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The present paper consist of two parts: in the first part an experiment investigating the endothelial
cell/interleukin 1 system is analyzed by means of a model. The most interesting outcome is a bistability
of the system: a small challenge will not lead to a reaction, while a challenge slightly above a certain
threshold leads to a complete activation of the endothelial cells. This finding is used in the second part
of the paper, where a caricature model of the innate immune response (the part of the immune system
that is not based on acquired immunity) is described and analyzed. In this analysis, especially, the
possible patterns of the dynamics in the absence of a challenge have been targeted. We find a variety of
behaviors possible for the resulting planar system. For certain parameter values, a small challenge is
ignored, while a challenge above a certain threshold leads to a massive strike of the immune system that
comes eventually to rest again. Also bistability, periodic behavior or an unstable resting state can be
found. It is heuristically possible to link most of these dynamical patterns with natural or pathological
situations that can be found in clinical pictures.
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INTRODUCTION

In the last two decades, immunology has attracted more

and more attention. A lot of contributions to this field, not

only from the experimental sciences but also from the

theoretical point of view revealed many aspects of the

immune system. Classical models for HIV (Novak and

May, 2000), release of Histamine (Perelson, 1987) or the

description of receptor-antibody binding (Lauffenburger,

1993) are well known in the community.

In this paper, we aim especially at a description of the

inflammatory response in the early phase. We do not

investigate the adaptive but only the innate part of the

immune system. There is strong evidence that this part of

the immune system plays a crucial role in the deterioration

of the health status of polytraumatized patients (simul-

taneous injury of multiple regions of the body or organ

systems with one of those injuries or the combination of

injuries being life threatening, Tscherne 1978). The

physiologic reaction of the organism is an inflammatory

response, especially with local proinflammatory signals,

resulting in an over-stimulation of the unspecific immune

system. Consequently, the inflammatory reaction cannot

be contained at the site of the primary insult which leads to

a generalized inflammatory result with impairment of

organ function and tissue destruction even at sites distant

from the insult (systemic inflammatory response syn-

drome (SIRS)). This process leads to multiple organ

failure (MOF) and may ultimately result in the death of the

patient. Based on these theories it should be possible to

predict behavioral patters. However, there have been no

advances so far to arrive at a deeper understanding of the

dynamics underlying this inflammatory response.

Many parts of this system are experimentally well

investigated (see e.g. Baue et al., 2000). The most

intriguing part is the communication between different

cell types (that are partially distributed all over the body)

by means of chemical additives, so-called mediators.

A complex network of communicating cells and

regulatory pathways evolves the network of cytokines.

Until now, this system did not attract too much attention

from the modeling community. Laufenburger described

how lymphocytes are invading tissue attacked by a

pathogen (Lauffenburger and Kennedy, 1981; Alt and

Lauffenburger, 1985). Seymour and Henderson (2001)

recently described a model of the lymphocyte/interleukin

1 system, and found a variety of possible behaviors. Their

model can exhibit even chaotic behavior for certain

parameter values. An individual based model targeting the

effect of sterile or infected injuries is described in
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An (2001). Simulations of this model show, that the

system either recovers or fails to recover, depending on

the seriousness of the initial injury.

This paper consists of two parts that—in a certain

sense—present two extreme approaches. The first part

concentrates on an in vitro experiment with interleukin

1 and endothelial cells. These are one single node and

respective edge in the cytokinic network. The behavior

of this specific cell type in connection with this specific

mediator will be analyzed in detail. This experiment is

interesting, first since endothelial cells are located at

the interface between tissue and blood. They amplify

signals and, in this way, control a large part of the

proinflammatory signaling cascade. Second, challenged

endothelial cells produce interleukin 1. Thus it is

possible to study one of the major positive feedback

loops of the proinflammatory reaction in an in vitro

experiment.

The other extreme is a caricature of the inflammatory

system, that lumps the complex regulatory network into

three components: pathogenic challenge, direct inflam-

matory reaction and control of the inflammatory reaction.

Though oversimplified, this model incorporates the

leading medical theory about the overall structure of the

innate immune system. Seriously taking these theories, it

is possible to predict behavioral patterns. Comparison

with experimental and clinical observations reveals

whether these basic assumptions are appropriate or too

simple to meet reality. Beyond the phenomenological

level this model explores the concept that has been the

theoretical foundation of all attempts to treat the MOF

syndrome, i.e. in case of an adequate stimulus the

organism mounts a proinflammatory response, followed

by an anti-inflammatory response. According to this

concept a massive anti-inflammatory therapy (e.g.

antibodies against proinflammatory mediators) was

considered as an effective approach. Thus the model

presented here will provide information whether the

theoretical concept of past therapeutic approaches is valid

or whether more sophisticated interventions have to be

developed.

THE KEY PLAYERS

Cell Lines

Among the many different cell types of the organism,

endothelial cells and leucocytes are of special importance

in the early phase of an inflammatory insult. Forming

the barrier between tissue and blood, endothelial cells are

able to recruit white blood cells to the site of an

inflammatory focus by expressing a set of special

receptors on their cell surface (Shrotri et al., 2000).

Beyond that, endothelial cells are able to release a large

number of cytokines that amplify the inflammatory

response. While under physiologic conditions the

inflammatory reaction is locally contained as endothelial

cells do excrete antiinflammatory cytokines as well there

are obviously conditions under which a generalized

activation of endothelial cells occurs. The second cell type

involved in the initial phase of an inflammatory reaction is

white blood cells. In the inactivated state these cells

circulate with the blood stream. If they pass activated

endothelial cells their pace is slowed down by receptor

interactions. Once the white blood cells are firmly

attached to the endothelial cells leucocytes start to

translocate through the endothelial barrier and secrete

cytotoxic substances (oxygen radicals, proteolytic

enzymes). The genuine purpose of this mechanism is the

destruction of invading pathogens. As these cytotoxic

substances act unspecifically, other cells, including

endothelial cells, are damaged as well. This process

finally results in organ damage and failure of organ

function. While the physiologic purpose of this reaction is

the local elimination of pathogens, which could be

microorganisms as well as dead cells, the injury itself may

serve as a sufficient stimulus for the pathologic activation

of the proinflammatory pathway in the trauma patient.

Mediators

The interactions among endothelial cells and leucocytes

are mediated by various substances. The cytokines are

among the most powerful mediators that occur in the

organism. Cytokines are not stored as preformed

molecules but rather are produced on demand by active

gene transcription and translation by injured or stimulated

cells. Once released into the circulation, cytokines

function predominantly via paracrine and autocrine

mechanisms, i.e. primarily locally. In the case of a

massive secretion of cytokines a spill over effect occurs

resulting in cytokine effects even at remote sites of the

organism. These mediators regulate the production and

activity of other cytokines as well, resulting in an

augmented (proinflammatory) and/or attenuated (anti-

inflammatory) response. Challenging substances are

e.g. LPS (toxic component of the bacterial cell

membrane), via a complex with soluble LPS receptors

(Pugin et al., 1993), TNF (Dixit et al., 1990) and IL-1

(Warner et al., 1987) to name but a few. They all activate

ECs. In consequence, ECs start to produce and release

IL-1 (Warner et al., 1987), prostaglandin PGE2 (Warner

et al., 1987), IL-6 (Sironi et al., 1989) and IL-8 (Pugin

et al., 1993) among other mediators. Prostaglandin PGE2,

in turn, decreases the production of mediators by activated

EC (Dixit et al., 1990). IL-6 seems not to have a direct

effect on ECs (Sironi et al., 1989). Hence, we have a

positive feedback loop (IL-1 activates ECs, which in turn

produces IL-1) and a negative feedback (activated ECs

produce prostaglandin PGE2, which downregulates ECs).

Since the experiment we consider for the present model

concentrates on the first 24 h, the downregulation by PGE2

seems not to play a central role. In our model, we neglect

this negative feedback (Table I).
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IN VITRO MODEL

The Experiment

A large number of in vitro and in vivo experiments have

been performed in order to investigate the effect of

challenges on endothelial cells (Fig. 1).

The positive feedback loop is of special interest here.

Is this feedback loop able to destabilize the inactive state

of the EC’s, or is the inactive state stable? If the inactive

state is stable, is there nevertheless a stable active state?

We will describe an experiment performed by an Italian

group (Sironi et al., 1989) in the next paragraph, model the

situation in section “The Model”, and analyze the data in

section “Data Analysis”.

