
Review Article

Multiscale Modeling and Mathematical Problems Related to
Tumor Evolution and Medical Therapy*

NICOLA BELLOMO†, ELENA DE ANGELIS‡ and LUIGI PREZIOSI§

Department of Mathematics, Politecnico, Torino, Italy

(Received 22 January 2004; In final form 22 January 2004)

This paper provides a survey of mathematical models and methods dealing with the analysis and
simulation of tumor dynamics in competition with the immune system. The characteristic scales of the
phenomena are identified and the mathematical literature on models and problems developed on each
scale is reviewed and critically analyzed. Moreover, this paper deals with the modeling and
optimization of therapeutical actions. The aim of the critical analysis and review consists in providing
the background framework towards the development of research perspectives in this promising new
field of applied mathematics.
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INTRODUCTION

Cancer modeling is an highly challenging frontier of

applied mathematics. It refers to complex phenomena that

appear at different scales: originally the cellular scale and

eventually the macroscopic scale corresponding to

condensation of cancer cells into solid forms interacting

with the outer environment. The interest of applied

mathematicians is documented in a large number of papers

published in journals of applied mathematics or

specifically devoted to the interactions between mathe-

matics and biological and medical sciences. Some of these

papers will be reviewed and critically analyzed in the

sections which follow.

A large bibliography can already be recovered in two

books edited by Adam and Bellomo (1996), and by

Preziosi (2003). The contents of the chapters of these

books clearly show how in a very short time, less than a

decade, a great deal of improvements of mathematical

modeling and methods have been developed. In the same

period, the interaction between mathematics and medicine

appears to have quantitatively and qualitatively improved

going from an intellectual aim to an effective interaction

and collaboration. Indeed, a great deal of novelty can be

discovered in the second book with respect to the state of

the art reported in the first one. Analogous remarks can be

applied to special issues of scientific journals edited by

Chaplain (2002), and by Bellomo and De Angelis (2003).

Anticipating the contents of the next sections, some

specific topics can be extracted from the contents of the

above books and issues. Specifically,

. Cancer phenomena appear at different scales from the

subcellular to the macroscopic one. Mathematical

models are required to deal with this aspect bearing

in mind that even when most of the phenomena appear at

the macroscopic scale, cellular events play a concomitant

and relevant role. Conversely, when the relevant aspect of

the evolution appear at the cellular scale, it is necessary to

figure out how cellular dynamics can generate pattern

formation which may be phenomenologically observed

at the macroscopic scale.

. An interesting field of interaction between mathematics

and biology refers to the modeling and optimization of

specific therapies such as the activation of the immune

system or the control of angiogenesis phenomena, i.e. the

recruitment of new capillaries and blood vessels from

pre-existing blood vessels.
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The above topics, selected among several ones, will be

the guiding lines of this paper which aims not only at

providing a critical analysis of the existing literature, but

also at indicating research perspectives toward a

qualitative improvement of the mathematical models and

methods describing cancer phenomena.

Motivations are undoubtedly relevant. Indeed, cancer is

one of the greatest killers in the world particularly in western

countries although medical activity has been successful at

least for some pathologies thanks to a great effort of

human and economical resources devoted to cancer

research. Moreover, it is recognized that any successful

development of medical treatment in cancer therapy may

hopefully be exploited toward other types of pathology.

The scientific community is aware that the great

revolution of this century will be the development of

a mathematical theory of complex biological systems.

This means dealing with phenomena related to the living

matter, while the revolution of the past two centuries was

essentially related to the inert matter. The following question

can be naturally posed: can research activity in molecular

biology and medicine possibly take advantage of a certain,

however limited, interaction with mathematics?

Rather than discussing the above topics by personal

ideas we report few sentences by scientists who have

significantly contributed to the research activity in the

field. The first ones are extracted from a paper by Gatenby

and Maini (2003), where the above-mentioned involve-

ment of mathematical sciences in cancer modeling are

scientifically motivated and encouraged:

Existing mathematical models may not be entirely correct. But
they represent the necessary next step beyond simple verbal
reasoning and linear intuition. As in physics, understanding the
complex, non-linear systems in cancer biology will require
ongoing interdisciplinary, interactive research in which
mathematical models, informed by extant data and continuously
revised by new information, guide experimental design and
interpretation.

Then, going on with technical details:

These models might, for example, adapt methods of game theory
and population biology to frame the “Vogelgram” mathematically
as a sequence of competing populations that are subject to random
mutations while seeking optimal proliferative strategies in a
changing adaptative landscape. The phenotypic expression of
each mutation interacts with specific environmental selection
factors that confer a proliferative advantage or disadvantage.
Such models will generate far less predictable (and more
biologically realistic) system behavior, including multiple
possible genetic pathways and timelines in the somatic evolution
of invasive cancer.

Still in the same line, the following sentence from the

paper by Greller et al. (1996) is worth recalling:

To the degree that a model is an adequate representation of
biological reality, it can be used to perform “experiments” that are
impossible or impractical in the laboratory. The danger of
discovering phenomena that are artifacts of the model must be
always scrutinized, but the properties of a model may also foretell
genuine biological situations that are yet to be observed.

In addition to the above motivations, an additional

one may be stated from the viewpoint of applied

mathematicians: the application of mathematical models

in immunology and cancer modeling not only generates

interesting and challenging mathematical problems, but

effectively motivates the development of new mathemat-

ical methods and theories. Indeed, applied mathematicians

have to look for new paradigms, which may generate

new classes of equations to be dealt with by sophisticated

analytic and computational methods.

This paper deals with the above topics with the aim to

develop a review and a critical analysis of the state-of-the-

art on the modeling of tumor evolution contrasted by the

immune system and the therapeutical actions. The above

review will then be addressed to propose new ideas and

research perspectives in this fascinating new area of

applied mathematics.

The content is proposed through six sections. The first

part deals with modeling. In detail, the second section,

which follows the above introduction, provides a

phenomenological description of the system we are

dealing with. The description, somehow naive, retains

some aspects of the way of thinking of an applied

mathematician, who always has in mind the need for

transferring the phenomenological observation into

equations. Certainly, biologists may be disappointed by

it, considering that their attitude generally entails a deep

look at certain phenomena without an immediate aim to

transfer this observation into mathematical equations. In

this case, the phenomenological description may be very

detailed. On the other hand, the mathematical description

can hopefully put in evidence behaviors that are not, or

even cannot, be observed. In detail, this section provides a

description of the phenomenology of the system with

special attention to the different scales characterizing the

system, from the subcellular scale to the macroscopic

behavior, thus assessing the general framework for

mathematical modeling.

The third and fourth sections deal with the

mathematical modeling of the above system referred

to two representation scales: the cellular one (at a

statistical level) and the macroscopic one which can be

exploited to model the evolution of tumors condensed

into solid forms. Specifically, the third section deals

with a review of mathematical models developed at a

cellular scale and based on a mean field description,

corresponding to the Vlasov equation. Models describe

statistically the behavior of the system with particular

attention to the competition between tumor and immune

cells. This type of modeling retains certain aspects of

phenomena developed at the subcellular scale. This

means modeling cell activity and signaling in relation

with loss of differentiation and interactions between

tumor cells and the immune system. The fourth section

deals with modeling macroscopic phenomena by non-

linear partial differential equations and free boundary

problems, thus describing the interactions of solid

tumors with the outer environment. Also, we shall see

that the derivation of macroscopic models retains the

need for the modeling of phenomena developed at the

cellular scale.
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The second part deals with research perspectives.

Specifically, the fifth section is dedicated to modeling and

analysis of two therapeutical actions, the activation of the

immune system and the control of angiogenesis

phenomena, bearing in mind the problem of drug delivery.

The above topics are related to the class of models,

cellular and macroscopic ones, described in the fourth

section. Certainly, additional therapies can be the object

of modeling. On the other hand, focusing only on the

above actions allows a deeper methodological analysis of

this matter which only recently became the subject of a

systematic research activity by applied mathematicians.

Finally, the last section looks at research perspectives

and methodological aspects, in particular in relation

with the interactions between mathematics and sciences of

molecular biology and medicine. The authors of this paper

support the idea that this interaction may not only be

useful, but can also provide reciprocal relevant hints to new

research frontiers within the above scientific environment.

Then starting from the above analysis, some research

perspectives are offered for the reader’s attention.

PHENOMENOLOGY AND SCALING

Cancer is a complex multistage process. As described

by various authors (Adam, 1996; Preziosi Ed., 2003), it is

a consequent breakdown of the normal cellular interaction

and control of replication. The sequential steps of the

evolution of the system may be roughly summarized as

follows:

1. Genetic changes, distortion in the cell cycle and loss of

apoptosis.

2. Interaction and competition at the cellular level with

immune and environmental cells. This stage includes

activation and inhibition of the immune system.

This action is also developed through cytokine signal

emission and reception which regulate cell activities.

3. Condensation of tumor cells into solid forms,

macroscopic diffusion and angiogenesis.

4. Detachment of metastases and invasion.

The first two steps are mainly related to cellular

phenomena; the last two need macroscopic descriptions

although cellular phenomena cannot be neglected as they

are always the entities generating the macroscopic

behavior.

The steps listed above clearly show how the process of

tumor evolution involves many different phenomena which

occur at different scales. Specifically, it is possible to

distinguish three main scales as the natural ones

characterizing the phenomenon: the subcellular, the cellular

and the macroscopic scale. The system shows interesting

phenomena on each single scale. A theory should retain all

relevant features from the lower to the higher scale.

From the point of view of the mathematical modeling, this

means that the problem requires different approaches,

because mathematical models related to cellular phenomena

are generally stated in terms of ordinary differential

equations and deal with the behavior of a single cell,

while integro-differential kinetic equations are used for

collective phenomena. On the other hand, macroscopic

behaviors are generally described by non-linear partial

differential equations that should lead to mathematical

problems stated as moving boundary problems.

The development of control activities can be organized

along each of the steps above.

To begin with, we limit the description to some and

hopefully most relevant phenomena occurring at each scale,

artificially separating them on the basis of the scale involved.

The subcellular scale refers to the main activities within

the cells or at the cell membrane. Among an enormous

number of phenomena one can focus on

(i) Aberrant activation of signal transduction pathways

that control cell growth and survival;

(ii) Genetic changes, distortion in the cell cycle and loss

of apoptosis;

(iii) Response of the cellular activity to the signals

received;

(iv) Absorption of vital nutrients.

A large amount of literature related to the above

features can be found. Several interesting papers are cited

in the review paper by Lustig and Behrens (2003),

focusing on the dependence of cancer development on the

aberrant activation of signal pathways that control cell

growth and survival.

The cellular scale refers to the main (interactive)

activities of the cells: activation and proliferation of tumor

cells and competition with immune cells. More specifi-

cally, one has

(i) Fast proliferation of tumor cells, which are often

degenerated endothelial cells, takes place when an

environmental cell loses its death program and/or

starts undergoing mitosis without control.

