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Long noncoding RNA (lncRNA) within mRNA sequences of Alzheimer’s disease genes, namely, APP, APOE, PSEN1, and PSEN2,
has been analyzed using fractal dimension (FD) computation and correlation analysis.We examined lncRNA by comparingmRNA
FD to corresponding coding DNA sequences (CDSs) FD. APP, APOE, and PSEN1 CDSs select slightly higher FDs compared to
the mRNA, while PSEN2 CDSs FDs are lower. The correlation coefficient for these sequences is 0.969. A comparative study of
differentially expressed MAPK signaling pathway lncRNAs in pancreatic cancer cells shows a correlation of 0.771. Selection of
higher FD CDSs could indicate interaction of Alzheimer’s gene products APP, APOE, and PSEN1. Including hypocretin sequences
(where all CDSs have higher fractal dimensions thanmRNA) in theAPP,APOE, andPSEN1 sequence analyses improves correlation,
but the inclusion of erythropoietin (where all CDSs have higher FD thanmRNA)would suppress correlation, suggesting thatHCRT,
a hypothalamus neurotransmitter related to the wake/sleep cycle, might be better when compared to EPO, a glycoprotein hormone,
for targeting Alzheimer’s disease drug development. Fractal dimension and entropy correlation have provided supporting evidence,
consistent with evolutionary studies, for using a zebrafish model together with a mouse model, in HCRT drug development.

1. Introduction

The instructions of a genetic sequence are carried by the
fluctuations or variations in the nucleotide bases along
the sequence. The bioinformatics of a sequence can be
studied if the sequence is modeled as a series based on
the nucleotide atomic number of the nucleotides A, T, C,
and G. A recent study on such fluctuation in the FOXP2
gene pathway has been reported [1]. The fractal dimension
and the Shannon entropy were found to have a nega-
tive correlation (𝑅2 = 0.85 𝑁 = 12) for the FOXP2
regulated “accelerated conserved-non-coding” sequences in
human fetal brain. In general, fractal dimension and the
Shannon entropy generate a 2D map representing a set of
genetic sequences. For example, using the human Y chro-
mosome, which contains 429 genetic sequences according
to the http://ncbi.nlm.nih.gov/mapview/ database, the listed

sequences have fractal dimension values from 1.92 to 2.06
and the Shannon dinucleotide entropy from 3.0 to 3.8 bits
per base. Fractal dimension, being a nucleotide position
sensitive measure, would be related to the richness in the
embedded informatics associatedwith the sequence. In terms
of transcription and translation, fractal dimension may be
related to a docking energy parameter with similarity to
the concept of roughness in a zipper and assembly traffic
analogy for the docking interactions. In addition to CDS,
mRNA sequences are often embedded with intronic regions.
Noncoding RNA sequence with more than 200 base pair
in length has been used to label a long non-coding RNA
(lncRNA) regardless of intronic or intergenic in origin. This
project uses fractal dimension of mRNA and coding DNA
sequences (CDS) to probe the lncRNAs within the mRNAs
(but not the CDS) in Alzheimer’s disease genes, namely,
APP or AD1, APOE or AD2, PSEN1 or AD3, and PSEN2
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or AD4. The lncRNA sequences have been shown to be
involved in significant regulatory functions. The lncRNA
SPRY4-IT1 sequence was reported to have migrated to the
cytoplasm, and upregulation was observed inmelanoma cells
[2]. Differential expressions in lncRNA upon radiation of
HeLa and MCF-7 cells and in glioblastoma pathogenesis
have been reported [3, 4]. The lncRNA relationship to
cellular genetic product stability has been reported in the
mouse model [5]. Microarray data analysis linked lncRNA to
Huntington’s disease [6], and the lncRNA role in neurological
disorders and cancers has been reviewed [7, 8]. The lncRNAs
becoming a new cancer diagnostic and therapeutic goldmine
have been postulated [9]. Despite all these activities, only
a few computation analysis results on the lncRNAs have
been reported to our knowledge. A comparative study of
lncRNAs with 3 untranslated regions (3 UTRs) in protein
coding RNA sequences has revealed parallel structure in the
studied sequences, consistent with the presence of similar
evolutionary constraints [10].

