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Large-p-small-n datasets are commonly encountered in modern biomedical studies. To detect the difference between two groups,
conventional methods would fail to apply due to the instability in estimating variances in t-test and a high proportion of tied values
in AUC (area under the receiver operating characteristic curve) estimates.The significance analysis of microarrays (SAM)may also
not be satisfactory, since its performance is sensitive to the tuning parameter, and its selection is not straightforward. In this work,
we propose a robust rerank approach to overcome the above-mentioned diffculties. In particular, we obtain a rank-based statistic
for each feature based on the concept of “rank-over-variable.” Techniques of “random subset” and “rerank” are then iteratively
applied to rank features, and the leading features will be selected for further studies. The proposed re-rank approach is especially
applicable for large-p-small-n datasets. Moreover, it is insensitive to the selection of tuning parameters, which is an appealing
property for practical implementation. Simulation studies and real data analysis of pooling-based genome wide association (GWA)
studies demonstrate the usefulness of our method.

1. Introduction

Recently, many researches encounter the problem where the
data objects have an extremely large number of features
while the available sample size is relatively small. In view of
the number of features, unless there is a large sample size,
conventional statistical methods that based on asymptotic
theory are not applicable. This is so-called the curse of
dimensionality. To improve the accuracy and efficiency of
data analysis, it is helpful to reduce the number of features
before fitting statistical models. Various dimension reduction
methods have been proposed, which can be categorized into
two categories: feature extraction and feature selection [1].
The former is to transform a high dimensional data into a
lower dimensional space, while the latter is to select a subset
of the original features. For example, principle component
analysis (PCA) [2] is one of the most commonly used feature
extraction methods. However, the meanings of the extracted
principle components are often difficult to interpret. Alter-
natively, feature selection methods aim to choose a subset of

features which do not alter the original explanation [3, 4]. In
the field of bioinformatics, statistical techniques are usually
used to be a preprocessing step for the purpose of identifying
relevant features with disease status. After identifying a set
of susceptible genetic markers, their biological meanings or
functions need to be verified by further studies. In this view,
feature selection seems to be more appropriate than feature
extraction due to the advantage of interpretability.

To detect the difference between two groups, one
approach is fold change [5]. It is calculated simply as the ratio
of the sample means of two groups. Its drawback, however,
is that it ignores the variance of each group so that the
statistical power is usually poor. In contrast, 𝑡-test takes into
account the sample variances to detect mean change between
two groups, and it is very powerful when the normality
assumption holds. However, the data is not always normally
distributed especially for the case of small sample size. The
instability in estimating variances in this situation would also
make type-I error inflated and fail to apply. The Significance
Analysis of Microarrays (SAM) [6] is proposed to improve
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this drawback through adding a small positive number 𝑠
0

to the denominator of the 𝑡-test statistic. However, it is still
difficult to apply since its detection power is sensitive to 𝑠

0

value and, to the best of our knowledge, there is no optimal
data-driven approach to select 𝑠

0
.

Nonparametric methods are distribution-free and robust
to the presence of outliers. To achieve robustness, these
methods consider the ranks of data instead of the orig-
inal measurements. Unfortunately, traditional “rank-over-
sample” methods such as Wilcoxon rank sum test or area
under the receiver operating characteristic curve (AUC)
would fail to deal with the large-𝑝-small-𝑛 datasets. This can
be seen by considering a case-control study with 𝑛

1
cases and

𝑛
0
controls, where there are at most 𝑛

0
𝑛
1
distinct AUC values

which can be much smaller than the number of features. In
this case, the high proportion of tied values would make it
hard to construct a ranking list. To improve the detection
power while keeping the robustness, methods based on the
idea of “rank-over-variable” were proposed including Rank
Product [7] and Rank Test [8]. In these methods, the original
data points are still replaced by their ranks, but the rank
here is defined for each feature by its position in the list
of sorted variables of a single subject. As a consequence,
the possible ranking values would range between one and
the number of variables, which decreases the occurrence of
tied values while keeping the robustness. Compared with
unstably estimating variances in 𝑡-test, rank-over-variable
methods do not involve the estimation of variance but it has
been reported to be able to detect both changes in mean
and correlation between two groups [8]. Motivated by the
advantages of rank-over-variable, the aim of this work is to
propose a robust rerank approach for feature selection.Aswill
become clear later, the proposed rerank approach is especially
applicable for large-𝑝-small-𝑛 datasets and is not sensitive to
the selection of tuning parameters.

The rest of this paper is organized as follows. In Section 2,
based on the idea of rank-over-variable, we propose a robust
rerank approach to create a ranking list for feature selection.
Numerical studies are conducted in Section 3 to verify that
our rerank approach does outperformAUC, 𝑡-test, and SAM.
The paper is ended with conclusions in Section 4.