(ii) Competition with the immune system starts when

tumor cells are recognized by immune cells, resulting

either in the destruction of tumor cells or in the

inhibition and depression of the immune system.

(iii) After differentiation tumor cells undergo a process of

maturation, which makes them more and more

proliferative and aggressive toward the environment

and the immune system. Tumor cells can be

additionally activated towards proliferation by nutrient

supply from the environment.

(iv) Activation and inhibition of the immune cells in their

competition with tumor cells are regulated by cytokine

signals. These interactions, developed at the cellular

level, are ruled by processes which are performed at

the subcellular scale.

(v) Activation and inhibition of cells belonging to the

tumor and to the immune system can also be induced

by a properly addressed medical treatment.
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A model developed at the microscopic scale defines the

time evolution of the physical state of a single cell. Often

these models are stated in terms of ordinary differential

equations. On the other hand, if we aim to describe the

evolution of a system comprising a large number of

cells, then the system of ordinary differential equations

(one for each cell) can be replaced by a kinetic

equation on the statistical distribution of the state of

all cells. The application of methods of mathematical

kinetic theory to model the competition between tumor

and immune cells was initiated by Bellomo and Forni

(1994), and developed in a sequel of papers as it will be

reviewed in the “Modeling by generalized kinetic cellular

theory” section.

The macroscopic scale refers to phenomena which are

typical of continuum systems: cell migration, convection,

diffusion (of chemical factors, nutrients), phase transition

(from free to bound cells and vice versa) detachment of

cells and formation of metastases, and so on. After a

suitable maturation time, tumor cells start to condense and

aggregate into a quasi-spherical nucleus and interact with

the outer environment.

In this stage three overlapping phases of growth are

usually identified: the avascular phase, the angiogenic

phase and the vascular phase.

In particular, the avascular stage of growth is

characterized by:

(i) Small and occult lesions (1–2 mm in diameter);

(ii) Formation of a necrotic core of dead tumor cells

where a process of destroying cellular debris may

take place;

(iii) Formation of an outer region of proliferating tumor

cells and of an intermediate region of quiescent cells;

(iv) Production of chemical factors, among which

several growth inhibitory factors, generally called

GIF, and growth promoting factors, called GPF, by

the tumor mass, thus controlling the mitosis;

(v) Dependence of the tumor cells mitotic rate on the

GIF and GPF concentration;

(vi) Non-uniformities in the proliferation of cells and in

the consumption of nutrients, which filter through

the surface of the spheroid and diffuse in the

intracellular space.

As at this stage the tumor is not surrounded yet by

capillaries, this phase can be observed and studied in

laboratory by culturing cancer cells.

On the other hand, the tumor angiogenic phase is

characterized by:

(i) Secretion of tumor angiogenesis factors promoting

the formation of new blood vessels (VEGF, FGF and

others) as described in Bussolino et al. (2003);

(ii) Degradation of basement membrane by several

enzymes. Endothelial cells are then free to

proliferate and migrate towards the source of the

angiogenic stimulus;

(iii) Recruitment of new blood vessel that supply the

tumor (neovascularization) and increase of tumor

progression;

(iv) Aberrant vascular structure, abnormal blood

flow, with continuous growth of new tumor blood

vessels.

A macroscopic description of the system should focus

on these features and aim at giving their evolution in time.

Obviously, the macroscopic behavior depends on

phenomena occurring at the cellular level, e.g. prolife-

ration, death, activation and inhibition of single cells,

interaction between pairs of cells, etc.

The evolution of macroscopic observables can be

described by models developed in the framework of

continuum phenomenologic theories, e.g. those of

continuum mechanics. These models are generally stated

in terms of partial differential equations.

The link between the microscopic and the macroscopic

description is one of the main open problems that we shall

see in “On the interactions between mathematics and

biology and perspectives” section, for scientists involved

in the research field we are dealing with.

MODELING BY GENERALIZED KINETIC
CELLULAR THEORY

During the first stages of evolution tumor cells have not

yet condensed into a solid form. They have just

differentiated from the other endothelial cells and, if

recognized by the immune system, are attacked. This

interaction and competition may end up either with the

control of tumor growth or with the inhibition of the

immune system, and hence with the growth and

condensation of the tumor into a solid form. In this

scheme, each cell can be characterized by one or more

biological activities, which are supposed to represent the

relevant activities of the cells in the collective phenomena.

The evolution related to the above collective behavior

can be described by the so-called generalized kinetic

theory which provides a statistical description of the

evolution of large populations of cells undergoing kinetic

type interactions. The results of these interactions depend

on the activation state of the cells, and may modify the

activation state of the interacting cells and/or generate

proliferation/destruction phenomena.

The above mathematical approach was first proposed by

Bellomo and Forni (1994) and then developed by various

authors, e.g. Bellomo et al. (1999), De Angelis and Mesin

(2001), Ambrosi et al. (2002), Arlotti et al. (2002a),

De Angelis and Jabin (2003), Kolev (2003) and

Bellouquid and Delitala (2004). Additional bibliography

can be recovered in the review papers by Bellomo and

De Angelis (1998) and, more recently by Bellomo et al.

(2003a). Mathematical aspects related to the derivation

and qualitative analysis of the above models can be

recovered in Arlotti et al. (2002b; 2003). Additional
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studies are in progress as documented in Bellomo et al.

(2004).

The substantial difference with respect to the equations

of the kinetic theory is that the microscopic state of the

cells is defined not only by mechanical variables, say

position and velocity, but also by an internal biological

microscopic state related to the typical activities of the

cells of a certain population.

This section deals with the above theory bearing in mind

the modeling of therapeutical actions within a multiscale

framework. The line to be followed in the modeling

process is indicated below:

1. Selection of the cell populations which play the game

and their biological activities;

2. Modeling microscopic interactions and derivation of

the evolution equations;

3. Application of the model to describe phenomena of

interest for molecular biology;

4. Derivation of a general framework for modeling

large systems of cell populations.

The contents of this section follow the above index and

is then organized into four subsections which report about

the existing literature. As we shall see, some interesting

problems have been solved, while a broad variety of

problems are still open.

The development of each one of the above steps needs

an effective ability to reduce the high complexity of the

system we are dealing with. Specifically, the selection of

the cell populations that play the game has to be

interpreted as the selection of those who may play a role

relatively more relevant than others. The same reasoning

may be applied to the selection of the biological activities.

Moreover, modeling cellular microscopic interactions

means developing a game theory with stochastic

interactions. Indeed, the reduction of the complexity of

the system implies that determinism is lost, replaced by

stochastic games.

It is worth stressing, with reference to the existing

literature, that two different classes of models have been

proposed on the basis of two different ways of modeling

microscopic interactions. The first class, which essentially

refers to the pioneer work by Bellomo and Forni (1994),

is developed with the assumption of localized interactions:

pairs of cells interact when they get in contact.

The second class, proposed by De Angelis and Mesin

(2001), is developed with the assumption of mean field

interactions: field cells interact with all cells within their

action domain.

The review which follows essentially refers to this

second class of models. Indeed, as analyzed by Bellomo

et al. (2004), this type of model appears to be relatively

more flexible to describe space dynamics. Bearing this in

mind, the contents, which follow, will essentially refer to

the spatially homogeneous case. Indeed models, useful for

the applications, are available only in this relatively

simpler case. Nevertheless, some indications on space

dependent models will be given having in mind multiscale

modeling problems.

The above index shows that the review refers to a

specific model with the aim of avoiding abstract

formalizations. On the other hand, general methodological

aspects are dealt with in the last subsection essentially

looking at research perspectives.

Cell Populations

The immune competition involves several interacting

populations each one characterized by a microscopic

internal state which may differ from one population to

the other. In fact, the dynamics involves at least cells of the

immune system and cells of the aggressive host in the

presence of environmental cells.

An interesting class of models was developed

after De Angelis and Mesin (2001) selecting three

interacting populations: cancer cells, immune cells and

environmental cells.

As already mentioned, the above selection has to be

regarded as a way to reduce complexity, however,

pursuing the objective of designing models suitable to

provide a detailed description of some interesting

biological phenomena. Referring to the three populations

indicated above the modeling of the biological activity

can be developed assuming that the microscopic

state is a scalar u [ [0,1) and has a different meaning

for each population: progression for tumor cells, defense

ability for immune cells and feeding ability for

environmental cells.

The model, obtained by methods of the mathematical

kinetic theory, refers to evolution of the distribution

functions f i ¼ f iðt; uÞ over the microscopic state u, where

i ¼ 1 refers to tumor cells, i ¼ 2 to immune cells and i ¼ 3

to environmental cells.

Modeling Microscopic Interactions and Evolution

Equations

Consider the interactions between a test cell and a field

cell which are homogeneously distributed in space

within a certain control volume. Interactions may

change the state of the cells and generate birth and

death processes. The modeling is based on the following

assumptions:

. The action of the field cells with state w belonging

to the k-th population on the test cells of the i-th

population with state u is modeled by the super-

position of two different actions: a conservative

action which modifies the state of the particles, but

not their number; and a non-conservative action

which generates a birth or death process in the states

of the interacting pair.

. Conservative actions are modeled by the function

wik ¼ wikðu;wÞ; ð1Þ
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such that its resultant action is

Fi½f�ðt;uÞ¼
›

›u
f iðt;uÞ

X3

k¼1

ð1
0

wikðu;wÞf kðt;wÞdw

" #
: ð2Þ

. Non-conservative actions are modeled by the function

cikðv;wÞdðv2uÞ; ð3Þ

such that its resultant action is

si½f�ðt;uÞ¼f iðt;uÞ
X3

k¼1

ð1
0

cikðu;wÞf kðt;wÞdw: ð4Þ

. A source term can be added to model the inlet from

the outer environment into the control volume.

The balance scheme which generates the model is

reported in Fig. 1. Accordingly, the resultant structure of

the evolution model, in the absence of inlet from the outer

environment, is the following:

›

›t
f iðt; uÞ þ

›

›u
f iðt; uÞ

X3

k¼1

ð1
0

wikðu;wÞf kðt;wÞ dw

" #

¼ f iðt; uÞ
X3

k¼1

ð1
0

cikðu;wÞf kðt;wÞ dw: ð5Þ

Of course, specific models are obtained, as we shall see,

by specializing the microscopic interactions.

Application

The mathematical structure described in the “Modeling

microscopic interactions and evolution equations” section

can be exploited to derive specific models based

on a detailed description of microscopic interactions.

A specific model can be obtained by the following

assumptions:

. The progression of neoplastic cells is not modified

by interactions with other cells of the same type,

while it is weakened by interaction with immune

cells (linearly depending on their activation state);

and it is increased by interactions with environmental

cells (linearly depending on their feeding ability).

