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Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to
derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian
neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid
hemorrhage (3551 patients). Results. Bayesianmeta-analyses of observational studies on aSAHprognostic factors gave generalizable
posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression
ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction,
cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm,
neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean
arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear
relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid
defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters.Discussion. This aSAH prognostic
system makes use of existing knowledge, recognizes unknown areas, incorporates one’s clinical reasoning, and compensates for
uncertainty in prognostication.

1. Introduction

Advances in biostatistics and computing in the past several
decades have led to creation of different types of clinical
outcome prediction models. Three of these include artifi-
cial neural networks, fuzzy logic and bayesian analysis [1–
3]. These techniques complement classical or frequentist
approaches, such as regression analysis.

Artificial neural networks mimic biological neural sys-
tems. In biological systems, incoming dendrites collect sig-
nals which are fed to the neuron. A signal summation is
then sent as a spike of electrical current along an axon, with
resultant discharge at the synapse, connecting it to other
neurons. Examples of biological neural networks include
the human brain and the human retina. Analogous to the
biological system, artificial neural networks are made up of
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Figure 1: Artificial Neural Network with 3 inputs, 2 hidden nodes
and 2 outputs. Figure by B. W. Y. Lo.

a group of input variables which converge on a number of
nodes. Nodes are grouped in layers, with interconnection
links among themselves. Hidden or latent variables can
exist in one or two layers. After processing from different
activation functions, output signals are then sent onto output
nodes in the network. artificial neural networks assume all
or none logic, that is, subjects are regarded as having or not
having a diagnosis. Nodes in the neural nets are connected
with each other via connection links. Each of these links
has an associated weight and activation function. Neural
networks are intelligent systems that can learn and change
behaviour by themselves as they gain experience. In addition,
they also take into account unobservable variables that the
researcher is not aware of while designing the neural net.

Assuming a basic artificial neural network with 𝑥
𝑛
inputs,

ℎ
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(𝑥) hidden or latent variables (in 1 layer), and 𝑓

𝑛
(𝑥) an

outputs, using a multilayer perceptron model as illustrated in
Figure 1, output is equal to the summation of input to hidden
layer, as well as hidden layer to output layer.

If the activation function is the nonlinear hyperbolic
tangent function, then,
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where hidden unit 𝑗 = hyperbolic tangent function × (bias
term + sum of (weights from input unit 𝑖 to hidden unit 𝑗 ×
input unit i)), and,
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where output = 𝑓
𝑛
(𝑥) = bias term + sum of (weights on

connection fromhidden unit 𝑗 to output unit 𝑘 × hidden unit
j).

Bayesian analysis allows the researcher to make use of
existing states of knowledge before incorporation of new
data. Simply put, it reflects the fact that knowledge is
cumulative.Here, existing knowledge is expressed in the form
of distributions (such as the normal bell-shaped distribution).

The “prior” distribution is then combined with its likelihood
of occurrence, forming a posterior probability.The end result
(or posterior probability) represents a revised or updated
belief after taking new data into account. If there is a lack of
existing knowledge on the subject of interest, the researcher
can still rely on Bayesian techniques. In this case, vague or
uninformed prior probabilities are used.

In the Bayesian approach to artificial neural networks
[4], the goal is to find the predictive distribution for target
values in the new test case/model, given inputs for that case
and inputs/targets in training cases. Here, p(D) represents
the probability of data according to a particular model. It
is an integral, representing the summation of all possible
parameter values weighted by the strength of belief (as
assigned by the researcher) in these parameter values, or

𝑝 (𝐷) = ∫𝑑𝜃𝑝 (𝐷 | 𝜃) 𝑝 (𝜃) . (3)