2. Inference Procedure

2.1. Rerank Approach. Consider a case-control study that
examines𝑝markers with 𝑛

1
cases and 𝑛

0
controls. Let𝑋

𝑖𝑗
and

𝑌
𝑖𝑗
be the continuousmeasurement formarker 𝑗, 𝑗 = 1, . . . , 𝑝,

of subject 𝑖 in the case and control groups, respectively. The
goal is to identify those markers which are truly associated
with disease. To construct a ranking list of markers, we
consider a rank-based statistic by modifying the method of
Alvo et al. [8]. Define the centered markers by

𝑋
∗

𝑖𝑗
= 𝑋
𝑖𝑗
− 𝜇
𝑗
, 𝑌

∗

𝑖𝑗
= 𝑌
𝑖𝑗
− 𝜇
𝑗
, (1)

where

𝜇
𝑗
=

∑
𝑛
1

𝑖=1
𝑋
𝑖𝑗
+ ∑
𝑛
0

𝑖=1
𝑌
𝑖𝑗

𝑛
1
+ 𝑛
0

(2)

is the overall sample mean of the 𝑗th marker. Let 𝑅
𝑋
∗(𝑖, 𝑗)

be the rank of 𝑋∗
𝑖𝑗
among {𝑋∗

𝑖𝑗
, 𝑗 = 1, . . . , 𝑝} for subject 𝑖 in

decreasing order, and 𝑅
𝑌
∗(𝑖, 𝑗) is similarly defined.The rank-

based statistic 𝑆
𝑗
of marker 𝑗 is then calculated to be the

absolute value of the mean difference between {𝑅
𝑋
∗(1, 𝑗),

. . . , 𝑅
𝑋
∗(𝑛
1
, 𝑗)} and {𝑅

𝑌
∗(1, 𝑗), . . . , 𝑅

𝑌
∗(𝑛
0
, 𝑗)}; that is,

𝑆
𝑗
=



1

𝑛
1

𝑛
1

∑

𝑖=1

𝑅
𝑋
∗ (𝑖, 𝑗) −

1

𝑛
0

𝑛
0

∑

𝑖=1

𝑅
𝑌
∗ (𝑖, 𝑗)



. (3)

A relevant marker 𝑗 then should possess a large value of 𝑆
𝑗
.

Note that the concept of “rank-over-variable” we adopt here
to construct 𝑅

𝑋
∗(𝑖, 𝑗) and 𝑅

𝑌
∗(𝑖, 𝑗) is more appropriate than

the traditional rank-over-samplemethods to analyze large-𝑝-
small-𝑛 datasets as described in Section 1.

In the construction of (3), all the data points are sub-
tracted by the overall mean 𝜇

𝑗
before ranking over variables

within a subject.Wenote that this centering is critical. Figure 1
shows a simple example to illustrate its necessity. Consider
four markers where one (with the symbol ⋆) is relevant and
the remaining (with the symbols ◻, ⬦, △) are irrelevant to
disease status. In control group, we assume that the mean of
relevant marker (⋆) is larger than that of other three markers
(Figure 1(a)). In case group, the means of irrelevant markers
is identical to that in control group, while there is a large
mean shift of marker ⋆. If we are only concerned about the
order of the four markers in each group, we cannot observe
any difference (Figure 1(a)). Obviously, rank-over-variable
method without centering by means will fail to identify the
relevant marker in this situation. Instead, supposing that all
data points are subtracted by the overall means, the irrelevant
markers will be close to zero while the relevant markers
will be in the opposite directions and far away from zero as
shown in Figure 1(b). In fact, the null hypothesis of the rank-
over-variablemethod is that the interrelationships among the
“centered markers” in case and control groups are the same;
that is,

𝐻
0
:The orders of centeredmarkers within two groups are

identical.
Violation of the null hypothesis then indicates the exis-

tence of some relevant features, and those features can be
reasonably identified by the ranking score (3).

If there are fewer irrelevant markers, the relevant markers
might be more likely to be ranked in the top list. In most
cases, however, the proportion of relevant markers is much
lower than that of irrelevant markers, and the performance of
the ranking list directly based on 𝑆

𝑗
may not be satisfactory.

To enhance the detection power of the rank-based statistic
𝑆
𝑗
, we further apply the techniques of “random subset” and

“rerank” [9, 10] as described later. Here we use I(⋅) to denote
an indicator function.