The effect increases with increasing values of the

progression:

w11 ¼ 0; w12 ¼ 2a12wu; w13 ¼ a13wu: ð6Þ

. The defense ability of immune cells is not modified

by interactions with other cells of the same type and

with environmental cells, while it is weakened by

interaction with tumor cells (linearly depending on

their activation state) due to their ability to inhibit the

immune system:

w21 ¼ 2a21wu; w22 ¼ w23 ¼ 0: ð7Þ

. The feeding ability of environmental cells is not

modified by interactions with other cells of the same

type and with immune cells. On the other hand, it is

weakened by interaction with tumor cells linearly

depending on their activation state:

w31 ¼ 2a31wu; w32 ¼ w33 ¼ 0: ð8Þ

. No proliferation of neoplastic cells occurs due to

interactions with other cells of the same type. On the

other hand, interactions with immune cells generate a

destruction linearly depending on their activation

state; and a proliferation by interactions with

environmental cells depending on their feeding

ability and the progression of tumor cells:

c11 ¼ 0; c12 ¼ 2b12w; c13 ¼ b13uw: ð9Þ

. No proliferation of immune cells occurs due to

interactions with other cells of the same type and

with environmental cells. On the other hand,

interactions with tumor cells generate a proliferation

linearly depending on their defense ability and on the

activation state of tumor cells:

c21 ¼ b21uw; c22 ¼ p23 ¼ 0: ð10Þ

. No proliferation of environmental cells occurs due to

interactions with other cells of the same type and

with immune cells. On the other hand, interactions

with tumor cells generate a destruction linearly

depending on the activation state of tumor cells:

c31 ¼ 2b31w; c32 ¼ c33 ¼ 0: ð11Þ

The derivation of the evolution equation is based on

the above model of cell interactions as well as on

FIGURE 1 Scheme of the balance equations.
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the methodological approach described in the preceding

subsection. Technical calculations yield

›f 1

›t
¼

›

›u
a12uf 1ðt;uÞA½ f 2�ðtÞ2a13uf 1ðt;uÞA½ f 3�ðtÞ
� �

þb13uf 1ðt;uÞA½ f 3�ðtÞ2b12 f 1ðt;uÞA½ f 2�ðtÞ;

›f 2

›t
¼

›

›u
a21uf 2ðt;uÞA½ f 1�ðtÞ
� �

þb21uf 2ðt;uÞA½ f 1�ðtÞ;

›f 3

›t
¼

›

›u
a31uf 3ðt;uÞA½ f 1�ðtÞ
� �

2b31 f 3ðt;uÞA½ f 1�ðtÞ;

ð12Þ

where the operator A[·] is defined as follows:

A½ f i�¼

ðþ1

0

wf iðt;wÞdw: ð13Þ

The above model is characterized by eight parameters

which have to be regarded as positive, small with respect

to 1, constants, to be identified by suitable experiments as

documented by Bellouquid and Delitala (2004) for a

model with localized interactions.

Specifically, the a-parameters correspond to conserva-

tive encounters:

. a12 refers to the weakening of progression

of neoplastic cells due to encounters with active

immune cells;

. a13 refers to the increase of progression of neoplastic

cells due to encounters with endothelial cells;

. a21 is the parameter corresponding to the ability of

tumor cells to inhibit the active immune cells;

. a31 refers to the weakening of the feeding ability of

endothelial cells due to encounters with neoplas-

tic cells.

The b-parameters refer to proliferative and destructive

interactions. Specifically:

. b12 refers to the ability of immune cells to destroy

tumor cells;

. b13 corresponds to the proliferation rate of tumor cells

due to their encounters with endothelial cells;

. b21 is the parameter corresponding to the proliferation

rate of immune cells due to their interaction with

tumor cells;

. b31 is the parameter corresponding to the destruction

rate of endothelial cells due to their interaction

with tumor cells.

The above system corresponds to the case of a closed

system where the number of environmental cells decay in

time due to their death due to feeding of tumor cells. One

may possibly model an open system, where their number

and activity is constant in time due to inlet of new cells

from the outer environment. This means

f 3ðuÞ ¼ f 30ðuÞ; A½ f 3� ¼ A30 ¼ C:st;

then the system can be rewritten in the following relatively

simpler form:

›f 1

›t
¼

›

›u
a12uf 1ðt; uÞA½ f 2�ðtÞ2 a*

13uf 1ðt; uÞ
h i

þ b*
13uf 1ðt; uÞ2 b12 f 1ðt; uÞA½ f 2�ðtÞ;

›f 2

›t
¼

›

›u
a21uf 2ðt; uÞA½ f 1�ðtÞ
� �

þ b21uf 2ðt; uÞA½ f 1�ðtÞ;

ð14Þ

where a*
13 ¼ a13A30; b

*
13 ¼ b13A30: Model (14) is then

characterized by six parameters.

A qualitative analysis of the solutions to the initial value

problem related to above model (12) was studied by

De Angelis and Jabin (2003), while a computational

analysis was developed by De Angelis et al. (2003). Both

papers show that the a-parameters play an important role

on the qualitative behavior of the asymptotic, in time,

solutions. Particularly important is the role of the

parameters a21 corresponding to the ability of tumor

cells to inhibit the active immune cells, and of a31 which

refers to the weakening of the feeding ability of

endothelial cells due to encounters with neoplastic cells.

Indeed, there exist critical values which separate two

different behaviors:

. blow up of tumor cells corresponding to feeding ability

of endothelial cells and/or inhibition of immune cells;

. progressive destruction of tumor cells corresponding

to limitations of the feeding ability of endothelial

cells and/or activation of immune cells.

Before showing some simulations with special attention

to the above phenomena, it is worth discussing the

final objective of modeling this type of physical system

and of developing a qualitative and computational analysis

within the framework of the interactions between

mathematics and medicine.

As we have seen, the above model is characterized by a

certain number of parameters which can be divided into

two groups, while all of them are related to specific

biological activities. The main objective of the simulation

involves showing which type of biological activity is

crucial to modify the output of the competition between

tumor cells and the immune system. This does not solve

the specific problem of modifying, toward the desired

direction, the biological activity. However, it may address

medical research to specific directions to be developed

with therapeutical purposes.

Bearing all this in mind, consider simulations with fixed

values of b-type parameters developed for the open

system (12). Simulations are reported in Figs. 2–5, which

analyze the sensitivity of the solutions, with special

attention to the asymptotic behavior, to the parameter a21

which corresponds to the ability of progressed cells

to inhibit the immune system. Figure 2 shows how the

evolution has a trend to increase the progression of tumor
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cells by increasing the number and mean value of the

progression. This behavior occurs when a21 is larger than

a critical value ac
21: In this case, the immune system is not

able to contrast the neoplastic growth; tumor cells are able

to increase their aggressiveness and to inhibit immune

cells. The distribution function of the tumor cells evolves

toward larger values of the state u, while the distribution

of the immune cells is shifting toward lower values of u.

On the other hand the opposite behavior is observed

when a21 is lower than ac
21: This type of evolution is

observed in Fig. 4, where the number of progressed

cells, and their activation, shows a trend to increase.

Now the immune system is not able to control the growth

of tumor cells as shown in the figure.

The evolution of the activation of immune cells

corresponding to the above two types of evolution is

shown in Figs. 3 and 5, respectively.

From the above simulations, the crucial role of the

parameter a21 among the other parameters is clear.

Indeed, a21 selects the asymptotic behavior of the system.

FIGURE 2 Evolution of tumor progression a21 . ac
21:

FIGURE 3 Evolution of immune cell activation for a21 . ac
21:
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Medical therapies can be focused to modify the effective

action related to the above parameter.

Mathematical Models with Space Structure

The mathematical model described in the “Modeling

microscopic interactions and evolution equations”

section was developed in the spatially homogeneous

case. On the other hand, various motivations have been

given to support the need of models with space

structure. This subsection provides a concise description,

with reference to the paper by Bellomo et al. (2004) of

the mathematical framework which generates models of

this type.

Models with space structure are such that the

microscopic state of cells is defined by the vector variable

which includes both mechanical and biological micro-

scopic states:

w ¼ {x; v; u} [ D ¼ Dx £ Dv £ Du; ð15Þ

where the position x [ Dx and the velocity v [ Dv are the

microscopic mechanical variables, and u [ Du, as we

have seen, is the microscopic internal biological state.

FIGURE 4 Evolution of tumor progression a21 , ac
21:

FIGURE 5 Evolution of immune cell activation for a21 , ac
21:
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A generalized kinetic model, for a system of several

interacting populations each labeled with the subscript i, is

an evolution equation for the distribution functions related

to each cell population

f i ¼ f iðt;wÞ : Rþ £D! Rþ; i ¼ 1; 2; 3: ð16Þ

Macroscopic observable quantities can be recovered

by suitable moments of the above distribution functions.

For instance, the number density of cells or the size at time

t and position x is given, under suitable integrability

properties, as follows:

niðt; xÞ ¼

ð ð
Du£Dv

f iðt; x; v; uÞ dv du; ð17Þ

while the total number of cells at time t in a domain Dx is

given by

NðtÞ ¼
Xn

i¼1

ð
Dx

niðt; xÞ dx: ð18Þ

The evolution equation, corresponding to mean field

interactions, is derived supposing that it is possible to

model the following two quantities:

. The action Pik ¼ Pikðw;w*Þ on the test cell (of the i-th

population) with microscopic state w due to the field

cell (of the i-th population) with w*, so that the

resultant action is

Fik½ f �ðt;wÞ ¼

ð
D

Pikðw;w*Þf kðt;w*Þ dw*: ð19Þ

. The term describing proliferation and/or destruction

phenomena in the state w related to pair inter-

actions between cells of the i-th population with

microscopic state w* with cells of the k-th population

with state w** is

Sik½ f �ðt;wÞ ¼

ð
D

ð
D

sikðw
*;w**; wÞf iðt;w*Þ

£ f kðt;w**Þ dw* dw**;

ð20Þ

where sik is a suitable proliferation–destruction

function.

In this case, the derivation of the equation follows the

same rules of the relatively simple case dealt with in

the “Modeling microscopic interactions and evolution

equations” section. Of course, the above approach

only defines a mathematical framework for models that

can be developed if the terms Pik and sik are defined by

specific models such as those we have seen in the

“Application” section.

An additional difficulty is that the biological and

mechanical functions generally show a reciprocal

influence. This topic is not properly developed in

the existing literature, while only some methodological

indications are given. Specifically, referring to mean field

interactions, the paper by Bellomo et al. (2004) suggests

the mechanical interactions by attractive and/or repulsive

potentials selecting the action by the biological state.

Specific models have been proposed in the case of short

interaction models. The analysis is addressed to a topic

which is not dealt with in this paper: the derivation of

macroscopic equations from the microscopic description

(Hillen and Othmer, 2000; Hillen, 2002; Lachowicz, 2002;

Bellomo and Bellouquid, 2004).