In an experiment, an EC cell line is challenged with IL-1.

The resulting IL-6 production is measured. The mediator

IL-6 has the advantage of not being involved in the positive

or negative feedback, and hence provides a substitute

variable for the state of the ECs. If one investigates IL-1

directly, then the main difficulty is to distinguish between

newly produced IL-1 and the IL-1 used to challenge the

cells (Dixit et al., 1990). Two experiments are of special

interest for the present work: first, ECs have been

challenged with different amounts of IL-1. The density of

IL-6 has been measured after 24 h. Second, the time series

of IL-6 density, given a certain challenge, has been

measured. The combination of the two experiments allows

one to describe the dynamics as well as the dose

dependency of the activation. The data are shown in Fig. 2.

The Model

IL-1 attaches to receptors that trigger a signaling cascade.

At the end of this cascade the endothelial cell starts to

produce certain mediators and enhances the production of

others. Especially, IL-1 is produced and the production of

IL-6 is enhanced.

Of special interest is the mechanism that initiates the

signaling cascade. Generally speaking these processes are

enzymatically driven, i.e. even a small amount of IL-1 is

able to produce a reasonable effect—a stimulation of

about ten receptors may lead to the activation of a cell

(Dinarello, 1996). Lauffenburger (1993) proposes a

simple model covering the basic features: the dependence

of the activation rate r(A) on the density of the activating A

substance is given by a Hill function,

rðAÞ ¼
a Am

1 þ b Am

where a, b and m are positive constants.

TABLE I Selection of the most important cytokines involved in the early phase of the inflammatory response at the endothelial barrier

Cytokine Source Action

Tumor-Necrosis-Factor (TNF) Endothelial cells, neutrophils Promotes expression of adhesion molecules, coagulation
activation, increases PGE2 release

Interleukin-1 (IL-1) Endothelial cells, neutrophils Promotes expression of adhesion molecules, coagulation
activation, increases PGE2 release

Interleukin-6 (IL-6) Endothelial cells, neutrophils Attenuation of IL-1 and TNF activity,
induction of neutrophil activation

Interleukin-8 (IL-8) Endothelial cells Chemotaxis for neutrophils

IL-1 and TNF are highly redundant concerning their principal effects but they operate on different time scales. The physiologic action of the mediators listed here are only
a selection of the most important effects in the early inflammatory phase. For each of the mediators many additional functions have been documented.

FIGURE 1 Structure of the model.
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The cells are assumed to be in one of n þ 1 states: in

state zero a cell is not activated. States 1 to n 2 1 are

subsequentially transversed on the way to the activated

state n. The signaling cascade consists of n different

steps. The transition rate from state zero to one is r(A).

We do not have direct information about the time

scales of states i, i ¼ 1; . . .; n: We assume that the

transition rate d is approximately the same for every

state 1; . . .; n 2 1: Hence, the number of these states

and the transition rate rather provide information about

the magnitude and the variance of the time delay

between the initiation of activation and the start of the

release of mediators rather than the exact number of

states between these two events. However, the number

n may nevertheless give a crude hint in which

magnitude the number of steps may range. From the

activated state n the cells may relax and return to the

inactive state. The biological mechanism that leads to

this relaxation is the reduction of the receptor density

on the cell surface with a desensibilization as

consequence. Since we are interested especially in the

first hour of the system, we do not take into account

this effect but model the relaxation with a constant rate

gx. The state variables x0; . . .; xn give information about

the excitation of the system. There are two ways to

interpret these variables: either xi(t) is the probability of

finding a randomly chosen EC in state i or all cells

behave alike, and are able to be gradually excited.

Then, the vector ðx0ðtÞ; . . .; xnðtÞÞ represents the degree

of activation of the cells.

We consider two (classes of) mediators: A(t) denotes the

lumped quantity of all activating mediators in the system.

Since we only have information about IL-1 at time zero,

we normalize the influence of all activating mediators in

units of ng/ml IL-1. We assume that all the relevant

activating mediators are degraded with approximately the

same rate gA. The activating mediators are only produced

in state n with rate a. The second mediator is IL-6 with

density IL(t). This mediator is released with rate r0 if the

cells are not activated (states 0; . . .; n 2 1), and with

rate r0 þ b if the cells are in state n. We also assume that

the half-life of IL-6 is about the same as IL-1. We do have

information about the amount of IL-6 and will use this

information in order to fit the parameters.

FIGURE 2 (a) Logarithm of IL-6 concentration (in 1000 U/ml) after 24 h for a given dose of IL-1 (units of the x-axis are ng/ml in a logarithmic scale).
Data points and best prediction (solid line) are shown. Note that the leftmost data point belongs to a dose of zero ng/ml IL-1. (b) Dynamics of IL-6 and
activating mediators (e.g. IL-1) over time. Predicted IL-6 density is shown as a solid line, the data are represented by points and the predicted density of
IL-1 is shown as a dashed line. The initial dose of IL-1 is 10 ng/ml. Note that the steep increase of activating mediators at the time point of one hour is
only a result of the logarithmic scale of the y-axis.
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The model equations read

_x0ðtÞ¼2rðAÞx0ðtÞþgxxnðtÞ; x0ð0Þ¼1;

_x1ðtÞ¼rðAÞx0ðtÞ2dx1ðtÞ; x1ð0Þ¼0;

_xiðtÞ¼dðxi21ðtÞ2xiðtÞÞ; xið0Þ¼0;

i¼2;...;n21;

_xnðtÞ¼dxn21ðtÞ2gxxnðtÞ; xnð0Þ¼0;

_AðtÞ¼2gAAðtÞþaxnðtÞ; Að0Þ¼A0;

I _L6ðtÞ¼2gAIL6ðtÞþr0þbxnðtÞ; IL6ð0Þ¼IL60;

ð1Þ

where A0 and IL60 denote the initial amount of

activating mediators (i.e. IL-1) and IL-6, respectively

(Table II).

Analysis of the Model

First of all, it is not necessary to consider the model for the

whole parameter space. We are interested in the case of

certain time scales. Especially, IL-1 is degraded very fast

(time scale: minutes) in comparison with the activation of

endothelial cells (time scales: hours), i.e. gA is high.

Consequently, the amount of IL-1 present in the system

will be (after a thin initial time layer) rather small. Even a

small amount of IL-1 has an influence on the dynamics of

the system, so the rate r(A) has to be very sensitive.

Furthermore, the “recovery” rate gx of endothelial cells

is small; endothelial cells will need a relatively long time

(days) to relax. We exploit these three time scales

(minutes, hours and days). This view is supported by the

parameter fit shown in the next paragraph.

The next proposition exploits the time scale of IL-1

degradation and the resulting level of IL-1, respectively

the sensitivity of rate r(.) on IL-1 (for the proof see

Appendix A).

Proposition 3.1 Let ĝA ¼ egA; A ¼ eB and

rðAÞ ¼ r̂ðA=eÞ. For e ! 0, this yields a singular perturbed

system. The corresponding slow system reads

_x0ðtÞ ¼ 2r̂ðBÞ x0ðtÞ þ gxxnðtÞ;

_x1ðtÞ ¼ r̂ðBÞ x0ðtÞ2 dx1ðtÞ;

_xiðtÞ ¼ dðxi21ðtÞ2 xiðtÞÞ;

_xnðtÞ ¼ dxn21ðtÞ2 gxxnðtÞ;

BðtÞ ¼
a

ĝA

xnðtÞ:

ð2Þ

Now we exploit the slow time scale of the relaxation of

endothelial cells. We find the following result (proof in

Appendix A)

Theorem 3.2:

(1) There is always a trivial stationary point x0 ¼ 1;
xi ¼ 0 for i ¼ 1. . . n:

(2) If r 0ð0Þ ¼ 0; then the trivial stationary point is always

linearly stable.

(3) If r 0ð0Þ . 0; then the trivial stationary state is

linearly stable provided that gx is large enough, and

unstable if gx is sufficiently small.

(4) If gx is large enough, there is only one stationary state.

Ifgx is small enough, there is at least one more positive

stationary state. We order the stationary states by their

nth component. Let x* ¼ ðx*
0 ; . . .; x*

n Þ
T be the

stationary state that has the largest nth component of

all stationary states. Then x*
n ! 1 if gx ! 0:

(5) x* is linearly stable if gx is sufficiently small.