Algorithm 1 (random subset).
(1) Randomly select a marker index subset {ℓ

(𝑏)

1
, . . . ,

ℓ
(𝑏)

⌈𝑝/2⌉
} of {1, . . . , 𝑝} without replacement to form the partial

dataset with the selected ⌈𝑝/2⌉markers.
(2) Calculate {𝑆(𝑏)

𝑗
: 𝑗 ∈ {ℓ

(𝑏)

1
, . . . , ℓ

(𝑏)

⌈𝑝/2⌉
}} in (3) based on

the dataset obtained in Step 1.
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Figure 1: Rank-over-variable with or without centering. (a) Without centering, the rank of each marker in two groups has no difference. (b)
With centering, the relevant marker has the highest rank in Case while it has the lowest rank in Control.

(3) Repeat Steps 1-2 for 𝑏 = 1, . . . , 𝐵, and output the ad-
justed rank-based statistic

𝑆
∗

𝑗
=

∑
𝐵

𝑏=1
𝑆
(𝑏)

𝑗
⋅ I(𝑗 ∈ {ℓ(𝑏)

1
, . . . , ℓ

(𝑏)

⌈𝑝/2⌉
})

∑
𝐵

𝑏=1
I(𝑗 ∈ {ℓ(𝑏)

1
, . . . , ℓ

(𝑏)

⌈𝑝/2⌉
})

. (4)

The idea of random subset is intuitive: calculation of
𝑆
𝑗
with fewer irrelevant variables should be more efficient.

Following the strategy of Chang and Chen [9], the size of
subsets is chosen to be half of the number of markers in
the original dataset. To take into account all combinations
of markers and to ensure each marker is included with a
sufficiently large number of times, the procedure is repeated
𝐵 times.

The adjusted rank-based statistic 𝑆
∗

𝑗
, however, is still

calculated with the all markers being involved. Considering a
ranking list of markers constructed by (4), we can reasonably
regard the low-ranked markers as irrelevant markers. If we
drop those irrelevant markers, the relevant markers might
be more likely to be ranked in the top of the list. This fact
motivates us to further consider the technique of “rerank,”
and the algorithm is described later.

Algorithm 2 (rerank). Initialize. 𝐼
0
= {1, . . . , 𝑝} and 𝑡 = 0

(1) Calculate {𝑆∗
𝑗

(𝑡)
: 𝑗 ∈ 𝐼

𝑡
} defined in (4) and

𝑤
𝑡
=

1

𝑝
𝑡

∑

𝑗∈𝐼
𝑡

(

𝑆
∗

𝑗

(𝑡)

𝑝
𝑡

) , (5)

where 𝑝
𝑡
is the number of markers in 𝐼

𝑡
.

(2) Based on {𝑆∗
𝑗

(𝑡)
: 𝑗 ∈ 𝐼

𝑡
}, collect the top 𝑞%markers in

𝐼
𝑡
to form 𝐼

𝑡+1
.

(3) Repeat Steps 1-2 until 𝑝
𝑇+1

< 𝑀
1
, and output

𝑆
∗∗

𝑗
=

𝑇

∑

𝑡=0

𝑤
𝑡
(

𝑆
∗

𝑗

(𝑡)

𝑝
𝑡

) . (6)

In the rerank procedure, we can reasonably expect that
a relevant marker would be recalculated many times. It is
straightforward to sum up all adjusted rank-based statistics
𝑆
∗

𝑗

(𝑡) from each iteration, and then a relevant marker would
possess a large score. However, there are two parts that
should be modified. Firstly, note that the magnitude of rank-
over-variable statistics will be influenced by the number of
markers (𝑝

𝑡
) under consideration. To make statistics from

different iteration comparable, we use 𝑆
∗

𝑗

(𝑡)
/𝑝
𝑡
instead of

𝑆
∗

𝑗

(𝑡) in the rerank algorithm. Secondly, if the averaged
score in an iteration is large, it implies that this iteration
includes more markers with good separability of disease
status. To implement this idea, we use the weight 𝑤

𝑡
defined

in (5) to quantify the importance of each iteration. The final
score 𝑆

∗∗

𝑗
from rerank technique is therefore defined as a

weighted sum in (6). Based on the ranking list constructed
by {𝑆∗∗
𝑗

: 𝑗 = 1, . . . , 𝑝}, researchers can select𝑀
1
top-ranked

markers as candidates for further evaluation. The flowchart
of the proposed rerank approach is placed in Figure 2. In
practice, the choice of 𝑀

1
depends on research funding,

prior knowledge, and so forth. A data-driven approach to
determine𝑀

1
is developed in Section 2.2.

Remark 3. Both “random subset” and “rerank” are compu-
tationally demanded. To increase the computation speed,
we suggest to select the top 𝑀

0
markers by 𝑡-test, and the

rerank approach is only implemented on these 𝑀
0
markers

to identify candidate features. It is verified in our simulation
studies that this preprocessing does not affect the perfor-
mance heavily.