MACROSCOPIC MODELING

Proceeding in the evolution, tumor cells aggregate into a

tumor mass which is made of several constituents (e.g.

tumor cells, immune cells, environmental cells, extra-

cellular matrix) with a growth which depends on several

growth promoting and inhibitory factors, in addition to the

nutrients. For modeling purposes it is useful to distinguish

the components above into two classes:

1. the different types of cells, the extracellular matrix and

the extracellular liquid permeating the tissue;

2. all the nutrients, macromolecules and chemical factors

dissolved in the liquid, produced and absorbed by

the cells.

The main reason for introducing this distinction is that

while cells are bigger, occupy space, and are impenetrable,

the relative dimension of chemical factors and nutrients

can be neglected, they are produced and/or absorbed by

the cells, and they diffuse through the tissue. The tumor

can then be treated as a mixture of different constituents

with chemical factors diffusing in the liquid phase.

In the following subsections, a class of model which

takes into account the multicellular structure of a tumor

will be described and it will be shown how classical

models available in the literature can be obtained as

particular cases.

Multicellular Models

The rough classification mentioned above means that the

relevant state variables describing the evolution of entities

like the cell populations, the extracellular matrix and the

extracellular liquid are the volume ratios fj, j ¼ 1, . . . , P

defined as the volume occupied by the j-th population over

the total volume. The basis of this concept is that we are

considering the continuum not in its real state (at the

cellular level at any spatial point there can be only one

constituent at a time), but as a mixture: at every point of

the mixture there is a fraction fj of the j-th constituent

(see Rajagopal and Tao, 1995 for a detailed description).

On the other hand, the evolution of the chemical factors

and nutrients can be described by their concentrations

ui, i ¼ 1, . . . , M.
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One can then write a system of mass balance equations

for the cells, the extracellular matrix and the extracellular

liquid

r
›fj

›t
þ 7 · ðfjvjÞ

	 

¼ Gj; j ¼ 1; . . .;P; ð21Þ

and a system of reaction–diffusion equations for the

concentration of chemicals

›ui

›t
þ7·ðuiv‘Þ

¼7·ðQi7uiÞþ ~Gi2 ~Diui; i¼1;...;M ð22Þ

where Qi is the diffusion coefficient of the i-th chemical

factor, vj is the velocity of the j-th population, and, in

particular, v‘ is the velocity of the extracellular liquid.

As in the reaction–advection–diffusion equation in the

mass supply of the j-th constituent Gj one can distinguish

a production and a death term Gj¼rðGj2DjfjÞ:
In Eq. (21), it has been assumed that all constituents

have the same density r. The generalization to different

densities is trivial.

Usually, the system of Eqs. (21) is associated with the

assumption that the constituents identified fill the entire

space, i.e.

XP

j¼1

fj ¼ 1; ð23Þ

or a fixed portion of space

XP

j¼1

fj ¼ F: ð24Þ

This assumption is called saturation assumption. In this

case, summing all Eqs. (21) one has

r7 · vc ¼
XP

j¼1

Gj; ð25Þ

where

vc ¼
XP

j¼1

fjvj; ð26Þ

is called composite velocity.

Probably, the most delicate point in dealing with the

models (21) and (22) involves defining how cells move.

This can be done either on the basis of phenomenological

arguments, or writing momentum balance equations or

force balance equation.

Most of the papers in the literature use the first

approach, and operate under the assumption that the cells

do not move, or that the motion is driven by chemotaxis,

haptotaxis, or by an avoiding crowd dynamics, possibly

including diffusive phenomena. In the following we will

use the second approach showing when the first approach

can be obtained as a particular case. As we shall see this

type of model has, for instance, the advantages of

involving the forces exerted by the cells on the

extracellular matrix and on the other tissues. It is then

possible to study problems in which the mechanical

interactions with the outer environment play a crucial role,

e.g. tumor – tissue interactions, capillary collapse,

fractures as in bone tumors and ductal carcinoma.

The starting point involves writing the momentum

balance equations for the constituents

rfj

›vj

›t
þ vj ·7vj

� �

¼ 7 · Tj þ fjf j þ mj; j ¼ 1; . . .;P; ð27Þ

where mj is the interaction force with the other

constituents, Tj is the partial stress tensor and fj is the

body force acting on the j-th constituent, e.g. chemotaxis.

In many biological phenomena, inertial terms (or better

persistence terms) on the left hand side of Eq. (27) can be

neglected and the main contribution to the interaction

forces can be assumed to be proportional to the velocity

difference between the constituents

mj ¼ m0
j 2

XP

k¼1; k–j

Mjkðvj 2 vkÞ;

where the coefficients Mjk are related to the relative

permeabilities and satisfy the following relations Mjk ¼

Mkj . 0. One can then rewrite the momentum equations as

XP

k¼1; k–j

Mjkðvj 2 vkÞ

¼ 7 · Tj þ fjf j þ m0
j ; j ¼ 1; . . .;P: ð28Þ

In Preziosi and Graziano (2003) it has been proved

that the system (28) can be manipulated to obtain the

velocity fields in term of the stresses and of the other

terms. This information can be then used to simplify

Eqs. (21) and (22).

It is clear that Eq. (28) requires the description of cell-

to-cell mechanical interactions, e.g. relating the forces

determining cell motion to the level of compression,

because this is one of the main causes of motion.

For instance, when a tumor cell undergoes mitosis,

the new-born cell presses the cells nearby to make space

for itself. This “pressure” generates a displacement of the

neighboring cells to eventually reach a configuration in

which each cell has all the space it needs. In particular, this

leads to tumor growth.

It is also clear that a multiscale approach should be

taken into account in dealing with the influence of stress

on growth, because for instance the perception of stress by

the single cells and the triggering of mitosis or apoptosis

occurs at a subcellular scale.
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The easiest constitutive equations for the stress

consists in assuming that the ensembles of cells behave

as elastic liquids

Tj ¼ 2SjI; ð29Þ

where Sj is positive in compression. Of course, thinking

of tumor masses as elastic fluids is reductive as they

respond to shear, while ideal materials satisfying Eq. (29)

cannot sustain shear. In fact, in using Eq. (29) in three-

dimensional problems one has to be aware of the possible

instabilities to shear. There is no problem in generalizing

Eq. (29) including viscous effects as done in Ambrosi

and Preziosi (2002), Franks and King (2003) and Byrne

and Preziosi (2004), or in considering the tumor as a

viscoelastic fluid of any type, while it is more delicate to

give the tumor a solid-like structure.

In fact, in the former case one is still working in a Eulerian

framework, where the mechanical behavior of the fluid-like

material is ruled by functional relations between stresses and

rate of strains (including their histories). Therefore, even in

the presence of growth, there is no need to look back at the

state of the material before growth and deformation, and to

define the deformation with respect to a reference or a natural

configuration.

This, instead, is necessary when one wants to give the

tumor some solid-like properties and represents a big

conceptual problem because a growing material does not

possess a reference configuration in the classical sense.

Consequently, there are problems in defining the natural

configuration where the tumor would tend to grow in the

absence of external forces.

Of course, this problem does not characterize tumor

growth only, but is encountered in several other

applications ranging from bio-mechanics (e.g. bone

remediation, growth of tissues, tissue engineering) to

material sciences (e.g. crystallization, polymerization).

Many papers have been written in these fields without

realizing or bypassing the issue, some also dealing with

tumor growth. However, recently some papers, mainly in

material sciences and also in biomechanics (Rodriguez

et al., 1994; Taber, 1995; Di Carlo and Quiligotti, 2002;

Humphrey and Rajagopal, 2002), have analyzed the

problem. In particular, Humphrey and Rajagopal (2002)

introduced the concept of multiple natural configurations

which has already been applied by Ambrosi and Mollica

(2002; 2003), to tumor growth with very interesting and

promising results. Ambrosi and Mollica (2004) deduced

a model which compared well with the experiments

by Helmlinger et al. (1997) in which the stress inhibits

the growth of a multicell spheroid growing in a gel with

controllable stiffness.

1D Problems for a Single Incompressible Constituent

In this and in the following sections we will simplify the

model presented in the previous section to discuss well-

known classes of models.

As discussed by Byrne (2003) and Chaplain and

Anderson (2003), most of the classical papers on tumor

growth worked under the following hypotheses:

. The tumor is formed only by one type of cells

which keeps a constant volume ratio (or density) fT,

e.g. the population occupies all the space as a bunch of

rigid spheres in a close packing configuration;

. Its shape is spherically symmetric (in some cases

computations are performed in the one-dimensional

Cartesian case).

This reduces the number of space variables to one and the

velocity vector to a scalar. Hence, there is no need to

introduce any closure assumption or momentum equation.

In fact, one can directly write the evolution equation (21)

for the single cell population considered (i.e. tumor cells) as

1

r 2

›

›r
ðr 2vT Þ ¼

GT ðu1; . . .;unÞ

fT

2DT ðu1; . . .;unÞ; with fT ¼ const: ð30Þ

The quantities on the right hand side of Eq. (30) refer to

the different chemical factors and nutrients influencing the

evolution. Assuming no drift and constant diffusion

coefficients Qi, they satisfy

›ui

›t
¼

Qi

r 2

›

›r
r 2 ›ui

›r

� �
þ ~Giðu1; . . .; unÞ

2 ~Diðu1; . . .; unÞui; i ¼ 1; . . .;M: ð31Þ

Once the generation and decay terms ~Gi; ~Di in

Eq. (31) are specified, which however is still a crucial

and difficult step and one which must be done on the basis

of phenomenological observations, the system of

equations in Eq. (31), supplemented by proper initial

and boundary conditions, can be solved. This information

can be substituted back in Eq. (30) to determine how the

tumor grows.

In fact, the border of the tumor R(t) moves with the

tumor cells lying at its surface, i.e. with velocity

dR

dt
ðtÞ ¼ vT ðRðtÞÞ; ð32Þ

so that the mathematical problem writes as a free

boundary problem.

As already stated in this case it is not necessary to

specify anything else on the velocity, which is obtained

integrating Eq. (30). In particular, it can be used to

determine how the tumor grows. In fact, integrating

Eq. (30) and evaluating it in R(t) gives

R2ðtÞ
dR

dt
ðtÞ¼

1

3

dR3

dt
ðtÞ

¼

ðRðtÞ

0

1

fT

GT ðu1ðr;tÞ;...;unðr;tÞÞ

	

2DT ðu1ðr;tÞ;...;unðr;tÞÞ



r 2 dr; ð33Þ
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which corresponds to a mass balance over the entire tumor

volume T(t)

rfT

d

dt

ð
TðtÞ

dV ¼

ð
TðtÞ

GT dV; ð34Þ

where, of course, the integral on the left hand side is the

volume of the tumor 4pR 3(t)/3.

