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Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image
with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The
connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic
resonance imaging (MRI) image data obtained from different individuals. Experimental results show that the proposed method
has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration.

1. Introduction

Deformable registration is an important tool in medical
imaging with many applications, such as atlas-based image
segmentation and labeling, statistical analysis of normal and
pathological variations in anatomy, and the study of the
growth anddevelopment of normal and abnormal anatomical
structures. It has been an active research topic for many
years, and plenty of achievements have been published [1,
2]. The basic task of image registration is to find a spatial
transformation which maps each point of one image onto
its corresponding point of another image. The problem of
image registration is often considered as a minimization
problem, because it looks for increasing some similarity
metric between the two images to be registered by moving
points with a reasonable deformation field. Common choices
of image similarity metric include sum of squared differ-
ences (SSD), normalized/cross-correlation (NCC/CC), nor-
malized/mutual information (NMI/MI), or other divergence-
based or information-theoretic measures [3]. However, it
is not sufficient to rely only on similarity metric, because
the solution does not ensure any spatial correlation between
the adjacent points. Such high dimensional transformations
involved in nonrigid registrationmake the problem ill-posed.
Therefore, additional regularizing constraints are required to

enable a reasonable estimation of the displacement field. In
general, given the target image B and the template image A,
the common form of deformable registration problem is

T∗ = arg min
T∈Γ
𝐸 (T) = arg min

T∈Γ
𝐸sim (𝐵, 𝐴 ∘ T) + 𝐸reg (T) .

(1)

The first term 𝐸sim(𝐵, 𝐴 ∘ T) in (1) measures the similarity
between the deformed template image and the target image.
The second term 𝐸reg(T), the regularization constraint,
ensures the minimization problem is to be well-posed. The
set Γ is the space of admissible transformations. The optimal
transformation T∗ ∈ Γ is obtained by minimizing the
overall cost function, where Γ is the space of admissible
transformations.

The regularization constraint plays crucial role in non-
rigid registration problem. Different constraints have been
proposed in the literature. References [4, 5] introduced
inverse consistency as regularization constraint, which can
be explained that the composition of the optimal forward
transformation and the backward transformation between
the template image and the target image is the identity.
Smooth deformation field is also a commonly used constraint
[6, 7] against noise. Reference [8] used an incompressibility
constraint ensured by limiting the Jacobian determinant of a
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transformation should be unity. Diffeomorphic transforma-
tion is studied much in recent years [9–11], that means con-
tinuous, differentiable, and reversible transformation. If the
transformation is diffeomorphic, the deformed image should
be topologically preserved. Miller et al. [12] proposed the
group of diffeomorphic mappings for fluid flow registration.
The optimal solution is obtained by regularizing the velocity
field to avoid singular solution in numerical implementation.
LDDMM[13] aims at finding smooth diffeomorphicmapping
for large deformation by searching the smallest geodesic
distance.

Direct topology-preserving constraint is another impor-
tant regularization for nonlinear image registration.Themain
intuition behind topology preservation in a deformation field
is the desire to maintain connectivity between neighboring
morphological structures. One way to ensure the topology
unchanged during deformation is to keep the Jacobian
determinant of the transformation always positive. The other
way is to identify a credible deformation space according
to the registration model and then to find the optimal
transformation in the credible deformation space. Reference
[14] derived elegant linear constraints that provide necessary
and sufficient conditions to ensure that the Jacobian determi-
nant values of such transformations are positive everywhere.
Reference [15] extended the work of [14] to 3D B-splines
deformations. They adopted an interval analysis to find the
maximum reasonable step along optimal searching path to
ensure positive Jacobian determinant. Reference [16] consid-
ered enforcing topology preservation as a hard constraint
at several intermediate steps of a deformable registration
procedure or after the registration was done. Reference [17]
used a large-scale constrained optimization method to solve
the registration problem. By adding conditions involving the
gradient of the Jacobian determinant, this method encour-
aged the topology preserving to be achieved everywhere.

Over the past years, more and more studies have investi-
gated the nonrigid image registration problem with proper
regularization energies. Nevertheless, the existing research
is far from being mature. There are still different draw-
backs. Some methods need to track the discrete Jacobian
determinant or its gradient, which significantly increases
computational cost. Some deformable registrationmodels are
built in continuous domain. Although topology preservation
holds for the continuous transformation, it is no longer
guaranteed when the practical solution is obtained on the
discrete image grid. Here, we propose a new regularization
scheme for nonrigid image registration to hold topology
preservation. The details are organized as follows. Section 2
illustrates the entire scheme of the proposed nonrigid regis-
tration algorithm. Section 3 provides the experimental results
and evaluations of the registration algorithm.The conclusion
is drawn in Section 4.