The probability of a new case/model given existing cases and
associated parameters (𝜃, incorporating both weights and
biases) is expressed as
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In general, Bayesian neural networks can be expressed as:
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Posterior probability density is proportional to product of
prior probability density and its associated likelihood. Like-
lihood, as explained above, is the product of probabilities of
data given parameters (weights and biases) as
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Fuzzy logic is an extension of neural nets, but with the
distinct advantage that it can assume functions with any
value from 0 to 1, accounting for the entire spectrum of
certainty of diagnoses and spectrum of severity of diseases
studied. It registers a mild case of a certain disease, as it
recognizes grey zones in diagnoses. Another strength of
fuzzy logic lies in its explicit knowledge representation;
that is, it allows the clinician to explicitly state its inputs,
control actions, and outputs. The clinician can also clarify,
or defuzzify, the entire process by carrying out crisp control
actions, such as adding a cut-off level for prognoses and
diagnoses, and trigger thresholds for treatment. By doing
so, all actions (verification) in fuzzy logic are accounted for,
and optimization is achievable. Thus, fuzzy logic systems are
efficient ones. On the other hand, some regard this strength of
fuzzy logic as a limitation. Unlike neural nets, where learning
is done by the nets themselves as they gain experience from



Computational and Mathematical Methods in Medicine 3

datasets, fuzzy logic systems cannot train themselves. The
designer has to derive all action commands (in the form
of “if-then” rules) manually, which is labour intensive with
large datasets. When the degrees of various problems are
combined in an equation, however, the resulting calculation
may represent a more accurate prediction of the real data and
individual patient.

Bayesian neural networks with fuzzy logic inferences can
be represented as follows:

Expected outcome of function

(Fuzzy-Bayesian Neural Network)
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where defuzz can be max-min, centroid, left of mean, right of
mean, or another defuzzification crisp control action rule.

2. Objectives and Relevance

In this paper, we aim to use advanced biostatistical methods
to create clinical prognostic decision rules in aneurysmal
subarachnoid hemorrhage derived from a large aneurysmal
subarachnoid hemorrhage database, which can be tailored
to a specific patient population. We explore novel methods
that account for existing states of knowledge (Bayesian meta-
analysis and regression), complex nonlinear relationships
between independent, latent, and dependent variables (arti-
ficial neural networks), and grey zones in prognoses (fuzzy
Logic decision rules). In fact, the combination of such
techniques can represent a novel health research method for
clinical outcome prediction applicable to many diseases in
medicine.

3. Methods

Intracranial aneurysmal subarachnoid hemorrhage affects
about 45, 000 individuals in North America annually.
Aneurysmal subarachnoid hemorrhage is associated with a
mortality rate of at least 45% in the first 30 days following rup-
ture [5, 6]. Apart from the primary neurological injury from
the aneurysmal rupture itself, other secondary injury pro-
cesses can further worsen an individual’s neurological condi-
tion and eventual clinical outcome. These processes include
both neurological processes (such as delayed stroke, rebleed-
ing, brain swelling, vasospasm induced strokes, seizures, and
hydrocephalus) and systemic medical complications (such as
myocardial infarction, fever, pulmonary edema). and Taken
together, these processes can lead to long-term disability.

Types of disability include physical, neurocognitive, and
psychological impairment [7].

Tirilazad aneurysmal subarachnoid hemorrhage
database is used to illustrate prognostic decision principles
derived from a combination of techniques from multiple
linear regression, artificial neural networks, fuzzy Logic and
bayesian analysis. Tirilazad is a 21-aminosteroid compound
produced by Pharmacia & Upjohn, Kalamazoo, MI,
USA, originally investigated by the University of Virginia
Health Sciences Center, as a free radical scavenger for
potential treatment of cerebral vasospasm. This medication
was investigated in five randomized clinical trials [8–
12] involving patients with aneurysmal subarachnoid
hemorrhage between 1990 and 1997 in 162 centers from 21
countries across North America, Europe, Australia, New
Zealand, and South Africa. Tirilazad was found to have
no effect on clinical outcome in patients with aneurysmal
subarachnoid hemorrhage. The resultant database from
these five studies contains 3550 patients, with its primary
outcomes being Glasgow outcome score at 3 months and
death from any cause. Glasgow outcome score is a 5-point
neurological scale with the following designations: 5: good
recovery—normal life activities despite minor deficits, 4:
moderate disability—disabled but independent, 3: severe
disability—conscious but disabled, 2: persistent vegetative
state—unresponsive and speechless, and 1: death [13].

