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NLMs is a state-of-art image denoising method; however, it sometimes oversmoothes anatomical features in low-dose CT (LDCT)
imaging. In this paper, we propose a simple way to improve the spatial adaptivity (SA) of NLMs using pointwise fractal dimension
(PWFD). Unlike existing fractal image dimensions that are computed on the whole images or blocks of images, the new PWFD,
named pointwise box-counting dimension (PWBCD), is computed for each image pixel. PWBCD uses a fixed size local window
centered at the considered image pixel to fit the different local structures of images.Then based on PWBCD, a newmethod that uses
PWBCD to improve SA of NLMs directly is proposed.That is, PWBCD is combined with the weight of the difference between local
comparison windows for NLMs. Smoothing results for test images and real sinograms show that PWBCD-NLMs with well-chosen
parameters can preserve anatomical features better while suppressing the noises efficiently. In addition, PWBCD-NLMs also has
better performance both in visual quality and peak signal to noise ratio (PSNR) than NLMs in LDCT imaging.

1. Introduction

Radiation exposure and associated risk of cancer for patients
from CT examination have been increasing concerns in
recent years. Thus minimizing the radiation exposure to
patients has been one of the major efforts in modern clinical
X-ray CT radiology [1–8]. However, the presentation of
serious noise and many artifacts degrades the quality of low-
dose CT images dramatically and decreases the accuracy
of diagnosis dose. Although many strategies have been
proposed to reduce their noise and artifacts [9–14], filtering
noise from clinical scans is still a challenging task, since these
scans contain artifacts and consist of many structures with

different shape, size, and contrast, which should be preserved
for making correct diagnosis.

Recently nonlocalmeans (NLMs) is proposed for improv-
ing the performance of classical adaptive denoising methods
[15–17] and shows good performance even in low-dose CT
(LDCT) imaging [18–20].

There are two novel ideas for NLMs. One is that the
similar points should be found by comparing the difference
between their local neighborhoods instead of by comparing
their gray levels directly. Since gray levels of LDCT will be
polluted seriously by noises and artifacts, finding similar
points by local neighborhoods instead of by gray levels
directly will help NLMs find correct similar points.The other
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important idea for NLMs is that the similar points should
be searched in large windows to guarantee the reliability of
estimation.

Following the previous discussion, the NLMs denoising
should be performed in two windows: one is comparison
patch and the other is searching window. The sizes of these
two windows and the standard deviation 𝜎

𝑟
of the Gaussian

kernel, which is used for computing the distance between
two neighborhoods, should be determined according to
the standard deviation of noises [15–17], and these three
parameters are identical in an image.

Some researchers find that identical sizes of two windows
and identical Gaussian kernel 𝜎

𝑟
in an image are not the

best choice for image denoising [21–25].The straightest moti-
vation is that the parameters should be modified according
to the different local structures of images. For example, the
parameters near an edge should be different from parameters
in a large smooth region.

An important work to improve the performance of NLMs
is quasi-local means (QLMs) proposed by us [21, 22]. We
argue that nonlocal searching windows are not necessary for
most of image pixels. In fact, for points in smooth regions,
which are the majority of image pixels, local searching
windows are big enough, while for points near singularities,
only the minority of image pixels, nonlocal search windows
are necessary. Thus the method is named quasi-local whereit
is local for most of image pixels and nonlocal only for pixels
near singularities. The searching windows for quasi-local
means (QLMs) are variable for different local structures,
and QLMs can get better singularity preservation in image
denoising than classical NLMs.

Other important works about improving spatial adaptiv-
ity of NLMs are proposed very recently [23–25]. The starting
point for these works is that the image pixels are parted into
different groups using supervised learning or semisupervised
learning and clustering. However, the learning and clustering
will waste a lot of computation time and resource, which will
hamper them to be applied inmedical imaging.Thuswemust
propose a new method for improving the spatial adaptivity
with a simple way.