This project focuses on the study of disease related genetic
sequences. The lncRNAs within the mRNA sequences in
Alzheimer’s disease genes, namely, APP or AD1, APOE or
AD2, PSEN1 or AD3, and PSEN2 or AD4, have been analyzed
in terms of fractal dimension computation and correla-
tion analysis. The exploratory hypothesis that the lncRNA
sequences embedded in a transcribedmRNAsequencewould
exhibit correlation in Alzheimer’s disease genes has been
studied in a comparative fractal dimension model of mRNA
sequences versus coding DNA sequences (CDSs), which do
not include the lncRNA sequences.

2. Materials and Methods

The data used in this study was downloaded from Gen-
Bank according to the following Gen-ID numbers. The
studied human genes are APP-Gen-ID-351 containing 10
mRNA variants, APOE-Gen-ID-348, PSEN1-Gen-ID-5663
having 2 mRNA variants, PSEN2-Gen-ID-5664 having two
mRNA variants, HCRT-Gen-ID-3060, HCRTR1-Gen-ID-
3061 (HCRT Receptor-1), HCRTR2-Gen-ID-3062 (HCRT
Receptor-2), EPO-Gen-ID-2056, and EPOR-Gen-ID-2057.
The MAPK signaling pathway gene accession numbers
have been listed in the report of differential expression of
long non-coding intronic RNAs in pancreatic cancer cells
[11]. The Allen Brain Atlas database has been accessed at
http://brain-map.org.

A sequence with a relatively low nucleotide variety would
have low Shannon’s entropy (more constraints) in terms of
the set of 16 possible dinucleotide pairs. A sequence’s entropy
can be computed as the sum of (𝑝

𝑖
) ∗ log(𝑝

𝑖
) over all states

𝑖, and the probability 𝑝
𝑖
can be obtained from the empirical

histogram of the 16 di-nucleotide pairs. The maximum
entropy is 4 binary bits per pair for 16 possibilities (24).
For mono-nucleotide consideration, the maximum entropy
is two bits per mononucleotide with four possibilities (22).
In general, the monoentropy is proportional to di-nucleotide
entropy with 𝑅2 > 0.75 for the reported sequences in the
paper.

Roughly speaking, fractal dimension measures the com-
plexity of a self-similar sequence. For a 1D sequence such
as a DNA sequence, a fractal dimension near 2 indicates
great complexity, while one closer to 1 would indicate little
complexity, variety, or information. Among the various frac-
tal dimension methods, the Higuchi fractal method is well
suited for studying signal fluctuation [12]. A random spatial
series with equal spatial steps can be modeled as a brightness
signal in time such that the time series analysis tools can
be used for spatial series analysis. The spatial intensity (Int)
random series with equal intervals could be used to generate
a difference series (Int(𝑗) − Int(𝑖)) for different lags in the
spatial variable. The nonnormalized apparent length of the
spatial series curve is simply 𝐿(𝑘) = Σ|(Int(𝑗) − Int(𝑖))| where
the sum is for all pairs where 𝑗-𝑖 = 𝑘. The number of terms
in a k-series varies, and normalization must be used to get
the series length. If the Int(𝑖) is a fractal function, then the
log(𝐿(𝑘)) versus log(1/𝑘) should be a straight line with the
slope equal to the fractal dimension. Higuchi incorporated a
calibration division step such that the maximum theoretical
value is calibrated to the topological value of 2. The details
of the calculation method are given in the literature [12].
Numerical examples of the fractal dimension computation
can be found in our earlier reports [13, 14]. For clarity, a
Matlab implementation of the algorithm we used is listed
below. “data” is an array loaded with the input sequences
(one in each column). “width” is the number of sequences
loaded in the data array. “max𝐾 ” is cutoff for the maximum
distance between 𝑗-𝑖 pairs. A max 𝐾 of 7 was used for this
paper, although other values for max𝐾 gave very similar
results.