Remark There is a big difference between the case

m # 1 and m . 1: Since gx is small, the state with only

relaxed endothelial cells is not stable for m # 1:
A perturbation, arbitrarily small, is able to activate the

system. This is biologically not reasonable. If this

situation occurs in the data analysis, this is a hint that

the model has to take into account further effects, e.g. the

effect of PGE2.

TABLE II Estimation of the different parameters

Variable 0.025 Quart. Median 0.975 Quart. Max. Likeli

s 0.0031 0.0051 0.0092 0.0033
m 1.05 1.059 1.07 1.058
a 471 533 598 531
b 0.0049 0.0050 0.0051 0.005
gx 0.002 0.00205 0.00211 0.00209
d 7.50 7.53 7.56 7.53
h 14 14 14 14
gA 21.93 27.51 29.33 28.60
a 0.015 0.027 0.032 0.028
b 9671 9707 9744 9707
r0 497 500 505 500
Log-Likeli 132034 1497189 159780 162273

The 95% confidence interval is shown, together with the parameter set that has the highest likelihood.
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If m . 1; then there will be (at least) two locally stable

equilibria: the non-activated, resting state and the active

state. A small amount of initial IL-1 has no effect.

The system will return to the stable equilibrium. Only if the

challenge crosses a certain threshold, the system reacts.

Heuristically (though not proven) the system will run into

the locally stable active state x*. We observe this behavior

in the experiment as well as in simulations. The threshold

is determined especially by m (the closer m is to one, the

smaller the threshold) and gx (the smaller gx the smaller

the threshold).

Data Analysis

The model yields the expected value of IL-6 at a given

point of time and a given amount of challenging IL-1.

In order to use statistics, we define a variance structure.

We assume that

data point ¼ value predicted by the ode þ e

where the error variables e are—for each data

point—distributed according to a normal distribution

with a variance proportional to the expected value,

e , Nð0; value predicted by the ode £ s2Þ:

We do not assume a correlation between the error related

to different data points. In order to obtain an idea about the

magnitude and the confidence intervals for the estimates

of the parameters, we use a Bayesian approach. We

sample a Monte Carlo Markov Chain Model by a

Metropolis Hastings algorithm (see Gilks et al., 1998).

However, since we do not use a sophisticated approach,

the confidence intervals are rather descriptive and give a

feeling for the precision of the estimates. One should not

take this set of parameters too seriously. However, the

model fits the data quite well (see Fig. 2), and some

conclusions can be drawn.

(a) The time scale of half-life of IL-1 (about 3 min) agrees

with in vivo findings (Dinarello et al., 1987) (about

5 min). This information has been encoded only very

indirectly via the data and the model structure. The

relatively good estimation is remarkable.

(b) The same is the case for the relaxation rate:

according to this rate an EC would relax in 20 days.

Although this is ten times more than the two days

observed in experiments, one has to take into

account that the data and the model aim especially

on the onset of activation, i.e. this estimation is

sufficiently close.

(c) The positive feedback loop clearly plays a role, even

in this relatively small experimental system. That is,

the confidence interval of a is bounded away from

zero.

(d) The most interesting parameter is without doubt the

parameter m. If m is below one, the resting state is

not stable, while it is stable if m is above one. We

find that m is above, but very close to one. This

indicates that the resting state is stable, but a

relatively small dose of IL-1 is able to activate the

system. ECs are easily stimulated. This finding is in

agreement with the biological hypothesis about the

function of ECs as a kind of guard at the boundary

between the signaling pathways, the vessels and the

tissue. This result is in agreement with other

experimental data, where the mRNA level of IL-1b

has only been sustained over 24 h if IL-1 itself has

been a stimulus. There are other stimulants that

initiate an increased mRNA level which starts to

decrease again after 4 h (Dinarello, 1996).

All in all we find that resting endothelial cells have a

certain tolerance against very small stimulations. How-

ever, if a relatively low threshold is crossed, they start to

produce activating substances, and—at least in this in vitro

system—the positive feedback loop is able to drive the

system into an activated state. This simple model, which

only aims at the first, activating phase, is not able to

predict the further fate of the system: if the ECs will relax

again after a longer time (we can see hints for this

behavior in experiments) or if there is an external signal

necessary that stops the activation of cells again.

IN VIVO MODEL

Model Equations

In the first part of the present paper we analyzed in detail

the reaction of only one cell type with respect to only a few

mediators. We now go into the other extreme: we consider

the innate immune system as a whole and investigate the

reaction of the immune system that incorporates only

the most important parts of an inflammatory response.

We do not aim to describe the phenomena of acquired

immunity but rather at the early phase of unspecific

inflammatory pathways.

This model consists of three equations, each of them

representing a simplified version of a complex subsystem.

The three components are (see Fig. 3): the challenge x,

the inflammatory response y and the part of the immune

system z that suppress the response again. The challenge

triggers the proinflammatory response y (that may be

represented by IL-1, endothelium and leukocytes), that

fights the challenge, and—at the same time—activates the

part of the immune system that suppresses an inflamma-

tory response z (e.g. IL-10).

In more detail, we assume that the challenge is not a

pathogen or alike, but e.g. a dose of IL-1 or another

proinflammatory mediator (an experiment that is fre-

quently carried out). These proinflammatory mediators

vanish very soon from the system (Dinarello et al., 1987).

In real situations, this proinflammatory mediator has to be

replaced by a pathogen or an aseptic insult, with its own

dynamics. However, the density of the mediator can be
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described by an exponential decay,

dxðtÞ

dt
¼ 2g1x ð3Þ

The inflammatory response is triggered by the challenge.

The density x of the proinflammatory mediator represents

a challenge h1x of the inflammatory response. Without the

deactivating part of the immune system, this response has

bistable characteristics. We have found this characteristic

in the first part of the paper: If we (artificially) knock out

challenge and suppression, the state of the inflammatory

response y tends to zero if y , z1 for some z1 . 0: Above

z1 the inflammatory response tends to its maximum z2.

The rate h2 determines the time scale of the inflammatory

response. Hence, without the suppression of the excitation

we obtain

dyðtÞ

dt
¼ h1x 2 h2y½ðz1 2 yÞðz2 2 yÞ�:

In order to formulate the deactivating effect of the variable

z, we assume that h3z þ h4 is a rate that stabilizes the

resting state of y. We include the constant h4 in order to

normalize the state variable z.

dyðtÞ

dt
¼ h1x 2 h2y½ðz1 2 yÞðz2 2 yÞ þ h3z þ h4�: ð4Þ

The dynamics of the suppressor is given by the activation

of the suppression subsystem with rate dy, and a natural

tendency to go into the resting state z ¼ 0 with rate g3.

Hence,

dzðtÞ

dt
¼ dy 2 g3z: ð5Þ

For sure, this system is only a caricature of the regulatory

pathways that control the inflammatory process.

Nevertheless, this model represents the current paradigm

of the general structure of the innate immune system:

dynamics of the challenge, the proinflammatory

process and the control of the proinflammatory process

by a suppressor. However, many effects are not taken

into account. Not only the many details like the

overwhelming variety of different and specialized cell

types and mediators, but also some basic properties are

neglected: the spatial structure, the suppression of IL-10

by IL-10, i.e. a negative feedback of the suppressor on

itself etc. Nevertheless, this model represents the leading

opinion of the medical community about the overall

structure of the innate immune system, and—as such—has

to be taken seriously.

Remark 4.1 (1) The density x(t) decays exponentially,

and we are left with a two-dimensional system. The

limiting behavior of the three-dimensional system will be

governed by the two-dimensional subsystem. This is

ensured by the theory of asymptotically autonomous

systems (Thieme, 1992).

The structure of the subsystem (4), (5) is quite similar to

that of the Fitzhugh–Nagumo equations (see, e.g. Murray,

1989). The main difference is the way the inhibiting

variable z enters the dynamics of y. While in the

Fitzhugh–Nagumo system z enters in an purely additive

manner, here z is multiplied with y, i.e. z assumes rather

the role of an inhibiting rate. The Fitzhugh–Nagumo

equation describe the differences of densities of ions that

may change sign, while we deal here with absolute

densities: positivity has to be ensured. This difference

expresses itself in the different terms describing the action

of the inhibitor on the reaction.