In this paper we propose a simple and powerful method
to improve spatial adaptivity for NLMs in LDCT imaging
using pointwise fractal dimension (PWFD) where PWFD
is computed pixel by pixel in a fixed-size window centered
at the considering pixel. According to the new definition of
PWFD, different local structures will be with different local
fractal dimensions, for example, pixels near edge regions will
be with relatively big PWFDs, while PWFDs of pixels in
smooth regions will be zeros. Thus PWFD can provide local
structure information for image denoising. After defined
PWFD, which can fit different local structures of images well,
we design a new weight function by combining the new
PWFD difference between two considering pixels with the
weight of original NLMs measured by gray level difference
between two comparison windows. Thus using this new
weight function, the proposed method will not only preserve
the gray level adaptivity of NLMs but also improve the SA of
NLMs.

The arrangement of this paper is as follows: In Section 2,
the backgrounds are introduced, then the new proposed
method is presented in Section 3, the experiment results are
shown and discussed in Section 4, and the final part is the
conclusions and acknowledgment.

2. Backgrounds

In this section, we will introduce related backgrounds of the
proposed method.

2.1. Noise Models. Based on repeated phantom experiments,
low-mA (or low-dose) CT calibrated projection data after
logarithm transform were found to follow approximately a
Gaussian distribution with an analytical formula between the
sample mean and sample variance; that is, the noise is a
signal-dependent Gaussian distribution [11].

The photon noise is due to the limited number of photons
collected by the detector. For a given attenuating path in the
imaged subject, 𝑁

0
(𝑖, 𝛼) and𝑁(𝑖, 𝛼) denote the incident and

the penetrated photon numbers, respectively. Here, 𝑖 denotes
the index of detector channel or bin and 𝛼 is the index of
projection angle. In the presence of noises, the sinogram
should be considered as a randomprocess and the attenuating
path is given by

𝑟
𝑖
= − ln [ 𝑁 (𝑖, 𝛼)

𝑁
0
(𝑖, 𝛼)

] , (1)

where 𝑁
0
(𝑖, 𝛼) is a constant and 𝑁(𝑖, 𝛼) is Poisson distribu-

tion with mean𝑁.
Thus we have

𝑁(𝑖, 𝛼) = 𝑁
0
(𝑖, 𝛼) exp (−𝑟

𝑖
) . (2)

Both its mean value and variance are𝑁.
Gaussian distributions of ployenergetic systems were

assumed based on limited theorem for high-flux levels and
followed many repeated experiments in [11]. We have

𝜎
2

𝑖
(𝜇
𝑖
) = 𝑓
𝑖
exp(

𝜇
𝑖

𝛾

) , (3)

where 𝜇
𝑖
is the mean and 𝜎2

𝑖
is the variance of the projection

data at detector channel or bin 𝑖, 𝛾 is a scaling parameter, and
𝑓
𝑖
is a parameter adaptive to different detector bins.
The most common conclusion for the relation between

Poisson distribution and Gaussian distribution is that the
photon count will obey Gaussian distribution for the case
with large incident intensity and Poisson distribution with
feeble intensity [11].

2.2. Nonlocal Means (NLMs). Given a discrete noisy image
𝑦, the estimated value (�̂�

𝑖
), for a pixel 𝑖, is computed as a

weighted nonlocal average:

�̂�
𝑖
=

1

𝐶 (𝑖)

∑

𝑗∈𝐵(𝑖, 𝑟)

𝑦
𝑗
𝜔 (𝑖, 𝑗) , (4)
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where 𝐵(𝑖, 𝑟) indicates a neighborhood centered at 𝑖 and size
(2𝑟 + 1) × (2𝑟 + 1), called searching window, and 𝐶(𝑖) =

∑
𝑗∈𝐵(𝑖, 𝑟)

𝜔(𝑖, 𝑗). The family of weights {𝜔(𝑖, 𝑗)} depend on the
similarity between the pixels 𝑖 and 𝑗 and satisfy 0 ≤ 𝜔(𝑖, 𝑗) ≤ 1
and ∑

𝑗∈𝐵(𝑖, 𝑟)
𝜔(𝑖, 𝑗) = 1.