Consider

% calculate Length vectors for each column
𝐿 = zeros(max𝐾, width);
for 𝑘 = 1 :max𝐾,
data2 = circshift(data, 𝑘);
data2 = abs(data2 − data);
data2 (1 : 𝑘, :) = 0; % remove end effects
𝐿(𝑘, :) = sum(data2)/𝑘/𝑘∗(height−1)/(height−𝑘);

end

% calculate slopes (FDs)
slope = zeros(1, width);
for 𝑖 = 1 : width,
temp = 1 : 1 : max𝐾;
log 𝑘 = log (1./temp);
𝑋 = [ones(size(log 𝑘)) log 𝑘];
𝑌 = log(𝐿(:, 𝑖));
𝑎 = 𝑋 \ 𝑌;
FD(𝑖) = 𝑎(2);

End
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Figure 1: The fractal dimension correlation of the APP, APOE,
PSEN1, and PSEN2 CDSs versus mRNAs in Alzheimer’s disease
is displayed with 𝑅2 of 0.969 (𝑁 = 15 Series1). The 𝑦-axis
represents the fractal dimension (FD) of the CDSs, and the 𝑥-axis
represents the FD of the mRNAs. Deletion of PSEN2 Variant 1
(1.9793, 1.9748) andVariant 2 (1.9791, 1.9743) where CDSs have lower
fractal dimension values as compared to the mRNA sequences,
which would give 𝑅2 of 0.979,𝑁 = 13.
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Figure 2: The fractal dimension correlation of the differentially
expressed MAPK signaling pathway long noncoding intronic RNA
in pancreatic cancer cells with a correlation of 𝑅2 = 0.771 (𝑁 = 9
Series1). The 𝑦-axis represents the fractal dimension (FD) of the
CDSs, and the 𝑥-axis represents the FD of the mRNAs. Deletion of
MAP3K1 (1.9945, 1.9929), MAP3K14 (1.9822, 1.9768), and RAPGF2
(1.9835, 1.982) where CDSs have lower fractal dimension as com-
pared to themRNAsequenceswhichwould give𝑅2 of 0.950 (𝑁 = 6).
The sequence GenBank accession numbers have been listed in [11].

3. Results of Fractal Analysis

The ratio of CDS length to mRNA length ranges from 0.23 to
0.78 in the studied Alzheimer’s disease sequences. A negative
correlation with 𝑅2 of 0.61 was found for fractal dimension
and the ratio of CDS length to mRNA length, using the 10
variant sequences in APP mRNA. The increase of fractal

dimension with decreasing ratio could be related to some
systematic properties in mRNA variant formation in the APP
gene. It would appear that increasing the lncRNA length
portion relative to the CDS length portion would correlate
with increasing fractal dimension in theAPPmRNAvariants.

The fractal dimension correlation of the CDSs versus
mRNAs in Alzheimer’s disease is displayed in Figure 1 with
𝑅
2 of 0.969 (𝑁 = 15). All of the studied Alzheimer’s

disease sequences show higher fractal dimensions in the
CDSs as compared to the mRNAs, except for the PSEN2
Variant 1 and Variant 2. Similarly, a comparative study
of the differentially expressed MAPK signaling pathway of
long non-coding intronic RNA in pancreatic cancer cells is
displayed in Figure 2 with a correlation of 𝑅2 = 0.771 [11].
The MAPK signaling pathway has been reported to involve 9
mRNAs in differential expression of longnon-coding intronic
RNA in [11]. They are ARRB1, ATF2, MAPK1, MAP2K5,
MAP3K1, MAP3K14, PPP3CB, RAPGF2, and TGFbR2. The
CDSs of MAP3K1, MAP3K14, and RAPGF2 have lower
fractal dimension values as compared to the mRNAs.