Analysis of the System

We aim at information about the transient and asymptotic

behavior of the two dimensional subsystem. These results

describe the behavior e.g. after a short infusion of IL-1,

inducing an initial impulse to activate the immune system.

In order to reduce the number of parameters, we rescale

the system. Let z ¼ a~z; y ¼ b~y; t ¼ ct with c ¼ 1=g3;
b2 ¼ 1=ðch3Þ; and a ¼ ðdb2Þ=ðh3dÞ: We obtain under the

condition that xðtÞ ; 0

d~yðtÞ

dt
82~y ½ ~y2 2 ðz1 þ z2Þ=b~y þ ~z þ ðh4 þ z1z2Þ=b2�

d~zðtÞ

dt
¼

d bc

a
~y 2 ~z

We define the lumped parameters

m ¼
z1 þ z2

b
[ Rþ; n ¼

d bc

a
[ Rþ;

c ¼ ðh4 þ z1z2Þ=b2 [ R:

FIGURE 3 Structure of the lumped model of the immune system.
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Renaming ~y and ~z by y and z again we are left with

dyðtÞ

dt
¼ 2y½ y2 2 my þ z þ c� ð6Þ

dzðtÞ

dt
¼ ny 2 z ð7Þ

One may view c as a measure of the stability of the resting

state. n gives information about the strength of the

stimulation of the suppressing control mechanism z by

the proinflammatory process y. Most difficult to interpret

is the parameter m: m controls the distance of the

nontrivial equilibria. The larger m, the more these

equilibria are separated. One may take m as a measure

of the strength of the inflammatory excursion.

The details of the bifurcation analysis can be found in

Appendix B. Of course, we have (like in the in vitro

model) always a trivial equilibrium, where all cell lines

are resting. For certain parameter ranges, there appear

non-trivial steady states (where a certain part of cells are

activated), and also periodic orbits may exist. There are

two different situations to distinguish.

Case 1: m , 2
ffiffiffi
2

p

We distinguish three different cases (see Figs. 4 and 5):

either there is only the trivial stationary point (s.t. this trivial

stationary point is globally stable), or there are one or two

additional, nonnegative and nontrivial stationary points.

The parameter regions for these three cases are separated

by a saddle-node (SN) and a transcritical (T) bifurcation

line. These two bifurcation lines intersect in a pitchfork

bifurcation. No periodic orbits appear. If two stationary

points are present in the system, we find a bistable behavior:

the trivial stationary point as well as one of the nontrivial

stationary points are stable.

Case 2: m . 2
ffiffiffi
2

p

In this case, the behavior is more complex (see Fig. 4).

The fundamental structure (no, one or two non trivial

stationary points are present in the positive quadrant) is

not changed. However, at the saddle-node line two Takens

Bogdanov bifurcations appear (TBþ and TB2). They are

the starting points of two straight half-lines of Hopf

bifurcations (Hþ and H2) and connected by an homoclinic

line (HOM). At Hþ, a Bautin point B is located, separating

the part of Hþ where unstable orbits are created that are

destroyed at the homoclinic line, and the part where

stable periodic orbits appear. The latter vanish again in a

backward Hopf bifurcation at H2. So far, the scenario is

that one expects near a co-dimension three bifurcation of

the saddle-node bifurcation of two Takens–Bogdanov

points. However, numerical analysis seems to hint that the

homoclinic line also crosses the point B and that we have

FIGURE 4 Bifurcation diagram (1) for m ,
ffiffiffi
8

p
and (2) for m .

ffiffiffi
8

p
: 1 2 dim denotes the line, on which the system becomes essentially

one-dimensional, T denotes the line of transcritical bifurcations SN denotes the line of saddle-node bifurcations and P denotes the pitchfork bifurcation.
Sketches of the phase diagrams in regions I–III can be found in Fig. 5. In case (2), we have, in addition to these bifurcation points and-lines,
two Bogdanov–Takens Bifurcations (TB^), the corresponding Hopf lines H^ and a line of homoclinic orbits (Hom, dashed line), connecting TB^ and a
singular (non-proper) Bautin point B. The Roman numbers denote regions of different behavior. In III, unstable periodic orbits surround ð y*

þ ; z
*
þÞ; which

in V and VII stable periodic orbits are located around ð y*
þ ; z*

þÞ: Sketches of the phase diagrams in regions I–X can be found in Fig. 6.

FIGURE 5 Sketch of the dynamics in different parameter regions. Parts of the phase plane that are not in the basin of attraction of the trivial solution
are grey.
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here a singular situation: the homoclinic loop is filled by

periodic orbits (see Figs. 5–7).

In this bifurcation diagram, one may distinguish

nine different regions of behavior (region I–IX).

The dynamics corresponding to the different regions

are shown in Fig. 6. In view of the application, one can

summarize four different situations: (1) in region I the

resting state is globally stable. (2) In regions II and III

the resting state is still globally stable, but there is a

sensitive dependence on the initial value: below a certain

threshold of y, the trajectory returns more or less directly

to the trivial state, while above this threshold there will

be a large excursion with a large inflammatory reaction

first (it is to expect that the bistable behavior in region II

does not play an important role). (3) In regions IV, V

and IX we find a bistable behavior: below a certain

threshold for y the trajectory returns to zero; above it

will approach a permanently activated state. This

activated state may exhibit oscillations. (4) In regions

VI, VII and XIII the resting state is not stable any more,

but the system will always be in a (perhaps oscillatoric)

activated state.

Comparison with Experimental and Clinical

Observations

The patterns of behavior seen at this very basic stage of

modeling with respect to clinical phenomena in

patients have to be interpreted cautiously. However,

many experiments can be clearly explained by this model.

The strength of the model is its generality—we did not

specify certain mechanisms. Thus, the outcome should

FIGURE 6 Sketch of the dynamics in different parameter regions. Parts of the phase plane that are not in the basin of attraction of the trivial solution
are grey.

FIGURE 7 Sketch of the situation found numerically in the B-point:
The region bounded by the homoclinic loop (shown in grey) is filled with
nested periodic orbits.
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be quite stable, and we expect to find the scenarios

predicted by the model in reality. Of special physiological

interest is the case m . 2
ffiffiffi
2

p
:

1. Regions II, III: A small challenge is ignored, a

challenge above a certain threshold leads to a large

inflammatory response that eventually comes to rest

again.

This seems to be the physiological behavior. It is

observed in in-vivo experiments like that of Dinarello

et al. (1987). Especially, the threshold behavior is well

documented in the review article (Leon, 2002, and

citations there), where a small amount of IL-1 does

only lead to a limited reaction (in this experiment, the

read-out system is fever), while a higher dose leads to

a massive strike of the immune system.

2. Regions VI, VII, XIII: The resting state is not stable;

there may be oscillations.

The organism is caught in a state of persistent

activation of the proinflammatoric system. This

phenomenon is known from a variety of clinical

scenarios. In systemic disorders, like the systemic

inflammatory response syndrome many patients are

caught in a persistent inflammatory state that cannot be

altered by therapeutic interventions. Also localized

inflammatory states, which can be found, for example,

in rheumatic diseases like rheumatoid arthritis, display

similar features. In the case of inflammatory

conditions in joints the inflammation is caught in a

state of persistent activation as well, where the

proinflammatory activity of IL-1 and TNF alpha is

enhanced, such that the antiinflammatory reaction

is not able to stabilize the resting state (Kavanaugh,

1999). In this case the resting state is only reached

after therapeutic intervention.

3. Region I: Resting state is globally stable.

This parameter region can be artificially reached by

immunosuppressant substances. This principle is

applied in clinical medicine in a variety of conditions.

Chang et al. showed that nonsteroidal antiinflamma-

tory drugs cut communication pathways of pro-

inflammatory mediators like IL-11 (Chang et al.,

1990). A similar mechanism applies for steroids which

inhibit the transcription of proinflammatory mediators.

Thus steroids can drive the system back into the

quiescent state, a mechanism that is clinically used in

rheumatoid arthritis or asthma. Interestingly enough,

attempts to treat systemic inflammatory disorders like

the inflammatory response syndrome or sepsis with

steroids have not been successful.

4. Regions IV, V, IX: Bistable behavior: the resting state is

locally stable while there is also a stable inflammatory

state (with large basin of attraction), with respective

stable oscillations.