1D Problems for Constrained Mixtures

As already stated the tumor is not formed by a single type

of cells. So there is the need to introduce more populations

and then to describe how they move. Even if not explicitly

stated several papers dealing with more cell populations

work under the assumptions that all constituents move

with the same velocity

vj ¼ v; j ¼ 1; . . .;P: ð35Þ

In the multiphase literature this is called a constrained

mixture assumption and implies that there is no relative

movement among the constituents. In order to relax it, one

can assume that there is a given relation among the

velocities

vj ¼ ajv; j ¼ 1; . . .;P ð36Þ

with aj [ [0,1] given and not necessarily all equal to one.

For instance, some of the constituents may be fixed (i.e.

aj ¼ 0) and the others may move with a common velocity

v (i.e. aj ¼ 1).

The constrained mixture assumption is very useful in

one-dimensional problems when joined with the satu-

ration assumption (23) or (24). In fact it allows one to

write, e.g. in spherical coordinates,

›fj

›t
þ

1

r 2

›

›r
ðr 2fjajvÞ ¼

Gj

r
; j ¼ 1; . . .;P; ð37Þ

where Gj depends on all fj and ui.

As before, summing all the equations one can rewrite

Eq. (25) as

›

›r
r 2v
XP

j¼1

ajfj

 !
¼

r 2

r

XP

j¼1

Gj; ð38Þ

which can be integrated to explicitly obtain the velocity

v ¼
1

rr 2
PP

j¼1 ajfj

ðRðtÞ

0

XP

j¼1

Gjr
2 dr:

An example of this type of model is given in the works

of Bertuzzi and Gandolfi (2000) and Bertuzzi et al. (2002;

2003), which are aimed at the description of the evolution

of tumor cords and possibly of the response to an anti-

cancer treatment. For instance, Bertuzzi et al. (2003)

considered a system with two cell populations, viable

and dead tumor cells, with volume ratios fT and fD,

respectively, and two chemicals, oxygen and a drug, with

concentrations uN and uC, respectively, and worked in

cylindrical symmetry. Their model then becomes

›fT

›t
þ

1

r

›

›r
ðrfT vÞ¼gðuNÞfT 2 ½dðuN ; tÞþdCðuC;uNÞ�fT ;

›fD

›t
þ

1

r

›

›r
ðrfDvÞ¼ ½dðuN ;tÞþdCðuC;uNÞ�fT 2dDfD;

0¼72uN 2 f ðuNÞfT ;

›uC

›t
¼

Q

r

›

›r
r
›uC

›r

� �
2wðuN ;uCÞfT 2luC;

ð39Þ

where g is the growth coefficient, which depends on the

amount of nutrient, d is the rate of apoptosis and dC is that

related to drug injection, f and w refer, respectively, to

nutrient and drug absorption by viable cells, and l refers

to drug wash-out.

Linking the volume ratio with the saturation assumption

(24), Eq. (39) is a system of 4 equations in 4 unknowns,

which can be solved once the gain and loss terms are

specified.

A similar approach is also used by Ward and King

(1997; 1998; 1999; 2003). In particular, in the first paper

Ward and King considered the evolution of living and dead

cells, while in the second they added the necrotic material

as a macromolecule produced by the dead cells. In the

third paper they considered three “cell” populations

(living cells, re-usable material deriving from cell death

and waste products) and nutrient diffusion. Finally, in the

last paper they added the effect of a generic drug.

One Constituent on a Rigid Substratum and

Darcy’s-type Closure

We will now consider the simplest example involving

force balance, showing how Darcy’s-type closure can be

obtained as a particular case. Assume then that a single

population of cells moves in a rigid substratum, e.g. the

extracellular matrix. Neglecting the influence of water, it

is possible to reduce the model (21), (28) to

r
›fT

›t
þ 7 · ðfT vT Þ

	 

¼ GT ; ð40Þ

and

7 · TT þ fT f T 2 MT0ðfT ÞvT ¼ 0; ð41Þ

which still need to be joined with the reaction–diffusion

equations (22) with v‘ ¼ 0. It need to be observed that

in Eq. (41) the drag force acting on the tumor cell

population depends on the volume ratio, in the easiest case

it is proportional to it.

Of course, the model above requires the specification of

the constitutive equations for the stress. As already

mentioned in the “Multicellular models” section, the

easiest possibility is to model the ensemble of cells

moving in the rigid extracellular matrix as an elastic fluid
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TT ¼ 2S(fT)I, where S is positive in compression.

One can then explicitly write

vT ¼ 2Kð7S2 fT f T Þ; ð42Þ

where K ¼ 1/MT 0.

If f T ¼ 0 it is possible to recognize the closure which

is used in several papers (see for instance, McElwain

and Pettet, 1993; Byrne and Chaplain, 1996; Byrne and

Chaplain, 1997; De Angelis and Preziosi, 2000) and

named Darcy’s law

vT ¼ 2K7S: ð43Þ

In most of the papers mentioned above the term S is

called pressure, but should not be confused with the

pressure of the extracellular liquid (i.e. the interstitial

pressure). It describes the isotropic response of the

multicell spheroid to compression and tends to drive

tumor cells towards the regions with lower stresses.

For this reason, Gurtin and McCamy (1977) and

Bertsch et al. (1985) called this behavior “avoiding

crowd mechanism”.

It is possible to perform a further step by substituting vT

back in Eq. (40):

›fT

›t
þ 7 ·

fT

MT0

7 · TT þ fT f T

� �	 

¼

GT

r
; ð44Þ

while using Eq. (42) yields

›fT

›t
¼ 7 · ½KfT ð7S2 fT f T Þ� þ

GT

r
: ð45Þ

It can be noticed that the proper boundary condition for

Eqs. (40) and (41) or for Eq. (45) involves the stress on the

tumor boundary which moves with velocity vT. Therefore,

the model can be used for describing those phenomena in

which it is important to consider the role of stress, the

interfacing with external tissues, and so on.

This process can be generalized to more populations,

as documented in De Angelis and Preziosi (2000) and

Chaplain and Preziosi (2004). The latter proposes a model

that explains how the smallest misperception of the level

of stress and compression of the surrounding tissue may

cause hyperplasia and dysplasia and eventually the

complete replacement of the normal cell population and

extracellular matrix with the abnormal ones. The former

paper proposed a model to describe tumor growth from the

avascular stage to the vascular one through the angiogenic

process without distinguishing the different phases but

letting their identification stem naturally from the

evolution. The paper focused on the fact that the tumor

mass is growing in an evolving environment. Messages are

exchanged between the cells living inside and outside

the tumors. Therefore, the environment reacts to the

presence of the tumor and vice versa.

In this respect, some of the state variables more strictly

referred to the evolution of the tumor are defined only

within the tumor, e.g. the tumor cell densities, others

more strictly referred to the evolution of the environment

are defined both inside and outside the tumor. For

instance, chemical factors produced by the tumor, i.e. in

T(t), can diffuse in the outer environment and in some

cases, e.g. VEGF, their work is out there. On the other

hand, capillaries initially exist only outside the tumor, i.e.

in the outer environment, but because of angiogenesis

they proliferate and can penetrate the tumor.

The model presented in this section is a development of

that presented in De Angelis and Preziosi (2000), taking

into account that VEGF generation is stimulated in

hypoxia and it is uptaken by endothelial cells.

The free-boundary problem describing the evolution of

viable and dead tumor cells (fT and fD), capillaries (fC),

nutrients (uN), and tumor angiogenic factors (uA) becomes

in D :
›uA

›t
¼kA7

2uAþgAð~uNfT 2uNÞþfT

2 ½dAþd0AðfC þ f̂CÞ�uA;

›fC

›t
þwC7 ·ðfC7uAÞ¼kC7

2fC þgCuAð �fC 2fCÞ

þðfC þ f̂CÞ2dCfC;

and

in TðtÞ :
›fT

›t
¼wT7·ðfT7fÞþ

gT

1
HðuN2 ~uNfT ÞuNfT

2dT Hð�uNfT2uNÞfT ;

›fD

›t
¼wD7·ðfD7fÞþdT Hð�uNfT2uNÞfT2dDfD;

›uN

›t
¼7·½ðkEþkNðfCþf̂CÞÞ7uN�2dNfT uN ;

while the boundary and initial conditions are given as

follows

interface evolution : n ·
dxT

dt
¼ 2wT n ·7fðxT Þ;

boundary conditions on ›TðtÞ: fT ¼ �f2 fC 2 f̂C;

fD ¼ 0;

uN ¼ 1þ bðfC þ f̂CÞ;

boundary conditions on ›D : uA ¼ fC ¼ 0;

initial conditions in Tðt ¼ 0Þ : fT ¼ �f; fD ¼ 0;

uN ¼ ~uN ;

initial conditions in D : uA ¼ fC ¼ 0;

where

fþ ¼
f if f . 0;

0 otherwise:

(

is the positive part of f and H is the Heavyside fuction.
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The dimensionless form of the free-boundary

problem depends on the following dimensionless

numbers

d0
*
A ¼

d 0
A
�f

gT

; d*
N ¼

dN
�f

gT

; d*
i ¼

di

gT

; g*
A ¼

gA1 �f

gT

;

g*
C ¼

gCgA
�f2

g2
T

; k*
A ¼

kAdN
�f

kEgT

; k*
N ¼

kN
�f

kE

;

k*
C ¼

kCdN
�f

kEgT

; a* ¼
wD

wT

; b* ¼
b �f

1
;

w*
C ¼

wCdNgA
�f2

kEg
2
T

; w*
T ¼

wTdN
�f2

kEgT

;

~u*
N ¼

�f~uN

1
; �u*

N ¼
�f�uN

1
; t* ¼ gT t;

where i ¼ A;C;D; T:
The formation of a necrotic core and a boundary

layer of coexisting living and dead tumor cells is

evident in Fig. 6 (in Fig. 6a the lines corre-

sponding to the nutrient density and live cell density

overlap).

Tumor cells produce TAF that diffuses in the

environment. At the stage represented in Fig. 6a

endothelial cells (the thick horizontal segment to the left

and the right of the tumor) have been barely stimulated

and the nutrient reaching the tumor is only the one

diffusing through the environment.

As the pre-existing capillary network is reached, new

capillary sprouts are formed starting from the pre-existing

network and rapidly tending toward the tumor surface

(Fig. 6b), where they duplicate even further for the

presence of more TAF (Fig. 6c). This brings more nutrient,

so that the layer of living cells thickens and the tumor

growth accelerates (this can be noticed by comparing the

locations of the tumor surface.)

It can be noticed that some capillary sprouts penetrate

the tumor, or more precisely, the tumor grows and includes

them. Eventually, the tumor reaches the pre-existing

network and grows over it (Fig. 7b). In this last figure the

amount of nutrient at the surface is about 2.5 and is not

shown in the graph.

In Figs. 8 and 9 the simulation is developed having in

mind possible medical actions and aims at focusing on

what happens when angiostatins are injected so that the

endothelial cells are no longer sensitive to the presence of

TAF and do not feel stimulated to undergo mitosis.

