed by means of
Tukey’s.

In order to understand which indices, between the
clustering coefficient and the characteristic path length,
mainly contributed to the small worldness of the networks
achieved by means of shuffling procedure and fixed edge
density method, correlations between the small-worldness
index and these two indices were computed for the two
edge density cases. The results achieved in the case of edge
density correspondent to Case 2 (edge density as Figure 2(b))
were showed in Figure 7. The diagram showed the scatterplot
of small-woldness versus clustering coefficient (Figures 7(a)
and 7(c)) and small-worldness versus path length (Figures
7(b) and 7(d)) for each iteration of the adjacency matrix
extraction process computed by means of shuffling proce-
dure (first row) and fixed edge density method (second row)
in the case of edge density correspondent to those achieved
in Case 2 (edge density as Figure 5(b)). The solid lines in
the figure represent the linear fitting computed on the data.
In the box, the associated values of correlation (r) and r-
square (r2) were reported. The small-worldness of networks
achieved by means of shuffling procedure in Case 2 can be
due, at the same time, to the clustering coefficient, with a
correlation of 0.92 and a r-square of 0.85 and to the path
length with a correlation coefficient of −0.69 and a r-square
of 0.48. Same consideration could be done for fixed edge
density method (small-worldness versus clustering r = 0.83,
r2 = 0.70; small-worldness versus path length r = −0.79,
r2 = 0.63). The same effect could be described for Case 1
(shuffling procedure: small-worldness versus clustering r =
0.92, r2 = 0.83; small-worldness versus Path Length r =
−0.79, r2 = 0.63; fixed edge density: small-worldness versus
clustering r = 0.91, r2 = 0.83; smal-worldness versus path
length r = −0.87, r2 = 0.76).

4. Discussion

The strong dependence of graph measures from the number
of nodes, the edge density, and the degree of the networks
under analysis should lead to reflect on the modalities used
for adjacency matrix extraction [22]. Different methodolo-
gies are currently used for this purpose; some of them based
on the definition of fixed thresholds [26, 27], others based
on fixed average degree [28–32], and others on fixed edge
density [32]. The choice of a threshold in order to fix the
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Figure 4: Scatterplot of small-worldness versus clustering coefficient (a) and small-worldness versus path length (b) for each iteration of the
adjacency matrix extraction process computed by means of fixed edge density method for edge densities correspondent to those achieved in
Case 2 (as from Figure 2(b)). The solid line represents the linear fitting computed on the data. The associated values of correlation (r) and
r-square (r2) were reported in the boxes.
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Figure 5: Distribution of the edge density characterizing the adjacency matrices extracted during the different iterations of connectivity
estimation process on mannequin data in two different cases: Case 1 (a) → percentage of edges survived to shuffling procedure for a
significance level of 5%, not corrected for multiple comparisons; Case 2 (b) → percentage of edges survived to shuffling procedure for a
significance level of 5%, FDR corrected.

number of edges or the degree allows to avoid size and
density effects in the comparison of networks inferred from
two different conditions, but can affect the structure of
the network by enforcing nonsignificant links and ignoring
significant connections [22]. To understand the effects on
the structural properties of a network due to the method
applied for adjacency matrix extraction, we computed a
statistical comparison between one of the methods most
extensively used in graph theory applications for extracting
adjacency matrices from brain connectivity patterns (i.e., the
method based on fixing the edge density) with an approach
based on the statistical validation of achieved connectivity
patterns by means of a shuffling procedure. The comparison
was performed on two different datasets, one composed
by random and uncorrelated simulated data, modeling the

null case for the connectivity estimates, and another one
composed by signals acquired on a mannequin head, taking
into account the spatial correlation between neighboring
electrodes [36].

The results presented in this section allow to discuss
about some open problems which affect the application of
graph measures to the functional connectivity estimates.

The first issue addressed in the present paper is the
necessity to statistically validate the connectivity measures
in order to discard the spurious links due to random
fluctuations of the signals considered simultaneously in the
multivariate [33, 43, 44] or bivariate model [45, 46]. In
this paper, we confirmed the importance of the statistical
validation combined with the corrections for multiple
comparisons in multivariate estimates [47] by showing
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Figure 6: Results of ANOVA performed on the small-worldness
index computed on networks inferred from mannequin data, using
METHOD and EDGE as within main factors. The diagram shows
the mean value for the small worldness computed on the adjacency
matrices extracted by means of Shuffling procedure (blue line)
and fixed edge density method (red line) in two cases, Case 1
(edge density as in Figure 5(a)) and Case 2 (edge density as in
Figure 5(b)). The bar represents their relative 95% confidence
interval. The green dotted line represents the threshold above which
a network is said to be “small world.” The symbol (∗) indicates
a statistical difference between shuffling procedure and fixed edge
density method, highlighted by Tukey’s post hoc test (P < 0.05).

the edge densities survived to the shuffling procedure on
the simulated data (Figure 2). Being the simulated data a
null model for connectivity estimation, all the survived
links can be seen as false positives. The application of
the shuffling procedure for a significance level of 5% not
corrected produces 7% of false positives. Only applying the
statistical correction of FDR the false positives went down the
threshold of 5%. Unfortunately, the application of shuffling
procedure to connectivity networks inferred on mannequin
data led to a high number of false positives (22% in the
not corrected case and 16% in the case of FDR correction).
This could be explained by taking into account that some
of the survival links are due to real correlations between
neighboring electrodes induced by the registration on a wet
towel, but which can occur also in real EEG recordings
[48, 49].