Bistable behavior can be seen in inflammation of

joints, where this inflammation can be controlled by

treatment, but the next stress event will again lead to a

locally sustained inflammation.

According to the basic paradigm in the medical

world, this picture also applies to the concept of

primary multiple organ dysfunction (primary MODS)

(Bone et al., 1992). In primary MODS the initial

injury is so severe that an overwhelming pro-

inflammatory reaction dominates. Consequently, an

early MODS develops. Consequently, it should be

possible to control this inflammatory reaction and

steer the system to the resting state. However, all

treatment concepts developed so far with these ideas

in mind did fail.

It is possible to relate most of the different parameter

regions to biological and medical phenomena. However,

the model predicts the possibility of stable oscillations.

The period of these oscillations should be approximately

that of the typical duration of the reaction on a massive

stimulation by e.g. LPS or IL-1, i.e. for mice 4–6 h

(Larsson et al., 2000). Such oscillations are experimen-

tally not documented. There are experimental results

indicating a diurnal pattern (e.g. Petrovsky et al., 1998).

These patterns do not have a period in the appropriate

range, and are most likely a consequence of the interaction

between the immune system and the central nervous

system.

Because of the stability of the model, the predicted

periodic pattern should be possible to find experimen-

tally, if the medical theory in its present form is

appropriate. If we consider the bifurcation diagram, a

constant, appropriate dose of antiinflammatory drugs

should be able to induce oscillatoric behavior. Since

there is no evidence in literature that this behavior

occurs, one may argue that it is not present. It is possible

that other mechanisms, that seem to play only a minor

role, are more important than was assumed. Especially

the mechanisms that allow an adaptation to a certain

challenge (e.g. the reduction of receptors for proin-

flammatoric mediators on the cell surfaces of certain cell

lines) may provide an explanation for the lack of

oscillations. An experimental test could be the repeated

challenge of an individual by IL-1 or LPS. If reactions

on repetitions of a certain challenge decrease strongly,

then we do have a hint for the relevance of this

adaptation process. In this case, this adaptation process

may run on a slow time scale. Also treatment strategies

would have to take this process into account. It would be

necessary to slightly change the overall model of the

innate immune system.

DISCUSSION

In the first part of the paper, we modeled an experiment

where endothelial cells have been challenged by IL-1.

IL-6 has been measured. The model seems to meet the

data quite well. However, from the model validation

point of view, the experimental setup is not chosen in an

optimal way (the purpose of the experiment was not
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modeling and modeling validation). Better suited for our

purposes is the concentration on the only partially

activated system, i.e. sampling the time series between

one and ten hours after activation, respectively focusing

on doses below 1 ml/ml IL-1. Furthermore, in order to

obtain a better insight into the system the time series of

IL-1 and PGE2 would be of interest. It seems that at

least some endothelial cell lines deactivate themselves

after a time span around 48 h. In order to get a better

insight in the deactivating processes, a longer time series

could be helpful.

The most important outcome of this model is

information about the positive feedback loop of the

endothelial cell/IL-1 system. This system has a bistable

behavior, where the resting state is barely stable; there is

only a very low tolerance against a challenge. Even

relatively small amounts of pathogens are able to

activate endothelial cells. These cells amplify a low

initial signal via the positive feedback loop in

connection with IL-1 and initiate the proinflammatory

cascade. Of course, we considered an in vitro

experiment. Especially a wash out effect of IL-1 by

blood is not considered here. However, this effect may

not be too strong in capillary vessels, since—especially

at the walls of the vessel—the velocity of the blood is

not too high. Furthermore, the reason for the sensitivity

of the endothelial cells may be the prevention of the

interruption of the positive feedback loop by locally

washing out IL-1.

In the second part of the paper, we used the findings of

the first part in order to derive a small model that only

takes into account the most basic mechanisms. In the

center is the bistable behavior of the proinflammatory

reaction. Without a control of this reaction, a small

challenge is neglected while a challenge above a certain

threshold drives the system into a completely activated

state. However, the immune system also includes a part

that suppresses inflammatory reactions. This suppressing

part is activated by the proinflammatory process.

We analyzed the possible behavior of this system in the

absence of a direct challenge (representing e.g. experiments,

where an animal receives an infusion of IL-1.

This challenging IL-1 vanishes after at most 10 min and

yields after that time an activated inflammatory network

without actual challenge). We find that the resting state may

be globally stable, but with a density-dependent time course.

While a small challenge is almost ignored, above a certain

threshold we find a large inflammatory reaction that vanishes

again. This seems to be the physiologic reaction upon a

pathogen. Also bistable behavior (with a possible periodic

activated state) can be found. A third class of behavior is the

instability of the resting state, i.e. the immune system is

always in an inflammatory state, perhaps in an oscillating

inflammatory state. Most cases can be found in experimental

and clinical observations. Only oscillations are not well

documented. Since the model predicts oscillations in certain

parameter ranges, this lack of experimental results in this

direction may be a hint that further effects like adaptation on

challenges should be incorporated into the standard model of

the innate immune system.

These patterns generally match with experiments and

clinical observations. Only the predicted oscillations are

not clearly observed, which may be a hint that apart

from the feedback loops that are taken into account, also

e.g. adaptation processes may play a crucial role. Before

any clinical consequences can be drawn from this

modeling approach more sophisticated models have to

be developed. In view of post traumatic multiple

dysfunction syndromes, a model that allows the

evaluation of possible therapeutic approaches has to

incorporate e.g. the principle of locality into the model.

The behavior of the inflammatory system at distinct

anatomical locations in the organism has to be modeled

in order to identify possible targets for therapeutic

interventions. The inflammatory reaction is an intriguing

problem that deserves more attention of modelers. One

may hope that many experiments about details of the

cytokinic network provide enough information to close

the gap between the two parts of the present work

(that describes a very small part of the network in detail

and the network as a whole in an oversimplified

manner). It will be then possible to “probe” different

treatment strategies in silico and provide a useful tool

for the medical sciences.
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ANALYSIS OF THE IN VITRO MODEL

Proof (of Proposition 3.1) With the definitions

gA ¼ ĝA=e ; A ¼ eB and rðAÞ ¼ r̂ðA=eÞ we find the

differential equations (2) for x0; . . .; xn: The differential

equation for B reads

e _B ¼ 2d̂AB þ a xn:

e ! 0 yields the last equation of system (2). A

Proof: (of Proposition 3.2) For the following we rescale

time by 1/d and define

~rðxnÞ ¼
1

d
r̂ða xn=gAÞ; ~gx ¼

1

d
gx:

Then, system (2) reads

_x0ðtÞ ¼ 2~rðxnÞ x0ðtÞ þ ~gxxnðtÞ;

_x1ðtÞ ¼ ~rðxnÞ x0ðtÞ2 x1ðtÞ;

_xiðtÞ ¼ xi21ðtÞ2 xiðtÞ;

_xnðtÞ ¼ xn21ðtÞ2 ~gxxnðtÞ

ð8Þ

ad (1) Since ~rð0Þ ¼ 0 the state x0 ¼ 1 and xi ¼ 0 for i . 0

is a stationary state. ad (2), (3) The Jacobian at the trivial

state reads

J0 ¼

0 0 0 · · · 0 gx 2 ~r 0ð0Þ

0 21 0 · · · 0 ~r 0ð0Þ

0 1 21 · · · 0 0

0 0 1 · · · 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 · · · 21 0

0 0 0 · · · 1 2gx

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

This matrix is in block-diagonal form, where the first

“block” consists of the element ((J0))1,1 and the second

block is Ĵ0 ¼ ððJ0ÞÞ2...n; 2...n: Therefore we always find

one eigenvalue zero that is caused by the trivial

stationary state ð1; 0; 0. . .; 0ÞT together with the

conservation law
P

xi ¼ 1: The eigenvalues of the

larger block Ĵ0 determine the stability of the stationary

state.

Case 1: ~r 0ð0Þ ¼ 0 : The second block Ĵ0 becomes a

lower triangular matrix. The eigenvalues are 21 and 2gx.

The spectrum of the relevant part of J0 has a negative real

part, and in this case the trivial fixed point is locally stable.

Case 2: ~r 0ð0Þ . 0; gx small: The characteristic poly-

nomial of Ĵ0 is given by

pðlÞ ¼ ðgx þ lÞð1 þ lÞn22 2 ~r 0ð0Þ:

We know that liml!1 pðlÞ ¼ 1: For gx , ~r 0ð0Þ we find

pð0Þ , 0; and hence there is at least one positive root.