2. Methods

Thenonrigid image registrationmodel proposed here focuses
on maintaining the unchanged topology of the deformed
image. A desirable property of intersubject medical image

warping is the preservation of the topology of anatomical
structures. From medical perspective, some normal homol-
ogy tissue or structure for any individual, such as internal
brain structures, should have the same topology. A topology-
preserving transformation guarantees the unchanged con-
nectivity inside a structure and the relationships between
the neighboring structures in the deformed image. There is
no tearing, no folding, and no appearance or disappearance
of structures. To achieve such performance, we propose
to cover the deformable template image with a triangular
mesh. The triangular mesh is generated according to the
position rather than the value of control points. Then the
topological relations are controlled by limiting the mesh
deformation. The advantage is that the algorithm will get
a better deformation quality even if no explicit Jacobian
determinant constraint is used. The entire procedure of
NR-MDC is showed in Figure 1. The registration procedure
employs iterative style: extraction roughdisplacement field by
measurements of similarity without considering spatial rela-
tions between points and optimization the displacement field
by measurements of regularization energy. A multiresolution
strategy propagating solutions from coarser to finer scales is
used here to speed up the convergence of the algorithm and
to avoid local optima.

2.1. Similarity Measures. Different features can be used to
establish a similarity metric between the deformed template
image and the target image to guide the deformed image
towards the target image [3].Hereweuse SSDas the similarity
metric because it is simple and easy to deal with. The SSD
forms the basis of the intensity-based image registration
algorithms, and the optimal solution can be obtained by
classical optimization algorithms [18]. It can be written as

𝐸sim (𝐵, 𝐴 ∘ T) = ∑
p∈Ω
(𝐵 (p) − 𝐴 ∘ T (p))2, (2)

where p is pixel position, p = (𝑥, 𝑦), and Ω is the image
domain. Optical flow field theory [19] is usually adopted
to find the displacement field. To better understand the
method, we will describe its basic principle roughly. Suppose
an object evolving over time, and 𝐼(p(𝑡), 𝑡) is the images of
this object. Based on intensity conservation assumption, the
image function satisfies

𝐼 (p (𝑡) , 𝑡) = const. (3)

By differentiating (3) with respect to t,

𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑡

+

𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑡

= −

𝜕𝐼

𝜕𝑡

. (4)

Consider image 𝐴 ∘ T and B being two samples of 𝐼(p(𝑡), 𝑡)
and let the sampling time to be unit time, then

v (p) ⋅ ∇𝐵 (p) = 𝐴 ∘ T (p) − 𝐵 (p) , (5)

where v(p) = (𝜕𝑥/𝜕𝑡, 𝜕𝑦/𝜕𝑡) is the object moving velocity. By
approximation, the velocity can be expressed as

v (p) = (𝐴 ∘ T (p) − 𝐵 (p)) ∇𝐵 (p)
‖∇𝐵 (p)‖2

. (6)
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Template image 𝐴 Target image 𝐵
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Figure 1: The framework of the NR-MDC algorithm.

Generally, the displacement of the point p is u(p) = −v(p).
To avoid unstable solution for small values of ∇𝐵(p), (6) can
be renormalized to

v (p) = (𝐴 ∘ T (p) − 𝐵 (p)) ∇𝐵 (p)
‖∇𝐵 (p)‖2 + (𝐴 ∘ T (p) − 𝐵 (p))2

. (7)

SSD metric is based on the implicit assumption that the
intensities of two corresponding points in images A and B
are equal. However this condition is seldom fulfilled in real-
world medical image registration, because there are many

factors that may affect observed intensity of a tissue over
the imaged field, such as the different scanner or scanning
parameters, normal aging, different subjects, and so on. In
view of such situation, intensity normalization is necessary.
In addition, small motion assumption should be satisfied in
optical flow field theory. To reduce the difference between
the template image and the target image as much as possible,
it is better to do spatial normalization using rigid or affine
transformation before using (7) to complete the registration.

2.2. Regularization. The deformation field obtained from
similarity measures does not consider any spatial relations
among neighboring points. The points’ interdependencies
should be guaranteed by certain regularization constraints.
Here we focus on topology preservation constraints. It is
one basic topology property that the connection relation-
ship between points and edges is unchanged in topology
transformation. As is analyzed in [20], three main behaviors,
fold, cross, and tear, will cause topological changes during
deformation. To eliminate the unfavorable defects, an extra
topology correction procedure was done in [20] by tracking
the Jacobian determinant of the deformation field. Thus
computational cost will increase inevitably.