The similarity between two pixels 𝑖 and 𝑗, 𝑑2(𝑖, 𝑗) depends
on the similarity of the intensity gray level vectors 𝐵(𝑖, 𝑓) and
𝐵(𝑗, 𝑓), where 𝐵(𝑘, 𝑓) denotes a square window with fixed
size (2𝑓 + 1) × (2𝑓 + 1) and centered at a pixel 𝑘, named
comparison patch:

𝑑
2

(𝑖, 𝑗) =

1

(2𝑓 + 1)
2

∑

𝑘∈𝐵(0, 𝑓)

(𝑦
𝑖+𝑘
− 𝑦
𝑗+𝑘
)

2

, (5)

and the weights 𝜔(𝑖, 𝑗) are computed as

𝜔 (𝑖, 𝑗) = 𝑒
−max(𝑑2−2𝜎2

𝑁
, 0)/ℎ
2

, (6)

where 𝜎
𝑁
denotes the standard deviation of the noise and ℎ

is the filtering parameter set depending on the value 𝜎
𝑁
.

2.3. Box-CountingDimension. Box-counting dimension, also
known as Minkowski dimension or Minkowski-Bouligand
dimension, is a way of determining the fractal dimension
of a set 𝑆 in a Euclidean space 𝑅𝑛 or more generally in a
metric space (𝑋, 𝑑). To calculate this dimension for a fractal
𝑆, putting this fractal on an evenlyspaced grid and count how
many boxes are required to cover the set. The box-counting
dimension is calculated by seeing how this number changes as
wemake the grid finer by applying a box-counting algorithm.

Suppose that𝑁(𝜀) is the number of boxes of side length 𝜀
required to cover the set. Then the box-counting dimension
is defined as

dim (𝑆) = lim
𝜀→0

log𝑁(𝜀)

log (1/𝜀)
. (7)

Given an 𝑁 × 𝑁 image whose gray level is G, then the
image is part into the 𝜀 × 𝜀 grids, which are related to 𝜀 × 𝜀 × 𝜀
cube grids. If for the 𝑗th grid, the greatest gray level is in the
𝜄th box and the smallest is in the 𝜅th box, then the boxnumber
for covering the grid is

𝑛
𝜀
= 𝜄 − 𝜅 + 1. (8)

Therefore the box number for covering the whole image is

𝑁
𝜀
= ∑

𝑗

𝑛
𝜀
(𝑗) . (9)

Selecting different scale 𝜀, we can get related𝑁
𝜀
.Thuswe have

a group of pairs (𝜀,𝑁
𝜀
). The group can be fit with a line using

least-squares fitting, the slope of the line is the box-counting
dimension.

3. The New Method

In this section, wewill present our newproposed algorithm in
detail. The motivation for the proposed method is that SA of

NLMs should be improved in a simpler way. The new PWFD
is introduced firstly to adapt complex image local structures,
and then the new weight functions based on PWFD are
discussed. At the end of this section, the procedures of the
proposed method are shown.

3.1. Pointwise Box-CountingDimension. In image processing,
the fractal dimension usually is used for characterizing
roughness and self-similarity of images. However, most of
works only focus on how to compute fractal dimensions for
images or blocks of images [26–30]. Since fractal dimension
can characterize roughness and self-similarity of images, it
also can be used for characterizing the local structures of
images by generalizing it to PWFD, which is computed pixel
by pixel using a fixed-size window centered in the considered
pixel. Thus, each pixel in an image has a PWFD and it equals
the fractal dimension of the fixed-size window centered in the
considered pixel.

Following the previous discussion, the pointwise box-
counting dimension (PWBCD) starts from replacing each
pixel 𝑖 to a fixed-size window 𝑟 × 𝑟 centered at 𝑖. It is obvious
that PWFD can be generalized to all definitions of fractal
dimensions. However, in order tomake our explanationmore
clearly, we only extend the new definition to PWBCD.

According to the new PWFD, PWBCD should be com-
puted for each pixel in the image. For each pixel 𝑖, the
PWBCD is computed in a fixed-size 𝑟× 𝑟window centered at
𝑖.