Therefore the trivial state is unstable if gx is small.

Case 3: ~r 0ð0Þ . 0; gx large: Define e ¼ 1=gx: If we

divide pðlÞ by gx we find that pðlÞ ¼ 0 is equivalent to

~pðlÞ ¼ 0 with ~pðlÞ ¼ ð1 þ elÞð1 þ lÞn22 2 e ~r 0ð0Þ:
Hence, for e ! 0 we have n 2 2 eigenvalues near 21:

l1; . . .; ln22 ¼ 21 þOðeÞ: These eigenvalues have a

negative real part (for e small enough, i.e. gx large

enough). Since the degree of p and ~p is n 2 1; there is

one more eigenvalue. The coefficient of the highest order

term of ~p vanishes for e ¼ 0: Hence there is one

eigenvalue of the from l ¼ Oðe 21Þ: In order to obtain

information of the sign of the real part of this eigenvalue,

we define u ¼ 1=l and

p̂ðu; eÞ ¼ uðu þ 1Þn22 þ eððu þ 1Þn22 2 ~r 0ð0Þun21Þ:

We find pðlÞ ¼ 0 if and only if p̂ð1=l; eÞ ¼ 0: Since

p̂ð0; 0Þ ¼ 0; p̂uð0; 0Þ ¼ 1 and p̂e ð0; 0Þ ¼ n 2 2 we con-

clude with the theorem about implicit functions that

uðeÞ ¼ 2ðn 2 2Þe þOðe 2Þ:

Hence, uðeÞ is negative for a small e, such that all

eigenvalues of Ĵ0 have negative real parts and the trivial

state is locally stable if gx is large.
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ad (4) Let x̂ ¼ ðx̂1; . . .; x̂nÞ be a stationary state. Then,

x̂1 ¼ . . . ¼ x̂n21: With z ¼ x̂1 we find x̂n ¼ z=gx and the

condition for z

z ¼ GðzÞ ¼ ~rðz=gxÞð1 2 ðn 2 2 þ 1=gxÞzÞ:

Since we are only interested in non-negative solutions, any

feasible solution is located in the interval IðgxÞ ¼

½0; gx=ð1 þ gxðn 2 2ÞÞ�: Furthermore, we obtain

z[IðgxÞ
max

d

dz
GðzÞ ¼

~z[½0;1=ð1þgxðn22Þ�
max

1

gx

£
d

d~z
ð~rð~zÞ ð1 2 ððn 2 2Þgx þ 1Þ~zÞÞ! 0 for gx !1:

Especially, G 0ðzÞ , 1 for z [ IðgxÞ and gx sufficiently

large. In this case, there is only the trivial stationary state

z ¼ 0:
We now show that there is a stationary point in the

interval ½1 2OðgxÞ; 1� if gx ! 0: Since Gðgx=ð1 þ

gxðn 2 2ÞÞ ¼ 0; it is enough to show that there is a

positive constant c, s.t. Gð1 2 cgxÞ . 1 2 cgx (if gx is

small). We find

~rð1=gx 2 cÞð1 2 ðn 2 2 þ 1=gxÞð1 2 cgxÞÞ . 1 2 cgx:

Multiplication with gx yields

~rð1=gx 2 cÞð1 þOðgxÞÞ . OðgxÞ:

Since the limit limx!1~rðxÞ exists and is positive, this

inequality is fulfilled if gx is sufficiently small.

ad (5) We investigate a stationary point that approaches

ð0; . . .; 0; 1ÞT for gx ! 0: Therefore we transform the

system (8),

xiðtÞ ¼ gxyiðtÞ; for i ¼ 0; . . .; n 2 1;

xnðtÞ ¼ 1 2 gxynðtÞ:

From
P

xi ¼ 1 we obtain yn ¼
Pn21

i¼0 yi and thus it is

possible to eliminate yn from the set of equations,

_y0ðtÞ ¼ 2~r 1 2 ~gx

Xn21

i¼0

yi

 !
y0ðtÞ þ 1 2 ~gx

Xn21

i¼0

yi;

_y1ðtÞ ¼ ~r 1 2 ~gx

Xn21

i¼0

yi

 !
y0ðtÞ2 y1ðtÞ;

_yiðtÞ ¼ yi21ðtÞ2 yiðtÞ:

ð9Þ

Hence, the nontrivial fixed point y* ð ~gxÞ in this

transformed system reads for ~gx ! 0

~gx!0
lim y* ð ~gxÞ ¼ ð y0; . . .; yn21Þ

T ¼ ð~rð1Þ21; 1; . . .; 1ÞT :

Since y* ð ~gxÞ ¼ y* ð0Þ þOð ~gxÞ; we find the Jacobian at

this fixed point

J* ¼ J*
0 þ ~gx J*

1 ð ~gxÞ

where J*
1 ð ~gxÞ is a bounded matrix valued function that

depends continuously on ~gx and

J*
0 ¼

2~rð1Þ 0 · · · 0 0

~rð1Þ 21 · · · 0 0

0 1 · · · 0 0

..

. ..
. ..

. ..
.

0 0 · · · 21 0

0 0 · · · 1 21

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

The spectrum of J*
0 consists of { 2 ~rð1Þ;21}: Since

J* is the sum of J*
0 and the small perturbation ~gx J*

1 ð ~gxÞ;
the state y* is stable provided that gx is small

enough. A

ANALYSIS OF THE IN VIVO MODEL

Invariant Positive Region

Proposition 2.1: In R2
þ; a positively invariant, absorb-

ing region exists.

Proof: Consider G ¼ {ð y; zÞ j x; y [ Rþ; y þ z # C}:
The boundary of this region consists of parts of the two

axis (which are invariant under the flow) and the line

y þ z ¼ C: We show that the vector field points inward at

this line, provided that C is chosen large enough. The inner

normal at this line is n ¼ ð21;21ÞT : Let F be the vector

field (6), (7). Then,

nT Fð y; zÞ ¼ yð y2 2 my þ z þ cÞ2 n y þ z:

Since z ¼ C 2 y at the line, we find

nT Fð y; zÞ ¼ yð y2 2 ðmþ 1Þy þ C 2 1 þ ðc2 nÞÞ þ C:

If we choose C large enough, there is no real root of

y2 2 ðmþ 1Þy þ C 2 1 þ ðc2 nÞ: Hence, the whole

expression is always positive, and the flow points inward

at this part of the boundary of G. Hence, G is invariant.

Since this is true for all C large enough, we find that G is

even absorbing in R2: A

Stationary Points

Proposition 2.2: There is always the trivial stationary

point ð y; zÞ ¼ ð0; 0Þ: If ðm2 nÞ2 $ 4c; then there are two

more stationary points (for ðm2 nÞ2 ¼ 4c counted with

multiplicity),

y*
^; z*

^

� 
¼

1

2
2ðn2 mÞ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 mÞ2 2 4c

q� �
;

�

n
1

2
2ðn2 mÞ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 mÞ2 2 4c

q� ��
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Proof: From _z ¼ 0 we conclude z ¼ n y; and thus

y ½ y2 2 my þ ny þ c� ¼ 0: Thus, either y ¼ 0 (and there-

fore also z ¼ 0), or

y2 þ ðn2 mÞy þ c ¼ 0: ð10Þ

The solutions of the latter quadratic polynomial yield to

the nontrivial stationary points. A

Local Bifurcations of Codimension One

Transcritical Bifurcation

Proposition 2.3: The trivial stationary point undergoes

a transcritical bifurcation for c ¼ 0; if c – m:

Proof: The trivial stationary point does exist for all

parameter values. The Jacobian at the trivial stationary

point reads

Jjð0;0Þ ¼
2c 0

n 21

 !
;

i.e. the eigenvalues are 2c and 21. This point is a stable

node for c . 0 while it is a saddle for c , 0: If c goes

from positive to negative values and m – n; then ð y*
2; z*

2Þ

crosses (0,0). A

Saddle-Node Bifurcation

Proposition 2.4: For 4c ¼ ðm2 nÞ2 and n – m a

saddle-node bifurcation occurs. At this bifurcation, the

stationary points are both positive for n , m and negative

for m . n:

Proof: This proposition follows directly from the

explicit representation of the stationary points

ðy*
^; z*

^Þ: A

Hopf Bifurcation

Proposition 2.5: If m .
ffiffiffi
8

p
; there are two lines of Hopf

points:

Hþ : 1 2 2c ¼
1

4
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
ð2n2 mÞ

for n .
1

2
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
;

H2 : 1 2 2c ¼
1

4
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
ð2n2 mÞ

for n .
1

2
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
:

Proof: Since the trivial stationary point always has real

eigenvalues, the only stationary points that are able to

undergo a Hopf bifurcation are ðy*
^; z*

^Þ: The Jacobian at

these points reads

Jj
ð y* ; z* Þ

¼
2y* ð2y* 2 mÞ 2y*

n 21

 !
;

where ( y*, z*) denotes either of the points ðy*
^; z*

^Þ:
The trace of the Jacobian must vanish for a Hopf

bifurcation to occur. Thus, necessarily,

y* ð2y* 2 mÞ þ 1 ¼ 0 ð11Þ

on the Hopf line. We use Eq. (10) in order to eliminate the

quadratic term, and obtain ð2n2 mÞy* þ 2c2 1 ¼ 0:
Thus,

y* ¼
1 2 2c

2n2 m
:

If we combine this result with the equation (10), we find

0 ¼
1 2 2c

2n2 m

� �2

þðn2 mÞ
1 2 2c

2n2 m

� �
þ c

¼
1 2 2c

2n2 m

� �2

þ
1

2
ð2n2 mÞ

1 2 2c

2n2 m

� �

2
1

2
m

1 2 2c

2n2 m

� �
þ c

¼
1 2 2c

2n2 m

� �2

2
1

2
m

1 2 2c

2n2 m

� �
þ

1

2
:

Therefore

1 2 2c

2n2 m
¼

1

4
m^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
;

i.e. all Hopf points are located on the lines H^ (by now

without the restriction on n).

On these two lines tr ðJjy* ; z* Þ ¼ 0; i.e. one of two

necessary conditions for a Hopf bifurcation to

occur is satisfied. The second necessary condition is

det ðJjy* ; z* Þ . 0;

y* ð2y* 2 mÞ þ ny* . 0:

From tr ðJjy* ; z* Þ ¼ 0 we conclude that

y* ð2y* 2 mÞ ¼ 21; y* ¼
1

4
m^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
and hence det ðJjy* ; z* Þ ¼ ny* 2 1 . 0; i.e.

n .
1

y*
¼

4

m^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p ¼
1

2
m7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
:

A

Proposition 2.6: All points on H2 correspond to

proper Hopf bifurcations, while at all points on Hþ except

J. MÜLLER AND T. TJARDES106



of ðn;cÞ ¼ ðm=2; 1=2Þ proper Hopf bifurcation takes

place.

Proof: Two conditions have to be checked: first, that the

eigenvalues cross the imaginary axes properly, second

that the third-order term of the radial component of the

dynamical system transformed in polar coordinates does

not vanish.

Eigenvalues:

Close to the Hopf line, the eigenvalues are not real, i.e.

Rðl^Þ ¼ 2tr ðJjy* ; z* Þ: Hence,

Rðl^Þ ¼ 2
1

2
ð1 þ y* ð2y* 2 mÞÞ )

›

›n
Rðl^ÞjH^

¼ 22
›

›n
y*

� �
y* 2

m

4

h i���
H^

:

Differentiating Eq. (10) with respect to n yields

›

›n
y* ¼

2y*

2y* 2 mþ n
:

On the Hopf line, y* is explicitly known from equation

(11), y* ¼ 1
2
ðm^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
Þ: Hence,

›

›n
Rðl^Þ ¼ 2

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p m^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
2y* 2 mþ n

:

Since m^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
. 0; the only change of sign is

possible for 2y* 2 mþ n ¼ 0: From n ¼ 2ð2y* 2 mÞ and

tr ðJjy* ; z* Þ ¼ 0 we conclude 1 þ ny* ¼ 0; i.e.

det ðJjy* ; z* Þ ¼ 0; a contradiction to det ðJjy* ; z* Þ . 0 on

H^: Therefore, ð›=›nÞRðl^Þ does not change its sign

on H^:

Third-order term of the radial component:

Let v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðJjy* ; z* Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ny* 2 1

p
be the angular

frequency of the system at the Hopf line, and

l^ ¼ ^iv the eigenvalues. The complex eigenvector

reads

X U
1

n

 !
þ iv

1

0

 !
:

We define new variables u, v by

y 2 y*

z 2 z*

 !
¼ RðXÞ v þ JðXÞ u ¼

v þ vu

nv

 !

and obtain the transformed system (note that the

transformation is only valid on the Hopf lines, since

the conditions H^ are used)

_u ¼ 2vv þ f ðu; vÞ

_v ¼ vu þ gðu; vÞ

with

f ðu;vÞ¼2
1

v
ðvuþvÞ½ðvuþvÞ2þð3y*2mÞðvuþvÞþnv�;

gðu;vÞ¼0:

For a proper Hopf bifurcation to occur, the coefficient a

defined by

a¼
1

16
½f uuuþf uvvþgvvuþgvvv�þ

1

16v
½f uvðf uuþf vvÞ

2guvðguuþgvvÞ2f uugvvþf vvguu�

must not vanish (Guckenheimer and Holmes, 1983,

Chapter 3.4). We obtain

a¼2
3

8
ð1þv2Þþ

1

8v2
ð6y*22mþnÞ½ð1þv2Þð3y*2mÞþn�:

The relation v2¼ny*21 leads to

a¼2
3

8
ny*þ

1

8ðny*21Þ
ð6y*22mþnÞ½ny*ð3y*2mÞþn�:

With y*ð2y*2mÞþ1¼0 we find

a¼
ny*

8ðny*21Þ
½y*ð2y*22nÞþ1�:

Since ny*21¼detðJjy*;z*Þ.0 and y*.0; it follows

that a¼0 is equivalent with y*ð2y*22nÞþ1¼0: Since

the trace vanishes on the Hopf line, we have

trðJjy*;z*Þ¼y*ð2y*2mÞþ1¼0;

and thus

n¼
m

2
)c ¼

1

2
:

This point is located on Hþ: Hence, H2 is a line of proper

Hopf bifurcation, while on Hþ at ðn;cÞ¼ðm=2;1=2Þ

the third order term of the radial component changes

its sign. A

Remark 2.7: (a) The change of the sign of a on Hþ

is a hint that a Bautin bifurcation happens

at ðn;cÞ ¼ ðm=2; 1=2Þ: Therefore we call this

point “B”. However, we will see later that not a

local bifurcation of higher codimension but a global

bifurcation occurs here.

(b) Crossing the line H2 from left to right

(i.e. increasing in n), the eigenvalues of the stationary

point that undergoes the Hopf bifurcation are changing

from negative to positive. Increasing n further and

crossing H2; the eigenvalues become positive again.

Since the coefficient a is negative on Hþ between TBþ

(see below) and B, unstable periodic orbits appear on the

left hand side of Hþ: a becomes positive on the remaining

part of Hþ and on Hþ; leading to the emergence of stable
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orbits on the right hand side of Hþ and for n . m=2; and

on the left hand side of H2:

Local Bifurcations of Codimension Two

Pitchfork Bifurcation

Proposition 2.8: At ðn;cÞ ¼ ðm; 0Þ a pitchfork bifurca-

tion takes place.

Proof: The proof follows at once from the structure of

the stationary points. A

Remark 2.9: In Guckenheimer and Holmes (1983) the

pitchfork bifurcation is called a bifurcation of codimension

one. This is only true, if some symmetry conditions for the

vector field hold true. Without symmetry, like in our case,

two parameters are needed to unfold the pitchfork

bifurcation (see also Golubitsky and Schaeffer, 1985).

Takens–Bogdanov Bifurcation

Proposition 2.10: Let TB^ denote the points

TBþ : ðn;cÞ

¼
1

2
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
;

1

16
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 2
� �

;

TB2 : ðn;cÞ

¼
1

2
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 
;

1

16
m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p� 2
� �

:

in the parameter plane. Then, for m .
ffiffiffi
8

p
; at TB^ proper

Takens–Bogdanov bifurcations are located.

Proof: In the first step we slightly transform our

dynamical system into a more handsome shape. For this

transformed system we apply the theorem about Takens–

Bogdanov bifurcations (Kuznetsov, 1995, p. 278).