The basicmotivation of ourwork is to establish a topology
preservation transformation in discrete domain directly and
to avoid calculating the Jacobian determinant from time to
time. To do that, we assume to cover the deformable image
with a suitablemesh.The central idea of the proposedmethod
is to deform the template image in terms of the similarity
metric, while controlling the deformation range according to
the intrinsic topologies of the triangular mesh. That means
for each pixel in image level there is a corresponding mesh
node to control its motion. The crucial problem is to control
mesh deformation perfectly.

Research about mesh deformation was done in compu-
tational fluid dynamics [21, 22]. The common applications
in engineering include deformable aircraft, airfoil pneu-
matic elastic vibration, bionic flow, and so on. To satisfy
the topology preservation transformation requirements, we
adopt segment spring analogy dynamic mesh technology
[23], which is initially used to deform a mesh around a
pitching airfoil. Its basic idea is to replace each mesh edge by
a spring. Thus the vertex motion will be controlled by all the
springs connected to this vertex.

Suppose the mesh edge between two adjacent vertices,
i and j, to be a line spring. Initially, the mesh is in static
equilibrium state with the spring equilibrium length equals
to the edge length. Given an external force along the spring,
the spring length will change. According to Hook’s Law, the
force at vertex i will be

F
𝑖𝑗
= 𝑘
𝑖𝑗
(u
𝑗
− u
𝑖
) , (8)

where 𝑘
𝑖𝑗
is the spring stiffness between i and j and u

𝑗
is the

displacement of vertex j. Influenced by all the neighboring
vertices, the composition of forces at vertex i is

F
𝑖
= ∑

𝑗∈𝑛
𝑣

F
𝑖𝑗
= ∑

𝑗∈𝑛
𝑣

𝑘
𝑖𝑗
(u
𝑗
− u
𝑖
) , (9)
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(a) Before deformation (b) After deformation

Figure 2: The interpretation of the spring analogy.

(a) (b) (c)

(d) (e)

Figure 3: BrainMRI images registration results using NR-MDC algorithm. (a) Template image, (b) target image, (c) result without additional
regularization, (d) result without updating the template image, and (e) result with 3 times updating the template image.

where 𝑛
𝑣
is the vertex set whose element connects to vertex

i directly. For the mesh to be in equilibrium state again, the
force at each vertex should be zero. That is

∑

𝑗∈𝑛
𝑣

𝑘
𝑖𝑗
(u
𝑗
− u
𝑖
) = 0. (10)

Regrouping (10) yields

u
𝑖
=

1

∑
𝑗∈𝑛
𝑣

𝑘
𝑖𝑗

∑

𝑗∈𝑛
𝑣

𝑘
𝑖𝑗
u
𝑗
. (11)

In an iterative style, (11) can be rewritten as

u𝑛+1
𝑖
=

1

∑
𝑗∈𝑛
𝑣

𝑘
𝑖𝑗

∑

𝑗∈𝑛
𝑣

𝑘
𝑖𝑗
u𝑛
𝑗
, (12)

where n denotes the iterative number. Then the new position
of vertex i is

x𝑛+1
𝑖
= x𝑛
𝑖
+ u𝑛+1
𝑖
. (13)
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Figure 4: The deformation field using NR-MDC algorithm (a) without additional regularization and (b) with additional regularization.

The interpretation of the segment spring analogy defor-
mation behavior is showed in Figure 2. The green arrow
represents the vertex displacement vector from previous
position (red dot) to next position (blue dot).

As can be seen from (12), the displacement vector of
vertex i is calculated as a weighted result of the neighboring
vertices’ displacement. The weighting value is determined by
the spring stiffness. There are different ways to choose the
spring stiffness. For simplicity, the spring stiffness proposed
by Batina [23] is used here, which is inversely proportional to
the edge length. Consider,

𝑘
𝑖𝑗
=

1







x
𝑗
− x
𝑖







. (14)

As is analyzed in [24], this spring stiffness diminishes the
probability of vertex collision during the mesh deformation.
This means that the factors causing topological changes dur-
ing deformation (fold, cross, and tear) will also be reduced.