Centers followed strict treatment protocols, and vari-
ables had fewer than 5% missing entries. Tirilazad was
administered in the intravenous form from day 3 to day 10
after subarachnoid hemorrhage onset. Only one percent of
patients were lost to followup.

Patients in each treatment group weremanaged in a simi-
lar manner. Over 85% underwent surgical clipping, with 50%
operated within the first 48 hours. Baseline demographics
in both treatment and control arms were balanced in terms
of gender, age, number of preexisting medical conditions
(including hypertension, myocardial infarction, and angina),
mean time to treatment, mean admission systolic blood
pressure, admission neurological grade, ruptured aneurysm
location, and admission amount of blood. These potential
confounders were accounted for in statistical analysis. Pro-
portions of patients experiencing vasospasm were similar in
different treatment groups, aswere the percentages of patients
experiencing both neurological and systemic disabilities,
including cerebral hemorrhage, cerebral ischemia, second
stroke, rebleeding, hydrocephalus, sepsis, pulmonary embo-
lus, brain herniation, pneumonia, and renal insufficiency.

A Cochrane systematic review [14] on the five trials
on Tirilazad found no substantial heterogeneity among the
trials, and there were no significant differences in adverse
events between the treatment group and placebo group. The
Tirilazad database represents the largest currently available
aneurysmal subarachnoid hemorrhage clinical trial database
worldwide.

Derivation of prognostic decision rules comprised of
the following investigations: multivariable linear regression
(IBMSPSS version 19.0 (Armonk,NY,USA)), artificial neural
networks (IBM SPSS), Bayesian regression with uninformed
and informed prior likelihoods (WinBUGS 1.4.3), neural
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networks with Bayesian regularization (MATLAB R2012a
(Natick, MA, USA); version R 2.15.2), and creation of fuzzy
logic decision rules, with clinical case application.

4. Results & Discussions

4.1. Multivariable Linear Regression Analysis. Frequentist
linear regression was created using IBM SPSS. Included
in the analysis were predictor variables from the Tirilazad
database, without recoding, renaming, reclassification, or
data transformation. Treatment variables were not included
in this analysis. Predictor variables included were age, gen-
der, neurological grade, intraventricular hemorrhage, sub-
arachnoid hemorrhage thickness, time to treatment, clinical
vasospasm, mean arterial pressure, aneurysm location, prior
anticoagulation, eye opening, normal motor response, nor-
mal speech, admission angiographic vasospasm, intracere-
bral hemorrhage, hydrocephalus, prior subarachnoid hem-
orrhage, history of hypertension, history of myocardial
infarction, history of angina, history of migraines, history
of diabetes mellitus, antiepileptic use, ruptured aneurysm
location, cerebral edema, pulmonary edema, vasospasm day,
baseline temperature, fever on day 8, and cerebral infarction.
Dependent variable is the patient’s clinical outcome (Glasgow
outcome score) at 3 months.

Table 1 lists the statistically significant predictor (𝑃 <

0.05) variables for neurologic outcome which include normal
motor response, cerebral infarction, history of myocardial
infarction, cerebral edema, history of diabetes mellitus,
fever on day 8, prior subarachnoid hemorrhage, admission
angiographic vasospasm, neurological grade, intraventricular
hemorrhage, ruptured aneurysm size, history of hyperten-
sion, vasospasm day, age, and mean arterial pressure.

All significant prognostic variables, with the exception of
normal motor response, point to poorer prognosis. Presence
of normal motor response at presentation signifies more
favourable outcome. Its collinearity diagnostics reveal close
correlation with other prognostic variables, namely, neuro-
logical grade.