2.2. Selection of 𝑀
1
. Given a ranking list, researchers can

select 𝑀
1
top-ranked markers as candidates for further

evaluation. For example, in our bipolar study in Section 3.2,
it is allowed to select𝑀

1
= 100 due to the limited budget. In

the case of having no prior knowledge about𝑀
1
, 𝑃 value and

false discovery rate (𝑞-value) are commonly used indices for
feature selection. However, when the sample size is extremely
small (e.g., 8 case and 8 control pools in our bipolar dataset),
these methods may not be ready to be applied. In this study,
we alternatively propose a method to directly estimate the
number of truly relevant markers based on the constructed
ranking list.

Consider a ranking list constructed by the rerank
approach. If a marker is relevant, it implies that all of the
higher-ranked markers in this ranking list are also relevant.
Based on the idea of Cook and Yin [11], instead of computing
a standard permutation-based 𝑃 value for each marker, we
compute a modified 𝑃-value ]

𝑚
to determine whether all

of the higher-ranked markers are relevant. The algorithm is
described later.

Algorithm 4.
(1) Calculate {𝑆∗∗

𝑗

(0)
: 𝑗 = 1, . . . , 𝑝} defined in (6) and

𝑆
(0)

= (1/𝑝)∑
𝑝

𝑗=1
𝑆
∗∗

𝑗

(0).
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𝐵
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∙
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⇒ {𝑆∗𝑗 : 𝑗 = 1, . . . ,𝑀0}
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(e.g., 𝑡-test)

Recalculate top 𝑞%

Figure 2: Flowchart of the rerank approach.

(2) Construct a ranking list based on {𝑆
∗∗

𝑗

(0)
: 𝑗 =

1, . . . , 𝑝}. Let ℓ
(𝑚)

be the index such that 𝑆∗∗(0)
ℓ
(𝑚)

is the 𝑚th
largest.

(3) For𝑚 = 1, 2, . . . , 𝑝,

(i) randomly permute the class labels on those markers
with indices {ℓ

(𝑚+1)
, . . . , ℓ

(𝑝)
} to form a partially per-

muted dataset,
(ii) based on the dataset obtained from Step 3(i), calcu-

late {𝑆∗∗
𝑗

(𝑏)
: 𝑗 = 1, . . . , 𝑝} defined in (6) and 𝑆

(𝑏)

𝑚
=

(1/𝑝)∑
𝑝

𝑗=1
𝑆
∗∗

𝑗

(𝑏),

(iii) repeat Step 3(i)-(ii) for 𝑏 = 1, . . . , 𝐵, and output

]
𝑚
=
1

𝐵

𝐵

∑

𝑏=1

I (𝑆(𝑏)
𝑚

≥ 𝑆
(0)

) . (7)

We now describe the rationale of this algorithm and how
to use the ]

𝑚
values to determine 𝑀

1
. Assume 𝑚

∗ is the
number of truly relevant markers and we are given a correct
ranking list. Firstly, in the population level, it is obvious that
]
𝑚
is an increasing function of 𝑚 provided the ranking list

is correct. When 𝑚 = 𝑚
∗, the algorithm actually permutes

all irrelevant markers to form the permuted data, while the
relevantmarkers are not permuted. In this case, the permuted
data should behave very similarly to the original one and,
hence, the distribution of 𝑆(𝑏)

𝑚
∗ should be identical to that of

𝑆
(0). We thus expect that the value of ]

𝑚
∗ is close to 0.5.

Moreover, when 𝑚 > 𝑚
∗, ]
𝑚
is expected to be increasing

uniformly in 𝑚, since we are including markers without
separation abilities, and finally to reach unity when 𝑚 = 𝑝.
On the other hand, when 𝑚 < 𝑚

∗, the relevant markers are
permuted and the value of 𝑆(𝑏)

𝑚
can be hardly as large as 𝑆(0).

In this case, the ]
𝑚
value should be lower than 0.5, and the

pattern of {]
𝑚
: 𝑚 < 𝑚

∗
} should be far away from that of

{]
𝑚
: 𝑚 > 𝑚

∗
}. Based on the previous properties, we thus

suggest to choose

𝑀
1
= min {𝑚 : ]

𝑚
≥ 0.5} . (8)

The proposed selection criterion will be evaluated by a
simulation study as described later.

We conduct a simulation study with 2000 markers for
equal numbers of case and control groups. All of the markers
in both groups follow standard normal distribution except
𝑚
∗

= 10 markers in the case group that are distributed
as 𝑁(2, 1). With 100 cases and 100 controls, Figure 3(a)
shows that the ]

𝑚
curve rises rapidly before reaching 0.5.