Injection is simulated at t* ¼ 28 corresponding to Fig. 8a.

In the model growth of new capillary sprouts is inhibited

by putting g*
C ¼ 0: This brings up a progressive death of

capillaries as the endothelial cells dying of natural death

are no longer replaced. This well-known process is similar

to what happens in wound healing. New capillaries form

because there is a stimulus of doing so, but as the wound is

cured, the stimulus ceases and the new capillaries are

destroyed leaving unchanged the pre-existing network

they originated from.

In this case, the outer rim becomes less proliferative

while more and more cells start dying. This brings

FIGURE 6 Angiogenic process. The plots present the evolution of the densities along the diameter of the tumor at t* ¼ 10; 16; 22: Full lines refer to
tumor cells (black to dead and gray to live ones), the dashed line to nutrient density (black) and TAF density (gray). The dark gray line defined both inside
and outside the tumor refer to the new capillaries. The location of the old capillaries is given by the short segments on the axis. The simulation uses

the following values of the parameters d0*A ¼ 0; d*
N ¼ 5; d*

A ¼ 0:05; d*
C ¼ 0:5; d*

D ¼ 0:005; d*
T ¼ 2:5; g*

A ¼ 1; g*
C ¼ 7:5; k*

A ¼ 50; k*
N ¼ 1; k*

C ¼ 5;

w*
C ¼ 75; w*

T ¼ 1000; a* ¼ 0.5, b* ¼ 5, ~u*
N ¼ 0:95; �u*

N ¼ 0:9:
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a rapid deceleration of tumor growth. As the necrotic

core is much larger than the one present in the

avascular case, at a certain point disintegration of dead

cells in waste products and production of new cells in

the outer rim are unbalanced causing a regression in

size of the tumor (Fig. 9b). When the capillary network

is destroyed, the tumor goes back to the avascular state

as nutrient only diffuses through the environment. The

size of the multicell spheroid will decrease on and

eventually reach the limit radius characterized by the

balance between proliferation in the outer rim and

disintegration of dead cells.

Before concluding the section it should be mentioned

that in the earliest papers using the method presented in

this section, e.g. McElwain and Pettet (1993), Byrne and

Chaplain (1996), the assumption of constant volume ratio

for a single constituent is used together with a Darcy’s-

type closure. In this case there is no relation between

S and fT, i.e. between compression and stress, and

Eq. (43) is rather a potential flow assumption on the

velocity field.

In this case one can write the following equation for the

“potential” S

7 · ½Kð7S2 fT f T Þ� þ
GT

fT

2 DT ¼ 0: ð46Þ

Of course, dropping the stress–compression relation has

the advantage of simplifying the model, but, unfortu-

nately, does not deal with those problems in which the

stress plays an important role.

The above simulations refer to problems in one space

dimensions. Various techniques have been developed

for problems in more than one space dimension (see

Valenciano and Chaplain, 2003; 2004), which may be

technically generalized to deal with the above problems.

Porous Media Models

The last few years saw the development of a multiphase

approach to describe tumor growth. These papers (Please

et al., 1999; Breward et al., 2001; 2002; Landman and

FIGURE 7 Vascularized tumor. The plots present the evolution of the previous simulation at longer times (t* ¼ 28, 31). Notation as in Fig. 6.

FIGURE 8 Regression of capillary network at t* ¼ 30, 40 due to the inhibition of duplication of endothelial cells. Notation as in Fig. 6.
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Please, 2001; Ambrosi and Preziosi, 2002; Byrne et al.,

2003; Preziosi and Graziano, 2003; Byrne and Preziosi,

2004) considered the case of a single cell population living

in an extracellular fluid with several chemicals diluted in it.

In this case, one can write Eq. (21) and (27) for the tumor

cells ( j ¼ T) and for the extracellular liquid ð j ¼ ‘Þ:
If the mixture is closed, then by looking at mass and

momentum balances for the whole mixture, the interface

terms have to satisfy the following conditions related

to global mass and momentum balance

GT þ G‘ ¼ 0; ð47Þ

ms
T þ GTvT þ ms

‘ þ G‘v‘ ¼ 0; ð48Þ

which imply
G‘ ¼ 2GT ; ð49Þ

ms
T ¼ 2ms

‘ þ GT ðv‘ 2 vT Þ; ð50Þ

The composite velocity equation then becomes

7 · vc ¼ 7 · ðfT vT þ f‘v‘Þ ¼ 0: ð51Þ

Adding up the two momentum equations (27), after

some algebra (see Farina and Preziosi, 2000 for more

details) gives the momentum equation for the mixture

composed by the multicellular spheroid and the

extracellular liquid. If the densities of the constituents

are equal the composite velocity is equal to the mass

average velocity and the momentum equation for the

mixture then simplifies to

r
›c

›t
þ vc ·7vc

� �
¼ 7 · Tm þ fT f T þ f‘f‘; ð52Þ

where Tm is the stress tensor of the mixture.

One can then observe that as most biological tissues

the ensemble of cells forming a multicell spheroid can

be considered as a porous medium filled by the

extracellular liquid. Therefore, the flow through a tumor

can be described using Darcy’s law

f‘ðv‘ 2 vT Þ ¼ 2
K

m
ð7P 2 f‘Þ; ð53Þ

which can be deduced from Eq. (27) under suitable

assumptions (see Bowen, 1976; Preziosi and Farina,

2001), also in the case of a growing porous material

(in this case the permeability tensor includes a

correction term related to growth).

Neglecting inertial terms and assuming the constitu-

tive equation

Tm ¼ 2½P þ SðfT Þ�I; ð54Þ

with S positive in compression the momentum

equations for the mixture writes

7P ¼ 2S0ðfT Þ7fT þ fT f T þ f‘f‘; ð55Þ

where S0 ¼ dS/dfT.

On the other hand, from Eqs. (52) and (55) one has

v‘ ¼ vT 2
K

mð1 2 fT Þ
ð7P 2 f‘Þ

¼ vT þ
K

mð1 2 fT Þ
½S0ðfT Þ7fT þ fT ðf‘ 2 f T Þ�;

ð56Þ

which can be substituted back in Eq. (51) to give

7 · vT þ
K

m
½S0ðfT Þ7fT þ fT ðf‘ 2 f T Þ�

� �
¼ 0: ð57Þ

The model for a multicell spheroid as a growing

poroelastic medium can then be written as follows

›fT

›t
þ 7 · ðfT vT Þ ¼

GT

r
;

7 · vT þ 7 ·
KðfT Þ

m
½S0ðfT Þ7fT þ fT ðf‘ 2 f T Þ�

� �
¼ 0;

7P ¼ 2S0ðfT Þ7fT þ fT f T þ f‘f‘;

›ui

›t
þ 7 · ðuiv‘Þ ¼ 7 · ðQi7uiÞ þ ~Gi 2 ~Diui

ð58Þ

It is important to remark at this point that in the one-

dimensional case Eq. (51) can be considerably simplified as

FIGURE 9 Regression of the tumor occurring at t* ¼ 60, 100 due to decrease of the amount of nutrient available after the regression of the capillary
network. Notation as in Fig. 6.
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it can be integrated to give (in the Cartesian case)

fT vT þ ð1 2 fT Þv‘ ¼ C:st: ð59Þ

For symmetry reasons in the center of the tumor both

liquid and cell velocity vanish, so the integration

constant is zero. This allows one to explicitly write

v‘ ¼ 2
fT

1 2 fT

vT ; ð60Þ

which can be substituted back in the modified Darcy’s

law (53) to get (neglecting body forces)

vT ¼
K

m

›P

›x
; ð61Þ

or

vT ¼ 2
K

m

›S

›x
: ð62Þ

Thus, extracellular liquid and tumor cells move in

opposite directions, the former down the liquid pressure

gradient (and up the stress gradients), the latter up the

liquid pressure gradients (and down the stress gradients).

However, we remark that this reasoning cannot be

generalized to the three-dimensional case, because

Eq. (55) does not imply the vector version of Eq. (62)

which is, then, an assumption that can and need be

justified on a different theoretical basis, as explained in the

“1D problems for constrained mixtures” section.

The poroelastic biphasic model (58) is certainly the

simplest among all conceivable multiphase models and

can be developed along several directions, for instance,

including more populations. Some initial tri-phasic

models have been developed considering the extracellular

matrix either assuming that it is stiff (Ambrosi and

Preziosi, 2002; Preziosi and Graziano, 2003), or allowing

some deformability to the extracellular matrix in one-

dimensional problems (Jackson and Byrne, 2000). Finally,

in Breward et al. (2003) tumor cells, extracellular material

and blood vessels are considered, assuming that the

pressure of the blood vessel is known.

As an example we will briefly consider one of the

models proposed in Ambrosi and Preziosi (2002) to model

the tumor and the extracellular matrix as a deformable

porous material permeated by the extracellular liquid in

which nutrients with concentration uN promote growth and

stress inhibits it. The extracellular matrix is rigid keeping

a constant volume ratio fe.

The model writes as

›fT

›t
¼ 7 · ½KT ð1 2 feÞfT7P þ KTfTS

0
T7fT � þ

GT

r
;

7 · KT ð1 2 feÞ
2 þ

K‘

m‘

� �
7P

	

þ KT ð1 2 feÞS
0
T7fT



¼ 0 ð63Þ

together with the diffusion equation for the nutrients.

More specifically, the following hypothesis are used for

the functions ST and GT

1. Cells in regions with a very low volume ratio fT , f0

experience no forces from the other cells.

2. Cells in regions with a high volume ratio fT . f̄

experience a repulsive force growing to infinity when

fT tends to fM.

3. For intermediate values of the volume ratio cells

experience an attractive force which balances the

repulsive forces when fT ¼ f̄.

4. Proliferation occurs if the nutrient concentration

exceeds the threshold value ūN.

5. Cell proliferation is strongly affected by the presence of

other cells which exert stress on the membrane of the

replicating cell. In particular, the proliferation rate

approaches zero as the stress grows.

A stress–volume ratio relation with the characteristics

1–3 is

SðfT Þ ¼ S0

ðfT 2 f0Þ
a
þðfT 2 �fÞ

ðfM 2 fT Þ
b

ð64Þ

where f0 , f̄ , fM, while the following growth term is

considered satisfies the conditions 4 and 5

GT

r
¼

gfT

1 þ sSðfT Þ
ðuN 2 �uNÞþ 2 dTfT ; ð65Þ

where the first term represents the rate of cell proliferation

and the second one the rate of apoptosis.

The boundary condition for the volume ratio is

obtained through a condition imposed on the stress

acting on the multicellular spheroid. If a stress Sext . 0

is applied to the tumor, the corresponding volume

ratio will be fext ¼ S
21
ðSextÞ. In the stress-free case,

fT ¼ �f.