The 𝑟 × 𝑟 window is parted into the 𝜀 × 𝜀 grids, which are
related to 𝜀 × 𝜀 × 𝜀 cube grids. If for the 𝑗th grid, the greatest
gray level is in the 𝜄th box and the smallest is in the 𝜅th box,
then the box number for covering the grid is

𝑛
𝜀
(𝑖) = 𝜄 − 𝜅 + 1. (10)

Therefore the box number for covering the whole 𝑟 × 𝑟

window is

𝑁
𝜀
(𝑖) = ∑

𝑗

𝑛
𝜀
(𝑗) . (11)

Selecting different scale 𝜀, we can get related 𝑁
𝜀
(𝑖). Thus we

have a group of pairs (𝜀, 𝑁
𝜀
(𝑖)). The group can be fit with a

line using least-squares fitting; the slope 𝑘(𝑖) of the line is the
box-counting dimension.

Note that each pixel in an image has a PWBCD value.
Thus we can test the rationality for PWBCD by showing
PWBCD values using an image. In these PWBCD images,
high PWBCD values are shown as white points, while low
PWBCD values are shown as gray or black points. If PWBCD
images are similar to the original images with big PWBCD
values near singularities and small PWBCD values in smooth
regions, the rationality is testified.

Figure 1 shows PWBCD images for three images: an test
image composed by some blocks with different gray levels,
a LDCT image, and 512 × 512 barbara. The white points
signify the pixels with big fractal dimensions, while black
points signify the pixels with small fractal dimensions. Here,
𝑟 = 32 and 𝜀 = 2, 4, 8, 16, 32. Note that the white parts
correspond the texture parts of barbara and soft tissues of the
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(a) (b) (c)

(d) (e) (f)

Figure 1: Images and their pointwise box-counting dimension images: the first row shows images while the second row shows their pointwise
box-counting dimension images. Here 𝑟 = 32 and 𝜀 = 2, 4, 8, 16, 32.

second image in the first row. Moreover, the PWBCD images
are very similar to the original imageswhich demonstrate that
the PWBCDcan be used for characterizing the local structure
of images.

3.2. The New Weight Function. After defining the PWBCD,
we must find an efficient and powerful way to use the
PWBCD in NLMs directly. Just as discussed in the previous
subsection, PWBCD can characterize the local structures for
images well. Thus PWBCD should be used to weight the
points in the searching patch. That is, (6) should be changed
as

𝜔 (𝑖, 𝑗) = 𝑒
−max(𝑑2−2𝜎2

𝑁
, 0)/ℎ
2

1
−(𝑘(𝑖)−𝑘(𝑗))

2
/ℎ
2

2
, (12)

where 𝑘(⋅) is FDBCD value for the considering pixel and is
computed according to the method proposed in Section 3.1,
𝜎
𝑁

denotes the standard deviation of the noise, ℎ
1
, ℎ
2
are

the filtering parameters. 𝑑2(𝑖, 𝑗) is the similarity between two
pixels 𝑖 and 𝑗 depending on the similarity of the intensity
gray level vectors 𝐵(𝑖, 𝑓) and 𝐵(𝑗, 𝑓), where 𝐵(𝑘, 𝑓) denotes a
squarewindowwith fixed size (2𝑓+1) × (2𝑓+1) and centered
at a pixel 𝑘:

𝑑
2

(𝑖, 𝑗) =

1

(2𝑓 + 1)
2

∑

𝑘∈𝐵(0, 𝑓)

(𝑦
𝑖+𝑘
− 𝑦
𝑗+𝑘
)

2

. (13)

Given a discrete noisy image 𝑦, the estimated value (�̂�
𝑖
),

for a pixel 𝑖 is computed as a weighted nonlocal average:

�̂�
𝑖
=

1

𝐶 (𝑖)

∑

𝑗∈𝐵(𝑖, 𝑟)

𝑦
𝑗
𝜔 (𝑖, 𝑗) , (14)

where 𝐵(𝑖, 𝑟) indicates a neighborhood centered at 𝑖 and
size (2𝑟 + 1) × (2𝑟 + 1), called searching window, and
𝐶(𝑖) = ∑

𝑗∈𝐵(𝑖, 𝑟)
𝜔(𝑖, 𝑗). Note that the family of weights

{𝜔(𝑖, 𝑗)} depend on the similarity between the pixels 𝑖 and 𝑗
and satisfy 0 ≤ 𝜔(𝑖, 𝑗) ≤ 1 and ∑

𝑗∈𝐵(𝑖, 𝑟)
𝜔(𝑖, 𝑗) = 1.