Vasospasm day is closely correlated with other prognostic
variables, namely, clinical and angiographic vasospasm.

Closer examination of the tirilazad patient dataset, using
nontransformed data points, reveals that heteroscedasticity
is present in the model. As heteroscedasticity is present,
we cannot be confident that the strength of prediction of
the linear regression equation from this multiple linear
regression model is equally strong across all levels of the
included independent variables.

Therefore, artificial neural networks were used to explore
presence of complex nonlinear relationships and latent vari-
ables inherent in the database.

4.2. Bayesian Analysis. Beta coefficients of prognostic vari-
ables generated with Bayesian regression (WinBUGS version
1.4.3) using uninformed priors are similar in magnitude to
those generated from frequentistmultiple regression analysis,
as demonstrated in Table 2.

Bayesian meta-analysis synthesizes research evidence
frommultiple independent studies. It has a hierarchical struc-
ture, placing one layer of sampling above another, with each
study population having an observed odds ratio estimated
from its sample of subjects. Bayesian meta-analysis models
created using WinBUGS version 1.4.3 for this study gave
generalizable posterior distributions of consensus odds ratios
with representative medians, standard deviations, and 95%
credible intervals, for the prognostic variables age [15–21],
neurological grade [16–20, 22, 23], and aneurysmal size [17,
19, 23–27]. Results of hierarchical meta-analysis are shown in
Table 3.

These values are very useful clinically by themselves, as
they can be applied to patient prognostication. They also
represent the informed priors for Bayesian regressionmodels.
Because of this database’s very large sample size (𝑛 = 3551),
beta coefficients generated with Bayesian regression (unin-
formed priors) are similar in magnitude to those generated
from Bayesian regression (informed priors).

4.3. Artificial Neural Networks. Artificial neural networks
(ANN), created using IBM SPSS, for prognosis in aneurys-
mal subarachnoid hemorrhage using the Tirilazad database
revealed the following features:

Model type: Multilayer Perceptron (MLP)
Number of layers: 3
Layer 1: 30 input variables
Activation function: hyperbolic tangent
Layer 2: hidden layer, 11 hidden or latent variables
Layer 3: 5 output nodes
Training: 60% of sample size
Testing: 40% of sample size
Training algorithm: gradient descent
Model sensitivity: area under ROC curve = 0.85

This ANNmodel recognizes the presence of complex nonlin-
ear relationships between variables, not identified bymultiple
linear regression.

Variables, in order of magnitude of normalized impor-
tance in Table 4, include age, second stroke, myocardial
infarction, temperature, mean arterial pressure, neurological
grade, ruptured aneurysm size, diabetes mellitus, angina,
subarachnoid clot thickness, lung edema, admission angio-
graphic vasospasm, previous subarachnoid hemorrhage,
vasospasm day, cerebral edema, vasospasm during treat-
ment, aneurysm location, time to treatment, normal motor
response, intracerebral hematoma, normal speech, day 8
temperature, gender, eye opening,migraine history, intraven-
tricular hemorrhage, hypertensive history, anticoagulant use,
seizures, and hydrocephalus.

Interrelationships between input nodes (predictor vari-
ables), hidden variables (11 of them in one hidden layer),
and output nodes (Glasgow outcome score) are illustrated
in Figure 2. Possible latent (unobservable) variables, not
measured by investigators, include the following:
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Table 1: Multiple linear regression demonstrates significant predictor variables for neurologic outcome in aneurysmal subarachnoid
hemorrhage.