After passing ]
𝑚
= 0.5, the curve increases uniformly with

increasing𝑚. An obvious change point at 𝑚 = 10 with ]
10
≈

0.5 suggests that𝑀
1
= 10 is a suitable choice. Figure 3(a) also

shows that the recovery proportion is 100% when 𝑚 = 10.
When the sample size is merely 10 (Figure 3(b)), although
there is no obvious change point, it still shows that the
corresponding 𝑚 of ]

𝑚
= 0.5 is close to 𝑚

∗
= 10. The

simulation results suggest that we can utilize the formula (8)
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Figure 3: The average ]
𝑚
values and recovery proportion over 50

simulated datasets. The 𝑥-axis represents the number of unpermit-
ted markers (𝑚). Circles are the average ]

𝑚
values at 𝑚. Asterisk

symbols are the average proportion of identified truly relevant
markers included in the top𝑚markers (recovery proportion).

to select a possible value of 𝑀
1
, after which the markers are

treated as irrelevant.

3. Numerical Studies

The proposed rerank approach is applicable to analyze large-
𝑝-small-𝑛 datasets with continuous measurements. One
application is the pooling-based genomewide association
(GWA) study dataset. Instead of individual genotyping which
is more expensive, using pooled DNA samples is an effective
strategy to reduce the costs of GWA studies. In a pooling-
based GWA study, the sample is genotyped in pools of

individuals instead of individually genotyping. In particular,
the data points 𝑋

𝑖𝑗
(𝑌
𝑖𝑗
) from a pooling-based GWA study

are the estimated allele frequencies for SNP 𝑗 of pool 𝑖 in the
case (control) group. However, it will generate an ultrahigh
dimensional dataset with extremely small sample size. For
example, there are 249,473 markers but only 8 case and
8 control pools available in our bipolar dataset. Moreover,
the additional measurement error from the pooling process
and the existence of outliers have the potential to decrease
detection power. In this situation, the proposed rerank
approach is more suitable to deal with the large-𝑝-small-𝑛
datasets and is more robust to the pooling error and outliers.
These facts will be confirmed by the following numerical
studies.

3.1. Simulation Studies Using GAIN-MDDDataset. We simu-
late DNA pooling datasets from a real individual genotype
dataset called GAIN-MDD dataset, which was accessed
through the Genetic Association Information Network
(GAIN) studies database of Genotypes and Phenotypes
(dbGaP) for major depressive disorder (MDD) [12, 13].There
are 416,170 SNPs with 1673 cases and 1721 controls after
quality control. We first implement the basic case/control
association test by PLINK [14] to the original GAIN-MDD
dataset and then define the top 100 SNPs as the truly relevant
SNPs. To simulate a pooling-based GWA dataset, 𝑛

1
case

pools and 𝑛
0
control pools are constructed by randomly

selecting 𝑛
1
× 𝑠 cases and 𝑛

0
× 𝑠 controls from GAIN-MDD

dataset, where 𝑠 is the pooling size. Let �̃�
𝑖𝑗
and �̃�

𝑖𝑗
be the

minor allele frequency (MAF) for SNP 𝑗 of pool 𝑖 in the case
and control groups, respectively. To mimic the existence of
pooling error and outliers, the observedMAF is generated by

𝑋
𝑖𝑗
=

exp (log (�̃�
𝑖𝑗
/ (1 − �̃�

𝑖𝑗
)) + 𝜀)

1 + exp (log (�̃�
𝑖𝑗
/ (1 − �̃�

𝑖𝑗
)) + 𝜀)

, 𝜀 ∼ 𝑁 (0, 𝜎
2
) ,

(9)

and 𝑌
𝑖𝑗

is similarly defined. Collect {𝑋
𝑖𝑗

: 𝑗 = 1, . . . ,

416170}
𝑛
1

𝑖=1
and {𝑌

𝑖𝑗
: 𝑗 = 1, . . . , 416170}

𝑛
0

𝑖=1
to form a sim-

ulated DNA pooling dataset. The anticipated aim of this
simulation study is to recover the 100 truly relevant SNPs
by analyzing the simulated DNA pooling dataset. We repeat
simulation studies 100 times and report the averaged number
of truly relevant SNPs identified in the top ranking list of each
method.We use𝑀

0
= 5000, 𝐵 = 100, and 𝑞 = 87.5 for rerank

approach. The SAM is implemented by the samr R package
(from http://www-stat.stanford.edu/∼tibs/SAM/) [6]. As to
the setting of 𝜎, there are three situations considered: (A)
without pooling error and outliers (𝜎 = 0); (B) with pooling
error (𝜎 = 0.05); and (C) 1% data points are outliers with
𝜎 = 5, and 𝜎 = 0.05 otherwise.