3.3. The Steps of the New Method. The steps of PWBCD-
NLMs are as follows.

(1) Compute pointwise box-counting dimension for each
ofthe pixels.
For each of the pixels, given 𝑟 = 2

𝑛

, 𝑛 ∈ 𝑍 and
𝜀 = 2, 4, . . . , 𝑟, compute PWBCD according to
Section 3.1, and get a matrix 𝐾 with the same size as
the image.

(2) Compute weights. determine parameters: 𝜎
𝑁
, ℎ
1
, ℎ
2
,

the size of comparison window 𝑐𝑟, and the size of the
searching patch 𝑠𝑟.
Compute the difference between two comparison
windows, 𝑑2, using (13).
Compute the weights 𝜔(𝑖, 𝑗) using (12).

(3) Estimate real gray levels: estimate real levels �̂�(𝑖) using
(14).

4. Experiments and Discussion

The main objective for smoothing LDCT images is to delete
the noise while preserving anatomy features for the images.

In order to show the performance of PWBCD-NLMs, a 2-
dimensional 512 × 512 test phantom is shown in Figure 1(a).
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(a) Noisy image with 𝑓
𝑖
= 2.5, 𝑇 =

2𝑒 + 4

(b) Reconstructed image from (a)
using NLMs

(c) Reconstructed image from (a)
using PWBCD-NLMs

(d) Noisy image with 𝑓
𝑖
= 4.0, 𝑇 =

2𝑒 + 4

(e) Reconstructed image from (d)
using NLMs

(f) Reconstructed image from (d)
using PWBCD-NLMs

Figure 2: Noisy test images and reconstructed images.

The number of bins per view is 888 with 984 views evenly
spanned on a circular orbit of 360∘. The detector arrays are
on an arc concentric to the X-ray source with a distance of
949.075mm. The distance from the rotation center to the X-
ray source is 541mm.The detector cell spacing is 1.0239mm.

The LDCT projection data (sinogram) is simulated by
adding Gaussian-dependent noise (GDN) whose analytic
form between its mean and variance has been shown in (3)
with 𝑓

𝑖
= 2.5, 3.5, 4.0 and 𝑇 = 2𝑒 + 4. The projection data

is reconstructed by standard Filtered Back Projection (FBP).
Since both the original projection data and sinogram have
been provided, the evaluation is based on peak signal to noise
ration (PSNR) between the ideal reconstructed image and
reconstructed image.

The PWBCDs for images are computed according to
Section 3.1, and the parameters are 𝑟 = 32 and 𝜀 =

2, 4, 8, 16, 32. The new proposed method is compared with
NLMs, and their common parameters includes the standard
deviation of noise 𝜎

𝑁
= 15; the size of comparison window

is 7 × 7 (𝑐𝑟 = 7), while the size of searching patch is 21 ×
21 (𝑠𝑟 = 21). The other parameter for NLMswhick is the
Gaussian kernel for weights defined on (13) is ℎ = 12 and
the parameters for the new method are the sizes of Gaussian
kernel for two weights defined on (12): ℎ

1
= 15 for the

weights of difference between comparison window and ℎ
2
=

10 for the weights between two PWBCDs. All parameters are
chosen by hand with many experiments, which has the best
performance.

Table 1 summarized PSNR between the ideal recon-
structed image and filtered reconstructed image. The

Table 1: PSNR for the test image.