Step 1: Transformation. We shift the nontrivial

stationary point (for the parameter values of TB^) into

zero and rewrite the system as a nonlinear oscillator. Let

z ¼ w1 þ 1; y ¼ ðw1 þw2 þ 1Þ=n , w1 ¼ z2 1;

w2 ¼ ny2 z

then

_w1 ¼ w2 ð12Þ

_w2 ¼2
ðw1 þw2 þ 1Þ3

n2
þ
mðw1 þw2 þ 1Þ2

n

2 ðw1 þw2 þ 1Þðw1 þ 12cÞ2w2:

ð13Þ

We can write this system as

_w1 ¼
i; j

X
aijw

i
1w

j
2; _w2 ¼

i; j

X
bijw

i
1w

j
2;

with a01 ¼ 1 and ai; j ¼ 0 else, and

b00 ¼2
1þ n ðn2mÞ þ n2c

n2

b01 ¼ b10 ¼2
3þ 2n ðn2mÞ þ n2c

n2

b20 ¼2
3þ n ðn2mÞ

n2

b11 ¼2
6þ n ðn2 2mÞ

n2
¼ b20 þ b02

b02 ¼2
32 nm

n2

Since we find n ðn2mÞ ¼22 and cn2 ¼ 1 in the Takens–

Bogdanov points, it is b00jTB^
¼ b10jTB^

¼ b01jTB^
¼ 0:

Step 2: Generic conditions for a Takens–Bogdanov

bifurcation

Condition 1: Form of the Jacobian

For TB^, the Jacobian of w ¼ ðw1;w2Þ ¼ ð0; 0Þ reads

A ¼
0 1

0 0

 !

i.e. assumes the appropriate form for a Takens–

Bogdanov bifurcation.

Condition 2: Nondegenerated higher-order terms

The appropriate higher-order terms of the normal

form must not vanish in order to guarantee the

codimension to be exactly two. Indeed, we find at

the TB^ � point

a20 þ b11jTB^
¼ 2

6 þ n ðn2 2mÞ

n2

����
TB^

¼ 2
8 þ 2ðm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
ÞmÞ

ðm7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
Þ2

�����
TB^

– 0

and

b20jTB^
¼ 2

3 þ n ðn2 mÞ

n2

����
TB^

¼ 2
1

n2

����
TB^

– 0

Condition 3: Transversally of the parameter space

The last condition determines if a full unfolding is

possible, checking first order conditions for transversality.

If gðw;m;cÞ denotes the r.h.s. of Eqs. (12), (13), then

the map

ðw1;w2;m;cÞ 7! gðw1;w2;m;cÞ; tr
d

dw
g

� �
;det

d

dw
g

� �� �
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should be non-singular at w ¼ ðw1;w2Þ ¼ 0 and TB^:
Since

d

dw
g ¼

0 1

b10 þ b11w2 þ b20w1 b01 þ b11w1 þ b02w2

 !

þ higher-order terms

we find

tr
d

dw
g

� �
¼ b01 þ b11w1 þ b02w2;

det
d

dw
g

� �
¼ b10 þ b11w2 þ b20w1

and the Jacobian of this map at the Takens–Bogdanov

bifurcation

J ¼

0 1 0 0

0 0 1=n 21

b11 b02 2=n 21

2b20 b11 22=n 1

0
BBBBB@

1
CCCCCA:

The determinant of this expression reads (note that we use

the parameters of the Takens–Bogdanov points TB^)

det ðJÞ ¼ 2
1

n
ðb11 2 b20Þ ¼ 2

1

n
b02 ¼ 2

1

n3
– 0

Therefore all conditions for Takens–Bogdanov bifur-

cations are satisfied. A

Remark 2.11: At the TB-points b11 ¼ 4 2 mn; the sign

of

s ¼ sign ðb20ða20 þ b11ÞÞ

¼ sign
8 2 mðm7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 2 8

p
Þ

2n4

 !

is positive for TBþ and negative for TB2; indicating that

the homoclinic orbit and the periodic orbits are unstable

near TBþ and stable near TB2:

Global Bifurcations

One-Dimensional Singularity

Proposition 2.12: For n ¼ 0; all limit sets are included

in {z ¼ 0}; i.e. we have an essentially one-dimensional

system.

Proof: The proof is immediately clear because in this

case _z ¼ 2z; i.e. z vanishes asymptotically. A

B-Point: Singular Bautin Bifurcation and Homoclinic
Line

Theorem 2.13: The Takens–Bogdanov points TB^ are

connected by a line of homoclinic orbits. This line crosses

the line Hþ: Furthermore, somewhere on this line the

homoclinic orbits change their stability from unstable

(near TBþ) to stable (near TB2).

Proof: The proof is primarily based on topological

arguments.

Step 1: Heteroclinic connection of y*
^ near the SN-line.

The SN-line can be split into three parts, part SNa left of

TBþ; the part SNb between TBþ and TB2 and the part SNc

between TB2 and P. One eigenvalue is always zero on this

line, the other eigenvalue changes sign at TB^: Since this

second eigenvalue is negative in P (here, y^ and the trivial

stationary point coincides, and the trivial stationary point

always has one negative eigenvalue), on SNa and SNc; the

non-zero eigenvalue is negative, and on SNb it is positive.

Now consider the situation very close to SNb: We find

one unstable node and one saddle. The following

argument shows that y*
2 is the saddle and y*

þ is the

node: since in the interior of the parameter region bounded

by SNb; Hþ; H2 and T, no local bifurcation takes place,

the saddle stays a saddle and eventually undergoes the

transcritical bifurcation with the trivial stationary point.

Hence, y*
2 is the saddle while y*

þ is the unstable node. y*
2 is

connected via its unstable manifold with y*
þ: Similar

arguments show that y*
2 is connected via the stable

manifold with y*
þ near SNa and SNc:

Step 2: Heteroclinic connection of y*
^ near the 1-dim

and T-line.

Since the trivial stationary point has one stable manifold

(the z-axis) and one weakly unstable manifold at the line

T, the unstable manifold of y2 (that coincides with the

trivial stationary point at T) is connected with y*
2 or a

periodic orbit surrounding y*
þ: At the line 1-dim, the

unstable manifold of y*
2 is always connected with y*

þ:
Step 3: Detecting the homoclinic connection.

Let V be the set of parameter values (n,c) s.t. y*
2 is

connected via its stable manifold to y*
þ (or a periodic orbit

surrounding y*
þ). Due to the results of Steps 1 and 2, the set

V cannot touch SNa; SNc; 1-dim or T. Therefore it is a

bounded set. Furthermore, again because of Step 1, we

have SNb , ›V: On the other part of the boundary of V,

the homoclinic connection of y*
2 and y*

þ changes. In V, the

stable manifold of y*
2 connects with y*

þ (or a surrounding

periodic orbit), while outside the unstable manifold of y*
2

connects to y*
þ (respective to a surrounding periodic orbit).

This change in connecting manifold can happen only via a

homoclinic connection.

Step 4: Properties of the homoclinic line.

›V consists of parts of the line SN respectively of a

line of homoclinic loops. To be more precise, SNb ,
›V: Since V is open and the points TB^ are located at

the endpoints of SNb; there is a line of homoclinic

loops that connects TBþ and TB2: Since we know from

the normal form of TBþ; that the homoclinic line starts
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left of Hþ; and ends at TB2 (i.e. on the r.h.s. of Hþ),

it crosses Hþ: Furthermore, from Remark (2.11) we

know that the homoclinic line is stable near TB2 and

unstable near TBþ: Hence, the homoclinic orbit

changes its stability. A

Remark 2.14: Numerical simulations show that in the

point B, there is no Bautin bifurcation, but nested periodic

orbits bounded by the homoclinic loop (see Fig. 7). This

implies that in point B a Bautin bifurcation does not take

place, but the stable and unstable lines of periodic orbits

with a given frequency merge in a neutral stable periodic

orbit. Also, at point B, the homoclinic loops change their

stability.

It is to be expected that in a system with

nonlinearities of a higher order this non-generic

behavior is destroyed, and one will find a proper

Bautin point. The change in stability of the lines with

periodic orbits of a given frequency respectively, the

line of homoclinic orbits will not coincide in one

parameter point, but will occur via saddle-node

bifurcations of periodic orbits.
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