The systematic selection of higher fractal dimension
CDSs could be indicative of certain characteristic interaction
of the Alzheimer’s gene products APP, APOE, and PSEN1
where a correlation with 𝑅2 of 0.979 (𝑁 = 13) was obtained.
Hypocretin (orexin) loss in Alzheimer’s disease patients has
been reported [15]. A brain scan study on a group of young
adults has revealed 1/3 of them are PSEN1 E280A mutation
carriers, an accepted hallmark for Alzheimer’s disease [16].
The inclusion of hypocretin sequences (where all CDSs have
higher fractal dimension values than mRNAs in HCRT,
HCRT-R1, and HCRT-R2) in the APP, APOE, and PSEN1
sequence analysis would improve the correlation (𝑅2 =
0.985, 𝑁 = 16) as shown in Figure 3. Erythropoietin EPO
has been shown to have interaction with dopamine pathways
[17–19] and offer protection for neuronal injury [20, 21].
The inclusion of erythropoietin (where all CDSs have higher
dimension thanmRNA in EPO and EPOR) in the correlation
of APP, APOE, and PSEN1 would suppress the correlation
(𝑅2 = 0.953, 𝑁 = 15).

4. Discussion

The regression intercepts in Figures 1, 2, and 3 are negative,
while the slopes are all greater than 1. This indicates selection
pressure driving up CDS fractal dimension or a selection
pressure against high FD in lncRNA. Whether the negative
intercept value would suggest a minimum fractal dimension
threshold in mRNA for containing a functional CDS in
the studied set of Alzheimer’s disease genes needs further
investigation. The exploratory hypothesis that the lncRNA
sequences embedded in the transcribed mRNAs would
exhibit correlation in Alzheimer’s disease genes receives
supporting evidence in a comparative fractal dimension
model of mRNA sequences versus coding DNA sequences
(CDSs).

The correlation results suggest a hypothesis where HCRT,
a neurotransmitter only produced in the hypothalamus and
related to the wake/sleep cycle, could be a relatively more
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Figure 3: The fractal dimension correlation of the APP, APOE,
PSEN1, HCRT, HCRT-R1, and HCRT-R2 CDSs versus mRNAs in
Alzheimer’s disease is displayed with 𝑅2 of 0.985 (𝑁 = 16 Series1).
The 𝑦-axis represents the fractal dimension (FD) of the CDSs, and
the 𝑥-axis represents the FD of the mRNAs.
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Figure 4: HCRT Receptor-2 expression level distribution in the
brain regions (168 regions for each patient) using the 4-patient
data from Allen Brain Atlas. The expression level 𝑧-score values are
displayed in the 𝑥-axis. The displayed line is used as a visual guide.
The Skewness of the distribution has been computed to be = 0.91.

0

10
20
30
40
50
60
70
80

−4 −3 −2 −1 0 1 2 3 4

Figure 5: EPO Receptor expression level distribution in the brain
regions (168 regions for each patient) using the 4-patient data from
Allen Brain Atlas. The expression level 𝑧-score values are displayed
in the 𝑥-axis. The displayed line is used as a visual guide. The
Skewness of the distribution has been computed to be = 0.04.
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Figure 6: HCRT expression level distribution in the brain regions
(168 regions for each patient) using the 4-patient data from Allen
Brain Atlas. The expression level 𝑧-score values are displayed in the
𝑥-axis. The displayed line is used as a visual guide. The Skewness of
the distribution has been computed to be = 2.2.
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Figure 7: EPO expression level distribution in the brain regions (168
regions for each patient) using the 4-patient data from Allen Brain
Atlas.The expression level 𝑧-score values are displayed in the 𝑥-axis.
The displayed line is used as a visual guide. The Skewness of the
distribution has been computed to be = 1.1.