Simulation results for equal numbers of case and control
pools are shown in Figure 4. When 𝜎 = 0, under the case of
𝑛
0
= 𝑛
1
= 16 (each with size 𝑠 = 100), Figure 4(a) shows

that the performance of rerank approach is better than AUC
for any𝑀

1
and is better than 𝑡-test except for large𝑀

1
. Note

that the 100 truly relevant SNPs are selected based on chi-
square test, which is similar to 𝑡-test, and it is reasonable for
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Figure 4: Performance comparison of different methods for feature selection with equal sample size in two groups.The 𝑥-axis represents the
number of selected SNPs (𝑀

1
) based on simulated DNA pooling data. The 𝑦-axis represents the average number of identified truly relevant

SNPs over 100 simulations. The shaded area represents the possible results of SAM with various 𝑠
0
. The �̂�

0
value is automatically determined

by samr R package.
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𝑡-test to obtain similar ranking list of susceptible SNPs, even
when data was aggregated. For the case of 𝑛

0
= 𝑛
1
= 8 (each

with size 𝑠 = 200), Figure 4(b) shows that 𝑡-test and AUC
have worse performances due to the instability in estimating
variances and high proportion of tied values, respectively.
In contrast, the proposed rerank approach does outperform
these two methods for any given 𝑀

1
. In the presence of

pooling errors (Figures 4(c) and 4(d)) and outliers (Figures
4(e) and 4(f)), the performances of all methods become
worse, but a similar pattern can be observed. The similar
patterns can be also observed when the numbers of case and
control pools are unequal, except that the performances of all
methods become worse simultaneously (Figure 5).

In Figures 4 and 5, we also plot the results of SAM with
various choices of 𝑠

0
, and with the estimated �̂�

0
by samr

R package [6]. Observing the shaded area from SAM with
various 𝑠

0
, SAM has a chance to identify more truly relevant

SNPs than other methods, provided that we can accurately
choose the optimal 𝑠∗

0
(which corresponds to the highest line

of the shaded area). Unfortunately, 𝑠∗
0
is unknown in advance

and there is no guarantee that the suggested algorithm by [6]
can choose �̂�

0
= 𝑠
∗

0
. See the dashed line in Figures 4 and

5, which is far from the optimal result of SAM. Moreover,
the wide range of shaded areas indicates that the choice of
𝑠
0
is critical to the performance of SAM, especially for small

sample size and in the presence of outliers. On the other hand,
the performance of the rerank approach is similar to that of
SAM with optimal 𝑠∗

0
for small 𝑀

1
and is better than SAM

with the estimated �̂�
0
for a wide range of𝑀

1
.

Another advantage of our rerank approach is its insen-
sitivity to the selection of tuning parameters. To see this,
we further report the simulation results for various 𝑀

0
(the

number of prescreened SNPs) and 𝑞% (the percentage of
rerank) values under equal numbers of case and control pools
and 𝜎 = 0.05. Figure 6(a) suggests that we should choose a
conservative value of𝑀

0
(e.g., larger than 5000) especially for

small sample size (𝑛
0
= 𝑛
1
= 8), although there is no obvious

difference for larger sample size (𝑛
0
= 𝑛
1
= 16). Figure 6(b)

shows that the performance is not sensitive to 𝑞 except for
the case of 𝑞 = 50. These simulation results then suggest to
use a conservative value of 𝑀

0
and 𝑞, and the performance

of rerank approach is guaranteed. In summary, the rerank
approach is more robust to small sample size, pooling error,
and outliers and is insensitive to the selection of tuning
parameters.

3.2. Bipolar Dataset. In this subsection, we demonstrate a
real data analysis using the proposed rerank approach. The
dataset is from a two-stage GWA study to identify common
variants for the association with bipolar disorder [15]. The
bipolar disorder patients were recruited from three hospitals
in southern Taiwan from 2008 to 2010. Healthy controls were
recruited from the community through advertisements. At
Stage 1, a genomewide screen using Illumina HumanOmini1-
Quad chip with 970,342 SNPs was performed by DNA pool-
ing with 8 case and 8 control pools constructed from 200
patients and 200 controls. Among the initial 970,342 SNPs,
we exclude SNPs if they are (1) on sex chromosome, (2)
failed genotyping, (3) monomorphic, (4) with call rate <0.8,

or (5) with MAF <0.05. After quality control filtering, there
remain 249,473 SNPs. The rerank approach is then applied
to evaluate the association for each SNP and to construct
a ranking list. One hundred top-ranked SNPs are selected
to design and make a panel with 96 SNPs, which would
be individually genotyped in Stage 2 with the original plus
additional samples, with the aim of identifying relevant SNPs
responsible for bipolar disorder. We also aim to see if the
result based on pooling data can be reproduced by individual
genotype data, to evaluate the performance of DNA pooling
for SNP selection. The flow diagram of this analysis is shown
in Figure 7.