Independent variable 𝑃 value 𝛽 coefficients Collinearity diagnostics
(95% confidence interval) (tolerance, VIF)

Normal motor response <0.001 −0.329 (−0.496, −0.161) (0.27, 3.71)
Cerebral infarction <0.001 0.790 (0.695, 0.885) (0.86, 1.16)
History of myocardial infarction 0.009 0.386 (0.097, 0.675) (0.92, 1.09)
Cerebral edema <0.001 0.322 (0.190, 0.453) (0.96, 1.05)
History of diabetes mellitus 0.028 0.239 (0.026, 0.452) (0.98, 1.03)
Day-8 fever <0.001 0.231 (0.150, 0.311) (0.93, 1.08)
Prior subarachnoid hemorrhage 0.004 0.197 (0.063, 0.332) (0.98, 1.02)
Admission angiographic vasospasm 0.015 0.175 (0.035, 0.315) (0.93, 1.08)
Neurological grade <0.001 0.167 (0.093, 0.242) (0.16, 6.43)
Intraventricular hemorrhage 0.001 0.142 (0.056, 0.229) (0.80, 1.25)
Ruptured aneurysm size 0.001 0.130 (0.053, 0.206) (0.97, 1.03)
History of hypertension 0.009 0.119 (0.030, 0.208) (0.85, 1.18)
Vasospasm day 0.05 0.112 (0.001, 0.225) (0.20, 5.11)
Age <0.001 0.018 (0.015, 0.021) (0.86, 1.17)
Mean arterial pressure 0.012 0.003 (0.001, 0.006) (0.91, 1.10)
VIF: variance inflation factor.

Table 2: Results of Bayesian regression analysis of predictors of neurologic outcome in aneurysmal subarachnoid hemorrhage using
uninformed priors. Output generated by WinBUGS version 1.4.3.

Node Mean SD MC error 2.5% Median 97.5% Start Sample
b.MOTOR −0.3268 0.0833 2.606𝐸 − 4 −0.4904 −0.3266 −0.1632 5000 95001
b.CVA 0.9499 0.04679 1.589𝐸 − 4 0.8582 0.95 1.041 5000 95001
b.BSWELL 0.4307 0.06552 2.262𝐸 − 4 0.3021 0.4309 0.5596 5000 95001
b.MI 0.2964 0.1454 4.414𝐸 − 4 0.01064 0.2966 0.5805 5000 95001
b.NEUROGR 0.2762 0.02807 8.489𝐸 − 5 0.2213 0.2763 0.3313 5000 95001
b.DM 0.254 0.1043 3.384𝐸 − 4 0.04876 0.2545 0.4568 5000 95001
b.ADMITVSP 0.2417 0.06948 2.481𝐸 − 4 0.1046 0.2418 0.3775 5000 95001
b.PREVSAH 0.1747 0.06821 2.285𝐸 − 4 0.04019 0.1748 0.3073 5000 95001
b.ANSIZE 0.2124 0.03838 1.166𝐸 − 4 0.1373 0.2123 0.288 5000 95001
b.IVH 0.1727 0.04227 1.329𝐸 − 4 0.08972 0.1728 0.2551 5000 95001
b.HTN 0.1223 0.04511 1.45𝐸 − 4 0.03416 0.1223 0.2108 5000 95001
b.VSPDAY 0.05136 0.02759 8.475𝐸 − 5 −0.002518 0.05136 0.1055 5000 95001
b.AGE 0.01581 0.001591 5.454𝐸 − 6 0.0127 0.01581 0.01895 5000 95001
b.MAP 0.004209 0.001252 4.197𝐸 − 6 0.001761 0.004204 0.006663 5000 95001
b.D8TEMP −0.08723 0.04131 1.333𝐸 − 4 −0.168 −0.08717 −0.006547 5000 95001

(1) disrupted cerebral autoregulation contributing to
both ischemia and cerebral edema after subarachnoid
hemorrhage,

(2) biochemical markers of brain injury predisposing to
cortical depression,

(3) cellular markers demonstrating physiologic dysfunc-
tion (such as mitochondrial dysfunction as reflected
by imbalance between oxygen supply and consump-
tion),

(4) genetic factors affecting outcome (such as inheritance
of genes making patients more prone to microthrom-
botic events in the cerebral microvasculature disrupt-
ing cerebral blood flow),