important candidate as a blocker or promoter when com-
pared to EPO, a glycoprotein hormone produced by kidney
and liver, for targeting drug development with application
to Alzheimer’s disease clinical trials. The HCRT hypothesis
would be consistent with MRI brain scans (168 regions) con-
taining microarray array expression level data from the Allen
Brain Atlas database.The brain scan data analysis has showed
higher Skewness value in HCRT Receptor-2 expression level
distribution (Figure 4) in the brain as compared to EPO
Receptor distribution (Figure 5). The reasoning follows the
fact that hypocretin Receptor expression level distribution
would have a positive long tail representing high expression
level and high demand for HCRT in the brain as compared
to EPO receptor expression level distribution. The Skewness
value would be 0.91 for HCRT Receptor-2 (Figure 4) versus
0.04 for EPO Receptor (Figure 5), a factor difference of about
20. The HCRT and EPO expression level distributions in
the brain are displayed in Figures 6 and 7, respectively. The
Skewness value would be 2.2 for HCRT (Figure 6) versus 1.1
for EPO (Figure 7), a factor difference of about 2. The large
factor difference in receptor expression level in the brain
would influence the selection of targeted receptors in drug
development.
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Figure 8: A plot of fractal dimension versus entropy for HCRT
CDSs in human, mouse, and zebrafish is displayed with 𝑅2 of
0.9998 and an adjusted 𝑅2 of 0.9996 (Series1 diamonds). The fractal
dimension is represented on the𝑥-axis, and the dinucleotide entropy
is represented on the 𝑦-axis. Rat HCRT CDS would be viewed as
an outlier (square) from the regression analysis of human (highest
fractal dimension), mouse and zebrafish (lowest fractal dimension).
GenBank information: mouse Mus musculus HCRT has Gen-ID-
15171, rat Rattus norvegicus HCRT has Gen-ID-25723, and zebrafish
Danio rerio HCRT has Gen-ID-613239.

Mouse model has become a popular choice in drug
development since evolution has been a corner stone for the
understanding of biology. A plot of fractal dimension versus
entropy for HCRT CDSs in human, mouse, and zebrafish is
displayed in Figure 8 with an adjusted 𝑅2 of 0.9996, and rat
HCRTCDSwould be viewed as an outlier from the regression
analysis of human, mouse, and zebrafish. The regression
result would be consistent with an evolutionary trend where
the human HCRT has the highest fractal dimension, and
zebrafish HCRT has the lowest fractal dimension. Similar
fractal dimension entropy plot on HCRT-R2 is displayed in
Figure 9 with an adjusted 𝑅2 of 0.965, and rat HCRT-R2 CDS
would be viewed as an outlier. The regression result would
be consistent with an evolutionary trend, where the human
HCRT-R2 has the lowest fractal dimension, and zebrafish
HCRT-R2 has the highest fractal dimension.The high fractal
dimension human HCRT combination of low fractal dimen-
sion human receptor HCRT-R2 would be consistent with a
docking complimentary relationship as discussed above in
terms of the significance of fractal dimension as an associated
parameter for roughness matching in a zipper analogy for
the understanding of transcription and translation. The
folding of lncRNA could be important for further studies
of docking and regulation in terms of sequence fractal
dimension computation, and metal controlled folding RNA
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Figure 9: A plot of fractal dimension versus entropy for HCRT-
R2 CDSs in human, mouse, and zebrafish is displayed with 𝑅2
of 0.982 and an adjusted 𝑅2 of 0.965 (Series1 diamonds). The
fractal dimension is represented on the 𝑥-axis, and the dinucleotide
entropy is represented on the 𝑦-axis. Rat HCRT-R2 CDS would
be viewed as an outlier (square) from the regression analysis of
human (lowest fractal dimension), mouse and zebrafish (highest
fractal dimension). GenBank information: mouse Mus musculus
HCRT has Gen-ID-387285, rat Rattus norvegicus HCRT has Gen-
ID-25605, and zebrafish Danio rerio HCRT has Gen-ID-561260.

could serve as a starting platform with UV Circular Dichro-
ism and Synchrotron based X-ray absorption spectroscopy
structural data [22]. In any event, when a fractal dimension
entropy map is used as a tool for evolutionary pressure
study beyond simple classification, a strong correlationwould
lend quantitative support to the choice of mouse model and
zebrafish model in HCRT drug development. Extension of
fractal dimension computation and correlation analysis to the
recently published dataset of expressed lncRNAs in zebrafish
embryogenesis would help HCRT drug development [23].