The dimensionless form of the free-boundary problem

related to Eq. (63) (the boundary moves with the

velocity of tumor cells) depends on the following

dimensionless groups

D* ¼
KTS0

Q
; g* ¼

gT next

dN

; d* ¼
dT

dN

;

s * ¼ sS0; �u*
N ¼

�uN

next

; K* ¼
K

m‘KT

:

ð66Þ

It can be noted that in practice g* ; d* ! D* ! 1 and

K* ! 1: Therefore, diffusion dominates convection as a

transport mechanism for the nutrient. On the other hand,

cell duplication/apoptosis is a much slower process than

cell motion.

Three phases of growth can be recognized during the

evolution. In Fig. 10a, the tumor is still small. All cells

duplicate because the level of nutrient is everywhere larger

than uN. The maximum value of the volume ratio, and

therefore of the stress, is in the center of the tumor

(clearer region). Tumor cells move from the center
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to the border of the tumor, while the liquid moves toward

the center.

As the tumor grows the maximum compression moves

from the center toward the border. The tumor can then be

divided into three regions:

. a central one where the volume ratio of tumor cells

is below the stress-free value f̄ with a minimum in

the center;

. an intermediate region where the volume ratio of tumor

cells is above the stress-free value and increases till it

reaches a maximum;

. a border region in which the volume ratio of tumor

cells decreases.

In the first two regions tumor cells move towards the

center, while in the third one they move toward the boundary,

pushing forward the border of the tumor. The velocity of the

fluid and of the cells vanishes where the volume ratio

reaches its maximum. The last two regions can be identified

FIGURE 10 Volume ratio of a multicell spheroid, extracellular liquid velocity (darker arrows) and tumor cell velocity (lighter arrows) at t* ¼ 500
(a) and at the stationary configuration (b). Darker regions correspond to lower volume ratios, lighter regions to higher volume ratios. The initial
dimensionless radius of the tumor is 0.1 and the value of the parameters are D* ¼ k ¼ 0.1, g* ¼ 0.01, d* ¼ 0.001, s * ¼ 0, u*

N ¼ 0:5; a ¼ 2, b ¼ 1/2,
f0 ¼ 1/3, �f ¼ 0:8; fM ¼ 1: The scales on the right of the plots refer to the difference fT 2 �f:
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with the proliferating region characterized by cells

moving away from the point of maximum and organic

liquid sucked in.

In the stationary configuration the maximum volume

ratio is achieved at the border, which does not move any

more (Fig. 10b). Tumor cells, which are created in the

outer region, move towards the center where they do not

find enough nutrient and die. On the other hand, the

organic liquid moves toward the border where it is used by

the growing cells. This is in agreement with the

phenomenon of internalization of cells described in

Dorie et al. (1982; 1986).

Figure 11 shows how the stationary dimension of the

tumor decreases as the load Sext applied to the border

increases. For s * ¼ 0 the radius of the tumor moderately

decreases due to mechanical compression. For higher

values of s * the decrease is much more pronounced

because of the decreased proliferation in Eq. (65) and

there is a threshold value of the applied load above which

the tumor disappears because of the applied load. From the

application viewpoint, this suggests that if there were a

method to make tumor cells more sensible to mechanical

compression, e.g. making its mitotic or apoptotic rate

depend on the stress, this could be used to control the size

of the tumor. Therefore, the models in Ambrosi

and Preziosi (2002) and Byrne and Preziosi (2004)

show the existence of a stress-related limit radius in

addition to the well-known limit radius related to the

availability of nutrient.

An aspect to recall is that when growing in an organic

tissue the stress acting on the tumor is due to the

compression of the external tissue. Therefore, the limit

tumor dimension depends on the tissue the tumor is

growing into, the ability of the tumor to degrade it and

the ability of the external tissue to stand stress and replace

degraded cells.

THERAPEUTICAL ACTIONS

An interesting field of application of mathematics to

medicine is the modeling of therapeutical actions related

both to specific models of tumor dynamics in its

interaction with the immune system and to specific

models related to the tumor progression.

A large variety of therapeutical actions are known in the

field of medicine. A brief account is given in this review

with reference to three specific actions:

. Modeling of the actions applied by proteins to activate

the immune defense (Forni et al., 2001; Lollini and

Forni, 2002), thus preventing the ability of tumor cells

to inhibit immune cells;

. Control of angiogenesis phenomena, that is the

formation of new blood vessels from pre-existing

vasculature (Folkman, 2001; Folkman and Kerbel,

2002) thus preventing tumor growth by limiting the

feeding ability from blood vessels.

FIGURE 11 Equilibrium size of the tumor L* ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
dN=K

p� �
L as a function of the external load S

*
ext for g* ¼ 0.01, d* ¼ 0.001 and s * ¼ 0 (full),

s * ¼ 4 (dashed) and s * ¼ 8 (dotted).
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. Drug transport and diffusion through the tumor

interstitium.

The “Phenomenological description of therapeutical

actions” section will provide an overview on

the phenomenology of these therapeutical actions, while

the “Modeling therapeutical actions: kinetic framework”

and “Modeling therapeutical actions: macroscopic frame-

work” sections will refer mainly to the mathematical

modeling.

Phenomenological Description of Therapeutical

Actions

There is experimental evidence that immunotherapy

has the potential to treat many tumor types (Dredge

et al., 2002). Immunotherapy may include both active

mechanisms and passive mechanisms (adoptive cancer

immunotherapy) because both of them have the ability to

treat different tumor types. The immunotherapy approach

involves the activation of specific tumor antigen combined

with incorporation of an immunological adjuvant into a

vaccine regime. In detail, cancer vaccines involve the

induction of an active immune response that may lead to

the subsequent destruction of tumor tissue. On the other

hand, as reported in Nani and Freedman (2000), an

adoptive cancer immunotherapy involves the use of

tumor-killing lymphocytes and lymphokines engaging in a

search and destroy anti-cancer activity. Various types of

adjuvant are used, for example cellular components to

proteins and cytokines. Following Forni et al. (2001),

tumor vaccine and cytokine therapy are two methods of

promoting an anticancer immune response and these

techniques are highly effective when combined. In cancer

prevention using cancer vaccines the target is not the

tumor mass but the potential risk of cancer (the so-called

primary prevention), a preneoplastic lesion (the so-called

secondary prevention) or a small number of isolated

neoplastic cells remaining after a temporarily successful

therapeutical treatment (the tertiary prevention). More-

over, vaccination after the removal of a tumor mass can

stop the formation of minimal residual disease or

metastatic diffusion. The central problem of this

therapeutical approach is to find an equilibrium between

tumor prevention efficacy and the risk of inducing

autoimmunity associated with the vaccine administration.

The importance of the risk increases in patients with

advanced cancer with respect to the case of preneoplastic

disease. The state of the art at the moment is that the

experimental data related to experiments with mouse

models suggest that using vaccines to prevent tumor is a

plausible prospect and vaccination can be considered as an

effective new prospect in the prevention of carcinogenesis

and the inhibition of established preneoplastic lesions.

Referring to the second therapy, e.g. the control of

angiogenesis phenomena, tumor progression and growth

cannot occur without angiogenesis, which supplies the

necessary oxygen and nutrients to the growing tumor.

As described in Kalluri (2003), blood vessels are

composed by basement membrane, pericytes and vascular

endothelial cells. As reported in Fahmi et al. (2003),

angiogenesis is a multistep process involving degradation

of endothelial basement membrane (a specialized form of

extracellular matrix also known as the basal lamina),

endothelial cell migration, proliferation, canalization,

branching and maturation of neovessels. Endothelial cells

usually have an average turnover time of 100 days and are

the most quiescent and genetically stable cells of the body,

while, for example, the bone marrow cells show a turnover

time of 5 days. However, during angiogenesis, the

vascular endothelial cells proliferate as rapidly as bone

marrow cells. This increase in proliferation is associated

with degradation of the basement membrane, which starts

to sprout pre-existing microvessels invading the extra-

cellular matrix. The vessels are now able to form tubes and

loops capable of conducting blood flow. Following

Folkman and Kerbel (2002) and Benjamin and Bergers

(2003), cancer cells begin to promote the so-called

“angiogenic switch” early in tumorogenesis.

Various angiogenesis inhibitors have been developed to

target endothelial cells and stop the process. Still referring

to Folkman and Kerbel (2002), a new class of drugs is

represented by two type of angiogenic inhibitors, direct

and indirect, and they are extremely important in cases for

which the general rules involving conventional chemo-

therapy might not apply. Direct angiogenesis inhibitors

(angiostatin and others) prevent vascular endothelial cells

from proliferating and migrating, while indirect

angiogenesis inhibitors can prevent the expression of the

activity of one of the tumor proteins which drive the

angiogenic switch. Another feature of the angiogenesis

process is the evident abnormal vasculature as a hallmark

of a solid tumor (Jain, 2003). Tumor vessels are organized

in a chaotic fashion and show a pattern very different from

the normal vascular networks. As described earlier, the

normalization of this abnormal vasculature can facilitate

drug delivery to tumors and it represents another

important goal in the antiangiogenic therapy.

Referring to the third therapy, e.g. the drug transport

and diffusion through the tumor interstitium, this is the first

step of any chemotherapeutical action. After perfusion the

drug has to diffuse in the tissue and reach the tumor. Thus,

one of the most important issues in modeling cancer

therapies is to understand the transport mechanisms in the

tumor interstitium as it has important implications in

the development of strategies to improve drug penetration

in tumor masses.

It is clear that, since the selective tumor cell kill depends

on the concentration-time history of a drug, an accurate

modeling of the evolution of drug concentration in the

interstitial space of a tumor would be extremely useful in

developing optimal dose schedules of anticancer agents.

Both convection and diffusion in the tumor mass are

influenced by the size of the molecules forming the mass,

which varies considerably. While low-molecular-weight

drugs move almost freely in the extracellular space,
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high-molecular-weight drugs have more difficulties both

in perfusing through the capillary walls and in diffusing in

the porous structure of the tumor. Of course, the success of

the use of a macromolecule depends on how well it

penetrates the tumor and therefore understanding the

transport mechanisms in a tumor is becoming more and

more important as nowadays a wide range of therapies use

high-molecular-weight agents such as proteins, mono-

clonal antibodies, gene vectors, viruses, liposomes or even

engineered macrophages. It is then clear how an

appropriate mathematical modeling of the physiochemical

processes involved in drug diffusion may be helpful in

proposing and designing novel strategies to improve the

delivery of macromolecular agents to solid tumors.

In normal tissues, the dominant mechanism of transport

for large molecules is convection due to fluid flow driven

by interstitial fluid pressure gradients from the vascular to

the lymphatic system. However, most tumors do not have

anatomically well-defined lymphatic vessels, which

reduces interstitial fluid flow. Then diffusion becomes

the relevant mechanism of transport for macromolecules.