A second issue to be considered as relevant in graph
theory concerns the modality in which the adjacency matrix
is extracted from the connectivity network. As already said
in the previous sections, the threshold choice is crucial for
the computation of graph measures because it affects the
topographical properties of real networks. In the present
study, we made a comparison between one of the methods
extensively used in graph theory applications for extracting
adjacency matrices from the connectivity patterns (i.e.,
the method based on fixing the edge density) and an
approach based on the statistical validation of achieved
connectivity patterns by means of a shuffling procedure, to

describe the effects of the modalities for adjacency matrix
extraction on the “small-world” properties of the network.
The results achieved on simulated data highlighted small-
world properties of the analyzed networks even in random,
uncorrelated data, when the fixed edge density method was
applied. Such small-worldness is mainly correlated with
an increase of the clustering coefficient and disappeared
when shuffling procedure was used. The fixed edge density
criterion led to an erroneous diagnosis of small-worldness
for the connectivity patterns estimated on simulated data,
independently from the edge density chosen. In fact, the
simulated data, being uncorrelated, should produce connec-
tivity patterns without any topographical properties of small-
worldness. These results led to two conclusions. The first
is that the shuffling procedure does not just preserve the
strongest connections, as demonstrated by different results
obtained by means of fixed edge density which is based on
this criterion. It means that the significance of a link is not
merely related to its strength. The second conclusion is that
the choice of an empirical threshold can affect so much the
topography of the network that an erroneous definition of
small-worldness could result. Thus, a statistical validation,
combined with multiple comparisons adjustments, to be
applied on connectivity networks, is necessary to define the
significance of each edge within the adjacency matrix, in
order to extract graph measures able to describe the real
properties of the considered network.

The results achieved on mannequin data showed small
world properties of the networks extracted by applying both
methodologies. In this case, the shuffling procedure couldn’t
prevent the description of mannequin networks as small
world networks, even applying the corrections for multiple
comparisons, but the entity of small-worldness is lower than
those achieved by means of fixed edge density method. In
both cases the small-worldness is equally correlated with
an increase of the clustering coefficient and with a decrease
of the path length. This effect could be explained with
the existence of real correlations between electrodes, which
can occur in real EEG data, due to volume conduction
effect and to the location of the reference [36, 50, 51].
These considerations led to a possible redefinition of the
meaning of the small-worldness index. In fact, it cannot
be considered as an absolute measure, because its value
contains some of the real correlations due to neighboring
electrodes. A possible solution is to consider only variations
of this measure between two conditions within the same
subject, or between two subjects in the same conditions,
in order to discard all the effects due to the position of
the electrodes on the scalp. Another way to mitigate such
effect is to apply the connectivity estimation process to the
data obtained by methods which allow to reduce the spatial
correlation between electrodes, such as all the approaches for
the reconstruction of cortical sources from high-resolution
EEG recordings [52–55]. Such methodologies allow to focus
the activations of cerebral sources by means of a high
number of sensors, realistic head models, and the solution
of the associated linear inverse problem [56–58]. It must
be also noted that other methods used for reducing spatial
correlation at the scalp level, such as blind source separation
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Figure 7: Scatterplot of small-worldness clustering coefficient ((a) and (c)) and small- worldness versus path length ((b) and (d)) for each
iteration of the adjacency matrix extraction process computed by means of shuffling procedures (first row) and fixed edge density method
(second row) for edge densities correspondent to those achieved in Case 2 (edge density as in Figure 5(b)). The line represents the linear
fitting computed on the data. The associated values of correlation (r) and r-square (r2) were reported in the boxes.

and superficial laplacian [59], cannot be used, due to the
correlation they induce in the data, which would, in turn,
produces spurious results.

5. Conclusion

The present work aims at highlighting some erroneous
results that can be obtained by the application of commonly
used approaches for the extraction of adjacency matrix from
connectivity patterns, and to describe how such procedures
can affect the topographical properties of a network inferred
by means of graph measures. For this reason, we com-
puted a statistical comparison between one of the methods
extensively used in graph theory applications for extracting
adjacency matrices from the connectivity patterns (i.e., fixing
the edge density) with an approach based on the statistical
validation of achieved connectivity patterns by means of
a shuffling procedure. The results achieved on simulated
data highlighted the importance of a statistical validation of
connectivity patterns which allows from one side to prevent

the occurrence of false positives due to random fluctuations
of signals, and from the other side to extract graph measures
able to describe the real properties of the considered network.
The results achieved on mannequin data showed an effect
of the spatial correlations between electrodes and of the
location of the reference on small-worldness index. Such
effect could be mitigated by applying methodologies for the
reconstruction of cortical sources.
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