Recently the R47H variant of TREM2 was reported to
be associated with Late-onset Alzheimer’s disease (LOAD)
[24, 25]. The human TREM2 is known as an innate immune
receptor and signals through TYROBP (agonist with 4
mRNA variants and 4 CDS variants) to clear the dam-
aged tissue and reduce inflammation. The fractal dimension
computation and correlation is displayed in Figure 10 with
𝑅
2
= 0.999, 𝑁 = 5. The BLASTN comparison of TREM2

(lowest left corner data point in Figure 10) shows 𝐸 =
0.11, given a CDS of 693-nucleotide sequence versus a 366-
nucleotide sequence within the mRNA obtained by adding
the beginning and ending non-coding regions together. Sim-
ilar BLASTN comparison of TYROBP Variant 1 (uppermost
right corner data point in Figure 10) had returned a null
result, given a CDS of 342-nucleotide sequence versus a 266-
nucleotide sequence within the mRNA obtained as described
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Figure 10: The fractal dimension correlation of the TYROBP-
Variants 1−4 and TREM2 CDSs versus mRNAs involved in Late-
onset Alzheimer’s disease. 𝑅2 = 0.9992 (𝑁 = 5). Inclusion of
APOE (2.0267, 2.0382) would appear at the uppermost right corner
in contrast to TREM2 at the lowest left corner and would give 𝑅2 =
0.9993, 𝑁 = 6 (adjusted 𝑅2 = 0.99915, 𝑁 = 6). For comparison,
similar correlation analysis on the mouse and Bos taurus TYROBP,
TREM2, and APOE would give 𝑅2 values of 0.89 (𝑁 = 3), and 0.45
(𝑁 = 3) respectively. GenBank information: human TYROBP has
Gen-ID-7305, human TREM2 has Gen-ID-54209, mouse TYROP
has Gen-ID-22177, mouse TREM2 has Gen-ID-83433, mouse APOE
has Gen-ID-11816, Bos taurus TYROP has Gen-ID-282390, Bos
taurus TREM2 has Gen-ID-506467, and Bos taurus APOE has Gen-
ID-281004.
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Figure 11: Fractal dimension versus entropy for TYROBP-Variant
1, TYROBP-Variant 2, TYROBP-Variant 3, TYROBP-Variant 4,
and TREM2 CDSs involved in Late-onset Alzheimer’s disease in
human. The fractal dimension is represented on the 𝑥-axis, and the
mononucleotide entropy is represented on the 𝑦-axis. TYROBP-
Variant 1 has the highest fractal dimension and TYROBP-Variant
2 has the second lowest fractal dimension, and TREM2 has the
lowest fractal dimension. Inclusion of APOE (2.0382, 1.8673) would
suppress 𝑅2 to 0.32.

above. The fact that the CDS and mRNA of the studied
sequences have similar fractal dimension values but show
little or no relationship under BLAST investigation would
suggest a selection process, and the correlation showing 𝑅2
of 0.9992 (𝑁 = 5) among the 4 variants and the receptor
would suggest a systematic selection process, consistent with
the CDSs entropy versus fractal dimension plot having 𝑅2 of
0.949 (𝑁 = 5) in Figure 11.

As [24] pointed out, the apolipoprotein E (APOE) mal-
function still remains as themost important sequence variant
that would be risk of Late-onset Alzheimer’s disease. The
inclusion of APOE in Figure 10 would give 𝑅2 of 0.9993
(𝑁 = 6), suggesting a very stringent regulation in selecting
CDSs from mRNAs in the studied LOAD sequences. For
comparison, similar correlation analysis on the mouse and
Bos taurus TYROBP, TREM2, and APOE would give 𝑅2
values of 0.89 (𝑁 = 3) and 0.45 (𝑁 = 3), respectively. The
BLASTN comparison of human APOE had returned 𝐸 =
0.11, given a CDS of 954-nucleotide sequence versus a 269-
nucleotide sequence within the mRNA obtained by adding
the beginning and ending non-coding regions together. The
inclusion of HCRT and EPO informatics would suppress
the correlation to 𝑅2 values of 0.973 (𝑁 = 9) and 0.927
(𝑁 = 8), respectively, suggesting that HCRT drugs could be
a better choice for treating Late-onset Alzheimer’s disease as
compared to EPO drugs. The inclusion of APOE would give
𝑅
2 of 0.32 in the entropy versus fractal dimension graph in