Recall the aim of Stage 1 is to design a panel with 96
SNPs for that validation by individually genotyping in Stage
2. The selection process is shown in Figure 8. We first select
top 100 SNPs by the rerank approach with 𝑀

1
= 100,

𝐵 = 100 and 𝑞 = 87.5. Among those SNPs, 52 SNPs do
not map to any gene while the remaining SNPs can map to
43 genes totally. According to previous studies, etiology of
bipolar disorder involves neurotransmitter, neuronal system,
immune function, and brain development. Among the 43
genes, we only focus on 8 genes that are associated with brain
or neuron. They can be categorized into different biological
functions, such as brain-specific chemokines or neurokines
and receptor or ligand that regulates neuronal positioning
or axon guidance. We next select 81 tag SNPs for the 8
genes based on Tagger [16]. In addition, we choose 15 SNPs
that are top-ranked but cannot map to any gene. The total
96 SNPs are conducted in a panel for Stage 2. Using the
individual genotype data from Stage 2, the association test for
each SNP is implemented in PLINK by fitting simple logistic
regression under allelic, dominant, recessive, and additive
genetic models, respectively [14].

To evaluate the reproducibility of the findings from Stage
1, Table 1 shows the association analysis results for the 16
overlapping SNPs in both Stage 1 and Stage 2, where the odds
ratio (OR) and 𝑃-value in Stage 2 are based on the genetic
model with the most significant result. Among the 16 SNPs,
13 of them attain 5% significant level in Stage 2 wherein 6
markers are positively relevant to bipolar disorder (OR = 1.4∼
1.5) and 7markers are negatively relevant (OR=0.5∼0.7). One
can see that the analysis results from Stage 1 and Stage 2 are
consistent. It implies that the susceptible markers identified
by our rerank approach have high reproducibility even using
the pooled DNA data. Those relevant markers (𝑃-value <

0.05), however, are listed in the much lower rank of 𝑡-test.
The poor performance of 𝑡-test can be improved by SAM, but
it still could not perform as efficient as the rerank approach
did. For example, the SNP3, SNP6, and SNP8have very small
𝑃-values (0.00085, 0.00651, 0.00785), but not in the top list of
SAM.

To validate the findings from Stage 1, we further conduct
a set-based analysis for the 8 selected genes under different
genetic models of association test by PLINK [14] using
individual genotype data from the original plus additional
samples. Table 2 shows that theGene 5 attains 5% significance
level under all models of set-based analysis from Stage 2.
Under some genetic models, the Gene 4, Gene 6, Gene 7, and
Gene 8 are also significant.
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Figure 5: Performance comparison of different methods for feature selection with unequal sample size in two groups. The 𝑥-axis represents
the number of selected SNPs (𝑀

1
) based on simulatedDNApooling data.The𝑦-axis represents the average number of identified truly relevant

SNPs over 100 simulations. The shaded area represents the possible results of SAM with various 𝑠
0
. The �̂�

0
value is automatically determined

by samr R package.
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Figure 6: Performance comparison under different 𝑀
0
and 𝑞 for rerank approach under the case of 𝑛

0
= 𝑛
1
and 𝜎 = 0.05. The 𝑥-axis

represents the number of selected SNPs (𝑀
1
) based on simulated DNA pooling data. The 𝑦-axis represents the average number of identified

truly relevant SNPs over 100 simulations.
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Figure 7: Flow diagram of DNA pooling-based two-stage GWA study design. Stage 1 is denoted by grey color, and Stage 2 is denoted by black
color.
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Figure 8: Selection process for the 96 SNPs in Stage 2 of Bipolar
study.

Based on the previously mentioned replication and val-
idation steps by analyzing individual genotype data, our
rerank approach indeed has the ability to efficiently detect
associations using pooled DNA data. Researchers can focus
on these candidate SNPs or genes for further biological
studies.

4. Conclusions

In this study, we propose a robust rerank approach to create
a ranking list for feature selection, which comprises three

components: (1) rank-based statistic (rank-over-variable), (2)
random subset, and (3) rerank.The rank-based statistic is the
main scoring function for quantifying association strength,
which is motivated by the Rank Test of Alvo et al. [8].
We also apply the techniques of random subset and rerank
[9, 10] iteratively to enhance the detection power of rank-
based statistic. The combination of these three components
demonstrates good performance and robustness in both sim-
ulation and real pooling-based GWA study datasets. In addi-
tion to the pooling-based GWA study datasets, our rerank
approach can be applied to any large-𝑝-small-𝑛 datasets
with continuous measurements to select differential features
between two groups, such as gene expression datasets and
biomarker datasets. It provides researchers a sizeable number
of differential features for further studies.