(5) multiple drug-drug interactions, including drug hy-
persensitivities, especially in the elderly aneurysmal
subarachnoid hemorrhage patient with multiple pre-
existing comorbidities,

(6) variables known to affect clinical outcome that were
not captured in the Tirilazad database, including
smoking and alcohol consumption,

(7) multiorgan system dysfunctions and their influ-
ence on neurologic outcome (including interactions
between the central nervous system and cardiovascu-
lar, respiratory, renal, immune/hematologic, gastroin-
testinal (including hepatic and splenic), endocrino-
logic, and metabolic homeostasis).
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Figure 2: Artificial neural network output diagram with insets for each layer. Output figure generated by IBM SPSS version 19.0 (Armonk,
NY, USA).

4.4. Neural Networks with Bayesian Regularization. Using
MATLAB version R2012a (Neural Network Toolbox), the
following network was created:

Number of layers: 3
Layer 1: 30 input nodes (hyperbolic tangent activa-
tion)
Layer 2: 11 hidden nodes (linear activation)
Layer 3: 5 output nodes
Training: 60% of sample size (2131 of 3551)
Testing: 40% of sample size (1420 of 3551)
Training algorithm: neural networks with bayesian
regularization (“training” algorithm)

MATLAB generated the following covariance matrix
from layer 2 to layer 3, representing weights, associated with
their bayesian ranges, between hidden nodes and output
nodes:

[6.353±1𝑒−4; 2.8199±1𝑒−5; 4.5014±1𝑒−5; 0.43383±
1𝑒 − 6; −3.0288 ± 1𝑒 − 5; −3.673 ± 1𝑒 − 4; −1.4082 ±
1𝑒−5; 2.2424±1𝑒−5; 5.2536±1𝑒−5; 2.7748±1𝑒−5;
3.4145 ± 1𝑒 − 5].

Due to Tirilazad database’s large sample size (𝑛 = 3551),
the posterior distributions of weights from neural networks
with Bayesian regularization are very narrow. Hence, choos-
ing the mean of each distribution is the most appropriate for
the calculation of each variable’s normalized importance.

4.5. Fuzzy Logic Decision Rules. Risk factors (according
to their adjusted synaptic weights from artificial neural
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Figure 3: Fuzzy logic rules are applied after bayesian neural network analysis of the tirilazad database. (figure by B. W. Y. Lo).

Table 3: Results of Bayesian hierarchical meta-analysis using Win-
BUGS version 1.4.3 generate posterior distributions of consensus
odds ratios with representative medians, standard deviations, and
95% credible intervals, for predictor variables age, neurological
grade, and aneurysm size.

Prognostic cariable OR
mean SD 2.5% Median 97.5%

Age 1.33 0.18 1.01 1.32 1.73
Neurological grade 2.17 0.40 1.67 2.09 3.13
Aneurysm size 1.29 0.21 1.03 1.24 1.81

networks and neural networks with Bayesian regularization
models) can be classified into three clusters, (1) demo-
graphic (3 factors—age, time to treatment, and gender),
(2) systemic (9 factors—myocardial infarction, temperature,
mean arterial pressure, diabetes mellitus, angina, pulmonary
edema, fever on day 8, hypertensive history, anticoagu-
lant use), and (3) neurologic (18 factors—second stroke,
neurological grade, ruptured aneurysm size, subarachnoid
clot thickness, admission angiographic vasospasm, previous
subarachnoid hemorrhage, vasospasm day, cerebral edema,
vasospasm during treatment, aneurysm location, normal
motor response, intracerebral hematoma, normal speech,
eye opening, migraine history, intraventricular hemorrhage,
seizures, and hydrocephalus).

4.6. Fuzzy Logic Rules. Individualized fuzzy logic rules can
be derived based on one’s experience. In this case, our three
linguistic variables are (1) demographic risk factor cluster,
(2) systemic risk factor cluster, and (3) neurologic risk factor
cluster.

Fuzzification begins with assigning each linguistic vari-
able a range of membership functions. When all members
of each cluster are present, then maximum membership
function of 1 is reached for that particular linguistic variable.