Figure 11. The APOE sequence has the lowest entropy among
the studied sequences, and all CDSs have lower entropy
than mRNAs in the Late-onset Alzheimer’s disease studied
sequences. The APOE mononucleotide entropy of 1.8673
would suppress very slightly themono-nucleotide correlation
of mRNA versus CDS in Late-onset Alzheimer’s disease
studied sequences from 𝑅2 of 0.9948 (𝑁 = 5) to 0.9944
(𝑁 = 6). The Late-onset Alzheimer’s disease studied mRNAs
and CDSs show very high correlation in fractal dimension
(𝑅2 of 0.999) and entropy (𝑅2 of 0.994), consistent with a
Late-onset Alzheimer’s disease lncRNA hypothesis of high
fractal dimension satisfied by low entropy in CDSs selection
by deleting the lncRNAs with low entropy values about 1.91
except for TREM2 lncRNA having 1.995 bits per nucleotide
type.

High correlation results are also observed in two other
neurodegenerative disease involving TYROBP. The Nasu-
Hakola disease, a disorder affecting both brain and bone,
is known to be related to the malfunctioning of TREM2
or TYROBP [26]. The CSF1R (a microglial receptor) where
malfunctioning is associated with a corticobasal syndrome
called hereditary diffuse leukoencephalopathywith spheroids
was reported to be cosignaling with TYROBP [27]. The
addition of CSF1R in Figure 10 would reduce the correlation
from 0.999 (𝑁 = 5) to 0.992 (𝑁 = 6). The exploratory
study of noncoding RNA by comparing mRNA versus
CDS informatics has revealed regularity. An examination of
Figure 1 with 𝑅2 0.969 (𝑁 = 15) and Figure 10 with 𝑅2
0.999 (𝑁 = 6 including APOE) would suggest that the
noncoding RNA assembly process in Late-onset Alzheimer’s
disease would involve relatively highly systematic process or
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processes as compared to familial early-onset Alzheimer’s
disease with APP, PSEN1, PSEN2, and APOE.The project has
used 𝑅2 differences in the order of 0.02 to be the demarcation
in the lncRNA investigation by comparing mRNAs versus
CDSs in a cluster of disease related sequences. The mRNA
versus CDS informatics comparative method could be a
supplement to the well-accepted BLAST method. Further
investigations using fractal analysis for neurodegenerative
disease sequences and currently targeted receptors would be
productive.

5. Conclusions

The long noncoding RNAs (lncRNAs) within the mRNA
sequences in Alzheimer’s disease genes, namely, APP, APOE,
PSEN1, and PSEN2, have been analyzed in terms of fractal
dimension computation and correlation analysis. The results
show that APP, APOE, and PSEN1 CDSs select slightly higher
fractal dimensions as compared to the mRNA sequences
with a pattern evidenced by correlation coefficient of 𝑅2 =
0.979 (𝑁 = 13 including variants). Inclusion of the 2 variants
in PSEN2 where CDSs have lower fractal dimension values
than mRNAs would yield 𝑅2 of 0.969 (𝑁 = 15). The
systematic selection of higher fractal dimension CDSs could
be indicative of characteristic interaction of Alzheimer’s
gene products APP, APOE, and PSEN1. The inclusion of
hypocretin sequences would improve the correlation (𝑅2 =
0.985, 𝑁 = 16) but inclusion of erythropoietin would
suppress the correlation (𝑅2 = 0.953, 𝑁 = 15), suggesting
that HCRT could be a relatively more important candidate as
a blocker or promoter when compared to EPO for targeting
in drug development with application to Alzheimer’s disease
clinical trials.TheHCRThypothesis would be consistent with
MRI brain scan containing microarray expression level data
from the Allen Brain Atlas database that shows higher Skew-
ness value in HCRT receptor expression level distribution as
compared to EPO receptor expression level distribution in
the brain. Study of sequence fractal dimension and entropy
correlation has provided quantitative supporting evidence,
consistent with evolutionary studies, for using zebrafish
model together with mouse model, in HCRT drug develop-
ment. The TREM2 and TYROBP mRNAs reported recently
in Late-onset Alzheimer’s disease also yield a correlation of
𝑅
2 of 0.999 (𝑁 = 6) using similar informatics analysis, but

HCRT informatics inclusion would suppress the correlation
slightly as compared to the EPO informatics inclusion.
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