In the rerank approach, it involves an important concept:
rank-over-variable. The advantage is not only to avoid tied
values for ranking in the large-𝑝-small-𝑛 situation, but the
information of correlations among features can also be taken
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Table 1: Association analysis of the 16 overlapping SNPs in both stages of bipolar study.

SNP Chr Pooling (Stage 1) Individual genotyping (Stage 2)
𝑅 𝑇 SAM CA CN CA CN Model OR 𝑃 value

SNP 1 3 7 189 5 0.17 0.36 0.21 0.35 DOM 0.5 0.00002∗

SNP 2 3 2 363 15 0.23 0.43 0.22 0.33 DOM 0.6 0.00018∗

SNP 3 6 28 873 152 0.53 0.38 0.45 0.33 ALL 1.6 0.00085∗

SNP 4 4 36 124 58 0.31 0.44 0.33 0.44 ALL 0.7 0.00142∗

SNP 5 21 13 531 64 0.58 0.41 0.55 0.43 ADD 1.5 0.00294∗

SNP 6 6 41 1308 346 0.41 0.28 0.34 0.25 ADD 1.5 0.00651∗

SNP 7 16 10 110 18 0.33 0.49 0.34 0.45 ALL 0.7 0.00725∗

SNP 8 13 48 596 126 0.56 0.42 0.52 0.40 ALL 1.4 0.00785∗

SNP 9 2 101 7484 2795 0.50 0.40 0.48 0.41 ADD 1.4 0.00960∗

SNP 10 4 5 19 1 0.27 0.46 0.27 0.36 ALL 0.7 0.00971∗

SNP 11 14 40 4678 1025 0.36 0.49 0.42 0.53 DOM 0.7 0.01275∗

SNP 12 18 20 393 47 0.49 0.33 0.47 0.36 ALL 1.4 0.01604∗

SNP 13 3 6 694 44 0.33 0.53 0.39 0.49 DOM 0.7 0.01631∗

SNP 14 7 8 36 2 0.31 0.47 0.37 0.45 ADD 0.8 0.06830
SNP 15 5 21 762 57 0.37 0.56 0.35 0.42 DOM 0.8 0.09806
SNP 16 7 22 210 21 0.35 0.53 0.31 0.38 ALL 0.8 0.13530
Chr: chromosome; 𝑅: rank based on rerank approach; 𝑇: rank based on 𝑡-test; SAM: rank based on SAM with �̂�0; CA: MAF of cases; CN: MAF of controls;
Model: genetic model with the most significant result among allelic (ALL), dominant (DOM), recessive (REC), and additive (ADD) genetic models; OR (odds
ratio) and 𝑃 value: estimated by the simple logistic regression under the genetic model with the most significant result (∗𝑃 value < 0.05).

Table 2: Set-based analysis of the 8 selected genes under different models of association test.

Gene NSNP Allelic model Dominant model Recessive model Additive model
NSIG ISIG EMP NSIG ISIG EMP NSIG ISIG EMP NSIG ISIG EMP

Gene 1 11 0 0 1.000 1 1 0.375 0 0 1.000 0 0 1.000
Gene 2 12 1 1 0.443 1 1 0.069 0 0 1.000 1 1 0.415
Gene 3 10 0 0 1.000 0 0 1.000 0 0 1.000 0 0 1.000
Gene 4 9 2 1 0.057 2 1 0.190 1 1 0.135 2 1 0.005∗

Gene 5 11 4 2 0.008∗ 3 2 0.011∗ 1 1 0.008∗ 4 2 0.005∗

Gene 6 10 1 1 0.007∗ 2 2 0.129 1 1 0.054 1 1 0.010∗

Gene 7 12 1 1 0.107 1 1 0.038∗ 0 0 1.000 1 1 0.088
Gene 8 4 1 1 0.042∗ 0 0 1.000 1 1 0.046∗ 1 1 0.037∗

NSNP: number of SNPs in a set; NSIG: total number of SNPs below 𝑃 value with 0.05; ISIG: number of significant SNPs also passing LD criterion on an 𝑟-
squared threshold of 0.5; EMP: empirical set-based 𝑃 value (∗EMP < 0.05).

into account during the ranking process. In other words,
although the rank-based statistic is defined as the mean
difference of rank values, it is likely to have the ability to detect
bothmean and correlation changes between two groups [8]. It
is interesting to investigate this mechanism in a future study.
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