On the other hand, the vascular system is sometimes leaky,

which favors the extravasation of bigger drugs. The

combination of reduced interstitial fluid flow and the slow

diffusion rate of macromolecules in the tumor interstitium

are possible causes of the therapeutic inefficiency of large

molecular drugs (see for instance, the works of Jain,

1987a,b; 1994; 1996).

The sections below will be devoted to a review of the

mathematical models describing the main features of each

of the three therapeutical actions described above. One of

the main reasons for working at a theoretical level in this

context is to obtain instruments (the mathematical models

and their outputs) able to help in planning the future

research.

Modeling Therapeutical Actions: Kinetic Framework

Methods of mathematical kinetic theory described in the

“Modeling by generalized kinetic cellular theory” section

can be applied to model both the actions undertaken by

proteins to activate the immune defense, and the control of

angiogenesis in contrasting the growth of tumor cells by

preventing the feeding actions of endothelial cells.

The research activity in this field is only at a preliminary

stage. Referring to De Angelis and Jabin (2004), the

general idea involves including the therapeutical actions

in the framework stated in De Angelis and Mesin (2001)

and De Angelis and Jabin (2003). Therapeutical actions

are described by distribution functions over the variable

related to the microscopic internal state of the individuals.

The biological state has the general meaning of

therapeutical ability for the particles of the therapeutical

host and it needs to be specialized with reference to the

specific medical action which is modeled. In the cases

which have been considered, it can be either the control of

the activation ability of the immune system, or the control

of the feeding ability of the environmental cells.

The model consists of an integro-differential system of

evolution equations over time and the biological state

of the cells, for all the first distribution functions related to

each population.

The initial value problem can be posed, and an

asymptotic analysis carried out, showing that the evolution

of the system may end up either with the blow-up of the

host or with the suppression of the host, depending on the

initial conditions and on the parameters of the system. It

can also be proved that, assuming suitable initial

conditions for each of the therapies, it is always possible

to have the suppression of the tumor, and this result is

independent of the presence of the other therapy. Of

course, this is a pure mathematical result which

unfortunately does not always correspond to realistic

conditions of a therapeutical procedure.

Modeling Therapeutical Actions: Macroscopic

Framework

Most of the papers dealing with macroscopic models of

cancer therapies focused either on anti-angiogenic

strategies or on the drug transport to the tumor.

In the “1D problems for constrained mixtures” and

“One constituent on a rigid substratum and Darcy’s-type

closure” sections, we already presented two models

dealing with therapeutical actions. In particular, the model

by De Angelis and Preziosi (2000) depicted the action of a

generic anti-angiogenic drug with the regression of the

capillary network and then of the tumor (Figs. 6–9). Other

papers dealing with the effect of anti-angiogenic drugs are

those by Orme and Chaplain (1997), Jackson and Byrne

(2000), Levine et al. (2001), Jackson (2002) and Planck

and Sleeman (2003). Actually the last three papers also

develop in a multiscale framework, keeping in mind the

need of passing from a microscopic description to a

macroscopic on through random walk techniques or, vice

versa, through discretization procedures, which are better

suited for a cellular description.

It is interesting to observe that the importance of using

mathematical models to simulate the action of a drug is

also understood by research groups in medicine, like

Hahnfeldt et al. (1999), who used a simplified model to

optimize the schedule of a specific antiangiogenic drugs

(angiostatin, endostatin and TNP470).

Chaplain and Anderson (2003) instead used a

discretization procedure of a macroscopic model to build

a vascular tree and then examined the flow of a generic

drug in the vascular tree. In particular, they focused on the

dependence of the quantity of drug reaching the tumor

from the type of vasculature and the type of tumor that

stimulated angiogenesis. On the other hand the model

presented at the end of the “1D problems for constrained

mixtures” section (Bertuzzi et al., 2003) more closely

referred to the effect of a drug perfusing through a

capillary on a tumor cord surrounding the capillary.

As explained by Netti and Jain (2003), there are two

interlaced aspects one has to be aware of in modeling this
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process: the influence of the size of the drug and the

mechanisms driving the transport and the diffusion of the

drug. Besides the capillary-lymphatic exchange, inter-

stitial fluid flow is influenced by tissue deformation.

In fact, as already discussed in the “Porous media models”

section, tumors can be modeled as poroelastic materials

which are deformable so that fluid flow couples with the

mechanics of the tissue. The effect of this coupling on

drug delivery has been studied by Boucher and Jain (1992)

and Netti et al. (1995; 1997; 2000).

Form the point of view of modeling Owen and Sherratt

(1998; 1999) studied the penetration of macrophages

toward the hypoxic regions of tumors. They assumed that

their motion was mainly due to free diffusion and then

their model consists of a system of reaction–diffusion

equations. In particular, they show how the presence of

macrophages can induce heterogeneities and spatial

patterning within growing tumors. Finally, Ward and

King (2003), working on the framework described in the

“1D problems for constrained mixtures” section, investi-

gated the effects of penetration of a small drug in a

multicell spheroid.

ON THE INTERACTIONS BETWEEN

MATHEMATICS AND BIOLOGY AND
PERSPECTIVES

The critical analysis proposed in this section rather than

being related to general topics will be focused on the

analysis of the contribute that an interdisciplinary

approach can give to the development of a mathematical

theory for biological systems. Certainly the above

perspective is one of the most fascinating and challenging

targets of the research activity which will be developed

in this century. The scientific community appears

convinced that a great deal of research efforts will be

devoted to this target.

The reasoning starts from the idea that a mathematical

description is effective if related to the observation scale

which is needed for the correct interpretation of a certain

biological system based not only on experiments, but also

on a theoretical approach. Theoretical biology is

essentially founded on theories developed at the cellular

and subcellular scale, even when the system shows

macroscopic phenomena.

Referring specifically to the system we are dealing with,

the onset is related to DNA corruption which modify

various cellular activities. Later cells condense into a solid

form which interacts with the outer environment by means

of various carriers: chemical factors, blood capillary

sprouts, and so on. However, even in this macroscopic

aggregation, the overall evolution is organized by events at

the microscopic scale.

Doubtfully, mathematical models related to gross

quantities are useful to biological theories. A large variety

of this type of models have been proposed generally stated

in terms of ordinary differential equations. The main

drawback of these models is that their parameters are

related to gross phenomena rather than to cellular

properties. This is also occasionally the case of some

models with space structure stated in terms of partial

differential equations.

Going on with this reasoning, one can state that the

variables of the model should be related to well-defined

biological functions and that cell interactions should be

ruled by subcellular properties. This feature should be

preserved even when macroscopic phenomena appear and

the equations of continuum mechanics may be useful or

even necessary. Hence, the parameters of these models

should still be related to biological functions.

It is worth, also from the view point of applied

mathematicians, investigating on the analogy between

mechanics of classical particles and dynamics of

interacting cells. The relevant difference is that particles

interact according to laws of classical mechanics. The

mathematical description of the interaction is delivered to

models of force potentials based on specific properties (at

the lower scale) of the particles. Making the distance

between particles zero, in the framework of suitable

asymptotic limits, yields the derivation of macroscopic

equations from the microscopic ones.

The above methodological approach can be followed, at

least in principle, for multicellular systems. As announced

in the “Modeling by generalized kinetic cellular theory”

section, some preliminary results have already been

obtained. The development of a statistical mechanics

theory has been developed in various recent papers as

documented in the paper by Bellomo et al. (2004), while

the asymptotic theory proposed by Bellomo and

Bellouquid (2004) shows how macroscopic evolution

equations can be obtained by the microscopic description.

The structure of the equations depends on scaling and

rates of different biological processes at the cellular scale.

The obtained equations should be referred to those

obtained by the continuum mechanics approach docu-

mented in various papers (e.g. Ambrosi and Preziosi,

2002; Humphrey and Rajagopal, 2002). The mathematical

literature on biological flows is documented in the paper

by Kamm (2002) and Bellomo et al. (2003b).

As we shall see, each step needs a strategy to reduce

the high complexity of the system we are dealing with

without losing, however, the ability of the mathematical

description to capture the essential inner features of the

system.

It is interesting observing that the contents of each of

the steps which will be described below can be related to

some sentences of an interesting paper by Hartwell et al.

(1999), which identifies a variety of perspective ideas

offered to applied mathematicians as research targets.

Step 1. Selection of the cell populations which play the

game. The difficulty involves the identification of a

limited number of populations (without losing descriptive

ability) out of the enormous variety of cell populations

involved in the immune competition (Delves and Roitt,

2000). Referring to the biological system, one has to deal
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with endothelial, immune and progressing cells. This

means that each population represents a certain collective

behavior of various populations with somehow analogous

behavior.

Biological systems are very different from the physical or chemical
systems analyzed by statistical mechanics or hydrodynamics.
Statistical mechanics typically deals with systems containing many
copies of a few interacting components, whereas cells contain from
millions to a few copies of each of thousands of different
components, each with very specific interactions. (Hartwell et al.,
1999).

Step 2. Modeling microscopic interactions of cells

which play the game. This paper has essentially described

mean-field interactions somehow analogous to Vlasov

type models in mathematical kinetic theory. As already

mentioned, models can be based also on short-range

interactions somehow analogous to those of the classical

Boltzmann equation (Cercignani, 1998). Possibly both

types of interactions may occur. Interactions modify the

biological functions and may generate proliferation and/or

destruction processes. The modeling should take into

account all above phenomena. The high complexity

problem consists, as we have seen, in dealing with

mechanical and biological variables and with the related

interactions.

Although living systems obey the laws of physics and chemistry,
the notion of function or purpose differentiate biology from other
natural sciences.

In addition, the components of physical systems are often simple
entities, whereas in biology each of the components is often a
microscopic device in itself, able to transduce energy and work far
from equilibrium. More important, what really distinguish biology
from physics are survival and reproduction, and the concomitant
notion of function. (Hartwell et al. 1999).

Step 3. Once microscopic interactions have been

properly described, then the corresponding evolution

equations can be derived on the basis of classical methods

of the mathematical kinetic theory. An account of this type

of calculations is given in the “Modeling by generalized

kinetic cellular theory” section. One obtains a system of

integro-differential equations with quadratic type non-

linearity. The qualitative and computational analysis of the

above evolution system may point out the role of all

parameters on the asymptotic behavior of the solutions.

This analysis is preliminary to the modeling of

therapeutical actions.

Step 4. An asymptotic theory should be developed

to obtain macroscopic equations from the microscopic

description. Then the equations have to be compared with

those delivered by purely phenomenological approach.

Step 5. A qualitative and computational analysis of the

macroscopic may point out, as in Step 3, the role of all

parameters on the asymptotic behavior of the solutions.

Step 6. Modeling therapeutical actions developing the

necessary qualitative and computational analysis related

to the optimization of therapeutical actions.

Unfortunately, the above project is not yet complete due

to the great complexity related to the self-organization

ability of the living matter. Its development still needs

a great deal of interdisciplinary work involving both

biologists and applied mathematicians.
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