Fuzzy inferences then proceed with derivation of “if-
then” rules that define system behaviour. In our case
(Figure 3), if cluster one (demographic risk factor cluster)
is fulfilled, then, one has low suspicion for poor neurologic

outcome. If members of both cluster one (demographic risk
factor cluster) and cluster two (systemic risk factor cluster)
are present, then one has raised suspicion for poor neuro-
logic outcome. One has high suspicion for poor neurologic
outcome if some members of cluster one (demographic risk
factor cluster), cluster two (systemic risk factor cluster), and
cluster three (neurologic risk factor cluster) are present.

Next, defuzzification step translates the linguistic vari-
able results into the crisp control action of denoting high
likelihood for poor outcome. The centroid rule is applied
to designation for poor prognostication, whereby a patient
fulfills risk factors from 2.5 clusters.

As an example, an elderly patient (demographic cluster),
with a number of medical comorbidities (examples from
systemic cluster, such as coronary artery disease, hyperten-
sive, and diabetic), who experiences a number of neurolog-
ical complications after treatment (examples from neuro-
logic cluster, such as second stroke, cerebral ischemia, and
seizures) is predicted to have a poor long-term neurologic
outcome (poor three-month Glasgow outcome score).

5. Limitations

The techniques of bayesian neural networks with fuzzy logic
inferences were applied to the Tirilazad database. We note
that case mix in this database were patients who underwent
surgical clipping of cerebral aneurysms. Since the conduct of
the Tirilazad trials, there are advancements in both medical
management and surgical treatment of cerebral aneurysms.
These include improved neurocritical care of aneurysmal
subarachnoid hemorrhage patients and aneurysmal coiling.
In addition, the Tirilazad database did not include important
prognostic variables such as smoking, alcohol consumption,
rebleeding, and infection. In order to overcome these lim-
itations, ongoing efforts are now underway to combine a
number of aneurysmal subarachnoid hemorrhage databases
worldwide in the multinational Subarachnoid Hemorrhage
International Trialists (SAHIT) collaboration. Important
prognostic variables as well as aneurysmal coiling patients
will be included in this database. In addition, Bayesian neural
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Table 4: Results of Artificial Neural Networks reveal normalized
importance values of predictor variables in aneurysmal subarach-
noid hemorrhage.

Artificial neural networks
independent variable

Type of
prognostic
factor

Importance

Age Demographic 0.111
Second stroke Neurologic 0.081
Myocardial infarction Systemic 0.075
Temperature Systemic 0.061
Mean arterial pressure Systemic 0.054
Neurological grade Neurologic 0.048
Ruptured aneurysm size Neurologic 0.039
Diabetes mellitus Systemic 0.037
Angina Systemic 0.034
SAH clot thickness Neurologic 0.033
Lung edema Systemic 0.032
Admission angiographic vasospasm Neurologic 0.029
Previous subarachnoid hemorrhage Neurologic 0.028
Vasospasm day Neurologic 0.028
Cerebral edema Neurologic 0.028
Vasospasm during treatment Neurologic 0.027
Aneurysm location Neurologic 0.025
Time to treatment Demographic 0.025
Normal motor response Neurologic 0.024
Intracerebral hematoma Neurologic 0.022
Normal speech Neurologic 0.021
Day-8 temperature Systemic 0.021
Gender Demographic 0.020
Eye opening Neurologic 0.018
Migraine history Neurologic 0.015
Intraventricular hemorrhage Neurologic 0.015
Hypertensive history Systemic 0.014
Anticoagulant use Systemic 0.014
Seizures Neurologic 0.013
Hydrocephalus Neurologic 0.012

networks with fuzzy logic inferences will be applied to the
SAHIT database.