Introducing segment spring analogy into nonrigid med-
ical image registration as a regularization constraint, the
expression can be written as

𝐸reg = ∑
p∈Ω
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, (15)

where index i represents vertex i, whose position is p.
Therefore the problem is described as

T∗ = arg min
T∈Γ
∑

p∈Ω
(𝐵 (p) − 𝐴 ∘ T (p))2

+ ∑

p∈Ω
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,

(16)

T = x + u. (17)

2.3. Implementation. The registration energy function (16) is
the sum of two measures. The first term is the sum of scalar,
while the second term is the sum of vector. One canminimize
this function with respect to u simultaneously. However, it
is not a trivial work. Fortunately, alternating minimization
can be used to approximate the optimal solutions [7, 25].
First, the rough displacement field u is found by minimizing
the similarity metric term. Then the optimized displacement
field

∼u is found by minimizing the regularization term.
This strategy enables the partial minimizations quite fast.
In addition, to avoid falling into local minima and to
reduce the computational cost, multiresolution framework
is adopted. The image is downsampled into several different
scales. The registration starts from the coarsest scale to the
finest scale. Accordingly, the resulting deformation transfers
from the coarsest scale to the finest scale by upsampling.
Here the resampling factor is set to be 2, and the image
dimensions of the coarsest scale should not be too small. The
primary algorithm implementation procedure is summarized
as follows.
Algorithm Implementation

(1) Given the template image A and the target image B,
perform preprocess procedure, which includes

(i) skull stripping using the BrainSuite software
[26];

(ii) linear spatial normalization using FSL software
[27];

(iii) intensity normalization using histogrammatch.

(2) Decompose the images into different scales. For each
position at the coarsest scale, set the initial displace-
ment field u𝑛 = 0, 𝑛 = 0:

(a) compute the transient displacement field u
using (7);
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(a) (b) (c)

Figure 5: Typical 3D views for the segmented structures: (a) “ground truth” segmentation, (b) NR-MDC segmentation, and (c) DD
segmentation.

Table 1: Comparison of the topology preservation ability between
NR-MDC algorithm and DD algorithm.

Algorithm Strategy CC 𝑁
𝐽

Time (minutes)
NR-MDC S1 0.971 0.5% 14.8

S2 0.966 0% 15.3
S3 0.984 0% 41.7

DD 0.972 0.03% 54.1
[20] 0.979 0% 84.6

(b) get the rough displacement field u𝑛+1 = u𝑛 + u;

(c) get the regularized displacement field
∼u
𝑛+1

using
(12);

(d) repeat step (a)–(c) until convergence;
(e) transfer to the next finer scale, and repeat step

(a)–(d) until the finest scale is processed.

(3) If there exists a negative Jacobian determinant value
of the final deformation field, do 3–5 iterations using
(12) to optimize the displacement field.

(4) If the similarity between the deformed template image
and the target image does not reach the established
criteria, update the template image using the obtained
transformation and repeat steps (2)–(3).

3. Results

The proposed nonrigid registration approach is evaluated on
real individual’s MRI images and compared with Diffeomor-
phic Demons algorithm (DD) [28].The reference image used
in the experiment is the one offered by the Surgical Planning
Laboratory of HarvardMedical School [29]. It consists of 256
× 256 × 160 voxels with a spatial resolution of 0.9375mm ×
0.9375mm × 1.5mm. The test images are real brain MRI
images of fifteen normal subjects provided by the Center for
Morphometric Analysis at Massachusetts General Hospital
and available from Internet Brain Segmentation Repository
(IBSR) [30].

3.1. Evaluation of the Topology Preservation Ability. Dur-
ing the registration, both a criterion based on the cross-
correlation (noted as CC

𝑡
) and the iteration number con-

stitute the iteration stopping criteria. If the cross-correlation
between the deformed reference image and the target image
equals or exceeds CC

𝑡
or the iteration number of reregistra-

tion using the deformed image as the new reference image
reaches the upper limit (here it is three, while within a scale,
the iteration number is set to be ten), the algorithm will stop.
CC
𝑡
is defined as

CC
𝑡
=

(1 − CC
0
)

𝛼

+ CC
0
,

(18)

where CC
0
is the initial cross-correlation between the refer-

ence image and the target image. The value of 1.2 is suitable
for parameter 𝛼 in the experiment.

Figures 3 and 4 show some typical registration results.
Figure 3 gives a visual inspection of the registration result
usingNR-MDCalgorithm.Obviously, the deformed template
image with updating scheme (Figure 3(e)) is more similar
to the target image (Figure 3(b)) than the other two results
(Figures 3(c) and 3(d)). Figure 4 compares the local deforma-
tion field before and after regularization, where the red circles
(Figure 4(a)) mark out the locations with negative Jacobian
determinant. It can be seen that after several iterations, the
regularized deformation field becomes realistic.