Noise PSNR of PSNR of PSNR of
parameters the noisy image NLMs PWBCD-NLMs
𝑓
𝑖
= 2.5, 𝑇 = 2𝑒 + 4 23.29 34.19 34.95

𝑓
𝑖
= 3.5, 𝑇 = 2𝑒 + 4 21.88 33.79 34.59

𝑓
𝑖
= 4, 𝑇 = 2𝑒 + 4 21.30 33.45 34.16

PWBCD-NLMs has better performance in different noise
levels in the term of PSNR than NLMs.

Figure 2 shows noisy test images and their reconstructed
images using NLMs and the proposed method. Although
the reconstructed images are very similar to each other, the
reconstructed images using the newmethod also show better
performance in edge preservation especially in weak and
curve edge preserving than the NLMs. Since PWBCD-NLMs
provides a more flexible way for handling different local
image structures, it hasmuch good performance in denoising
while preserving structures.

One abdominal CT images of a 62-year-old woman were
scanned from a 16 multidetector row CT unit (Somatom
Sensation 16; Siemens Medical Solutions) using 120 kVp and
5mm slice thickness. Other remaining scanning parameters
are gantry rotation time, 0.5 second; detector configuration
(number of detector rows section thickness), 16 × 1.5mm;
table feed per gantry rotation, 24mm; pitch, 1 : 1; and recon-
struction method, Filtered Back Projection (FBP) algorithm
with the soft-tissue convolution kernel “B30f ”. Different CT
doses were controlled by using two different fixed tube
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(a) Original SDCT image with tube current time
product 150mAs

(b) Original LDCT image with tube current time
product 60mAs

(c) Reconstructed image from (b) using NLMs (d) Reconstructed image from (b) using
PWBCD-NLMs

Figure 3: (b) Real LDCT reconstructed image, (a) related SDCT reconstructed images and (c)-(d) reconstructed images fromLDCT sinogram
using NLMs and the new method.

currents 60mAs for LDCT and 150mAs (60mA or 300mAs)
for SDCT, resp.). The CT dose index volumes (CTDIvol)
for LDCT images and SDCT images are in positive linear
correlation to the tube current and are calculated to be
approximately ranged between 15.32mGy and 3.16mGy [18].

On sinogram space, the PWBCDs for images are com-
puted according to Section 3.1 and the parameters are 𝑟 =

32 and 𝜀 = 2, 4, 8, 16, 32. The new proposed method
is compared with NLMs and their common parameters
includes the standard deviation of noise 𝜎

𝑁
= 15; the size

of comparison window is 7 × 7 (𝑐𝑟 = 7), while the size of
searching patch is 21 × 21 (𝑠𝑟 = 21). The other parameter
for NLMswhich is the Gaussian kernel for weights defined
on (13) is ℎ = 12 and the parameters for the new method are
the sizes of Gaussian kernel for two weights defined on (12):
ℎ
1
= 15 for the weights of difference between comparison

window and ℎ
2
= 10 for the weights between two PWBCDs.

Comparing the original SDCT images and LDCT images
in Figure 3, we found that the LDCT images were severely
degraded by nonstationary noise and streak artifacts. In
Figure 3(d), for the proposed approach, experiments obtain

more smooth images. Both in Figures 3(c) and 3(d), we
can observe better noise/artifacts suppression and edge
preservation than the LDCT image. Especially, compared
to their corresponding original SDCT images, the fine fea-
tures representing the hepatic cyst were well restored by
using the proposed method. We can observe that the noise
grains and artifacts were significantly reduced for the NLMs
and PWBCD-NLMs processed LDCT images with suitable
parameters both in Figures 3(c) and 3(d). The fine anatomi-
cal/pathological features can be well preserved compared to
the original SDCT images (Figure 3(a)) under standard dose
conditions.

5. Conclusions

In this paper, we propose a new PWBCD-NLMs method
for LDCT imaging based on pointwise boxing-counting
dimension and its new weight function. Since PWBCD can
characterize the local structures of image well and also can be
combined with NLMs easily, it provides a more flexible way
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to balance the noise reduction and anatomical details preser-
vation. Smoothing results for phantoms and real sinograms
show that PWBCD-NLMs with suitable parameters has good
performance in visual quality and PSNR.
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