6. Conclusions

Complex relationships exist among heterogeneous groups
of prognostic factors. The accuracy of clinical outcome
prediction depends on clarification of these relationships.
General linear models have been used frequently for decades.
These popular techniques produce interpretable coefficients
for explanatory variables and are easily estimated using com-
mercially available statistical programs. In real life, however,
data points rarely fit perfectly linear relationships. Greater
deviations from linearity point to the need for exploratory
analyses with complex nonlinear systems.

Typical artificial neural networks can fit training data
with high precision and detect nonlinear relationships among
predictor variables, with the overall aim of predicting yet
to be seen observations. Neural networks also incorporate
latent (unobserved variables) in one or two hidden layers.
Interrelationships between independent, latent, and out-
come variables are assigned synaptic weights, or connection
strengths. A weighted average of these connection strengths
gives a variable’s normalized importance, or the percentage
contribution of each predictor variable to the overall clinical
outcome, taking into account the error between predicted
and actual values. The sum of all relative importance val-
ues of input variables (representing influences of predictor
variables on clinical outcome in relation to the rest of the
independent variables) equals 100 percent. Small sample
sizes can affect model building, making it more difficult
to distinguish between true signal and noise. Over- and
underfitting can occur in these cases, which, in turn, can
affect model generalization. Neural networks with Bayesian
regularization technique have been devised to overcome the
above problem, whereby weights are assigned probability
density distributions, incorporating Bayesian statistics to
estimate weight uncertainty, or the relative degree of belief
in the different values for synaptic weights.

Typical artificial neural networks give fixed structures,
whereas Bayesian neural networks give flexible structures.
Bayesian neural networks are ones that assign probabil-
ity distributions to all elements of the network, including
inputs, hidden nodes, outputs, as well as their associated
weights. Prior likelihoods for probability distributions can
be generated using Bayesian meta-analysis. Bayesian regu-
larization terms are included, which prevent model over-
and underfitting. In addition, Bayesian Neural Networks
give generalizable posterior distributions without compro-
mising nonlinearity properties. Bayesian Neural Networks
are trained by sampling from joint posterior likelihoods of
network structure and weights by Monte Carlo sampling
methods. This training avoids the problem of convergence at
local minima. Posterior distributions of weights can be used
to evaluate uncertainties of predictions of trained networks
and can also be used to assess network sensitivities. The
larger the sample size, the smaller the Bayesian posterior
probability distribution ranges. If data points fall into a linear
relationship, typical artificial neural networks and Bayesian
neural networks can detect this relationship. Hence, linear
regression can be viewed as a special case of neural networks.

Typical artificial neural network and Bayesian neural net-
work error can be due to network weight uncertainty (model
uncertainty due to imperfections in data, nonoptimum net-
work structure, and nonoptimum learning algorithms), and
error from remaining sources, including intrinsic noise that
includes random error due to measurement noise, and error
due to finite resolution of observation system. If posterior
distributions of weights are very narrow in relation to noise
distribution, then the width of distribution of networks
outputs can be influenced by noise. On the other hand, if
the posterior distributions of weights are larger than noise
distribution, then, the width of network outputs is dominated
by distribution of network weights.
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Fuzzy logic approach to Bayesian neural networks allows
the clinician to explore where within the Bayesian range the
nonlinear relationship for a particular case is most likely to
exist. Results generated from Bayesian neural networks with
fuzzy logic inferences will, then, slightly differ from case to
case, accounting for the special characteristics of that certain
case.

Fuzzy logic inferences should be applied at the end of
Bayesian neural network formulation. In other words, one
should allow the Bayesian neural network learning machine
to do its own learning before applying fuzzy logic rules, so
that all probability distributions are explored.

Bayesian neural networks with fuzzy logic inference can
be conceptually interpreted as follows. Based on one’s own
experience (summation of existing parameters weighted by
strength of belief in what happened beforehand), one can
predict (based on one’s assigned strength of belief) where
along a spectrum of probabilities of the unknown quantity
a value will end up. If it falls outside the spectrum in real
life, then, one has to check whether there are still unknown
elements influencing the outcome variable in question.
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