Table 1 compares the NR-MDC algorithm, Diffeomor-
phic Demons algorithm and method in [20]. In Table 1, the
criterion CC (cross-correlation factor) depicts the similarity
degree between the deformed template image and the target
image. CC = 1means the maximum similarity. The criterion
𝑁
𝐽
depicts the number of points with a negative Jacobian

determinant of the deformation field when compared to
the total point. S1 represents the registration result without
additional regularization. S2 represents the registration result
without updating the template image. S3 represents the
registration result with regularization and updating steps.
Since the vertex motion has high-freedom degree and each
vertex is closely related to its surrounding vertices, imme-
diate deformation regularization is inadequate. There still
exists a small amount of points with changed topologies.
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Table 2: Comparison of averaged KI value between our NR-MDC algorithm and DD algorithm.

L-Caudate R-Caudate L-Putamen R-Putamen L-Thalamus R-Thalamus L-Hippocampus R-Hippocampus
NR-MDC 0.728 0.778 0.749 0.755 0.746 0.779 0.729 0.691
DD 0.710 0.762 0.732 0.741 0.722 0.754 0.711 0.682

Thus in most cases, additional regularization is necessary.
Fortunately, less iteration is required to achieve acceptable
deformations. In addition, the need for template image
updating and the updating number depend on both the initial
difference between the template image and the target image
after global linear registration and the expected similarity.
Proper updating will improve the similarity. The DD algo-
rithm is carried out in a multiresolution manner. The main
parameters are three scales; regularization with a Gaussian
convolution kernel, whose standard deviation is set to be one;
the maximum template image updating number is three. It
can be seen fromTable 1 that the average CC value is 0.984 for
NR-MDC algorithm using S3 strategy, and the deformation
field is topologically preserved. While for the DD algorithm,
the average CC value is about 0.97, and there are still a small
amount of points with negative Jacobian determinants. Since
an additional Jacobian determinant tracking procedure was
carried out in themethod of [20], the algorithm running time
is relatively long.

3.2. Evaluation of the Brain Internal Structures Segmentation
Ability. To further evaluate the reasonability of the obtained
deformation field, the brain internal structures segmentation
experiment is carried out. The segmented structures are
left and right caudate (L-Caudate, R-Caudate), putamen (L-
Putamen, R-Putamen), thalamus (L-Thalamus, R-Thalamus),
and hippocampus (L-Hippocampus, R-Hippocampus). As
is known, these brain subcortical structures have relatively
small sizes, complex shapes. Moreover, there is only small
spacing between different structures, while their intensities in
MRI images are very similar. All these negative factors make
the fully automatically accurate segmentation a challenging
task.

To validate the results quantitatively, a kappa statistic-
based similarity index, Dice coefficient, is adopted in this
paper. The similarity index measures the overlap ratio
between the segmented structure and the ground truth,
which is defined as

KI = 2 × TP
2 × TP + FN + FP

. (19)

The definitions of the parameters are as follows:

TP = 𝐺 ∩ 𝐸: the number of true positive;
FP = 𝐺 ∩ 𝐸: the number of false positive;
FN = 𝐺 ∩ 𝐸: the number of false negative;

where 𝐺 is the ground truth segmentation of a given struc-
ture, 𝐸 is the estimated segmentation of the same structure,
and 𝑂 denotes the complement of a set 𝑂. Perfect spatial
correspondence between the two segmentations will result in
KI = 1, whereas no correspondence will result in KI = 0.

The results are presented in Table 2, where the KI values
are the mean values of all the volumes. The results indicate
that the proposed NR-MDC algorithm gives better segmen-
tations than the DD algorithm.

Typical 3D views for the segmented structures are pre-
sented in Figure 5.

4. Conclusions

In this paper, a new nonrigid medical image registration
method, named NR-MDC, is proposed. A new deformable
source, a triangular mesh, is added to cover the template
image. This mesh is independent of the image intensities.
It reflects the points’ intrinsic spatial relations and is used
to regularize the basic deformation field computed from the
image intensity information. The proposed cost function is
optimized in an alternative minimization way. The deforma-
tion field is first computed by optimizing a SSD metric and
then is regularized by using spring analogy method. This
approach enforces a valid topology of the deformed mesh,
which means a valid image deformation. To evaluate the
performance of NR-MDC algorithm, intersubject brain MRI
image registration experiments are done. And a comparative
experiment is also done between the proposed method and
the state-of-the-art DD algorithm. The results verify NR-
MDC method’s excellent deformation ability, as well as its
good topology-preserving ability.
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