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Purpose: This study has two objectives. The first one is to investigate the question whether it is possible
to discriminate between eyes with and without a glaucomateous visual field defect based on standard
ophthalmologic examinations as well as optic nerve head topographic parameters. The second objective
raises the question of the ability of several suggested statistical models to generalize their results to
new, previously unseen patients.

Methods: To investigate the above addressed question: (a) independent, two-sided t-tests, (b) a linear
discriminant analysis with a forward stepwise variable selection algorithm, (c) four classification tree
analyses and (d) three different neural network models with a forward, backward and a genetic variable
selection algorithm were applied to 1020 subjects with a normal visual field and 110 subjects with a
glaucomateous visual field defect. The Humphrey Visual Field Analyzer was used to test the visual
fields and the TopSSw Scanning Laser Tomograph measured the optic nerve topography. A 10-fold
cross-validation method was used for the models (b), (c) and (d) to compute approximative 95%
confidence intervals for the specificity and sensitivity rates.

A literature study of 18 studies dealt with the question whether/how the generalization error was
controlled (control of sample bias, cross-validation procedures, training net size for valid
generalization). It was also looked up whether point estimators or 95% confidence intervals were
used to report specificity and sensitivity rates.

Results: (a) Only few differences of the means could be found between both groups, including age,
existing eye diseases, best corrected visual acuity and visual field parameters. The linear discriminant
analysis (b), the classification tree analyses (c) and the neural networks (d) ended up with high
specificity rates, but low sensitivity rates.

The literature study showed that three models did not apply a cross-validation procedure to report
their results. Two models used a test sample cross-validation and thirteen used a v-fold cross-validation
method. Although most authors reported confidence intervals for the area under the ROC, no author
reported confidence intervals for the true, but unknown sensitivity and specificity rates.

Conclusions: (a) The results of this study suggest that the combination of standard ophthalmologic
eye parameters and optic nerve head topographic parameters of the TopSSw instrument are not
sufficient to discriminate properly among normal eyes and eyes with a glaucomateous visual field
defect. (b) We follow important suggestions given in statistical learning theory for proper
generalization and suggest to apply these methods to the given models or to models in future. At least
three conditions should be met: (1) confidence intervals instead of point estimators to assess the
classification performance of a model (control of test sample bias); (2) sensitivity and specificity rates
should be estimated instead of reporting a point estimator for the area under the ROC and (3) the
generalization error should be reported both in a training and a test sample and methods should be
applied to select an appropriate training sample size for valid generalization.
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INTRODUCTION

The original intention of the scanning laser tomograph

(e.g. TopSSw, HRTw) and related instruments that

investigate the structure of the optical nerve head (e.g.

GDxw, OCTw) was to detect topographic/morphological

changes of the optic nerve head while observing the course

of the glaucomateous eye. Typical changes that are

regarded as suspicious indicators are, e.g. a deeper

excavation of the optic nerve head and/or a reduction of

the neuroretinal rim area of the optic nerve head.

On one hand, several studies found moderate relations of

topographic changes (TopSSw) and changes in the visual

field. Ahn and Kee (2000) investigated 110 eyes at one point

in time and suggested a model with high sensitivity and

specificity in the diagnosis of glaucoma and the TopSSw can

be useful in the early detection of changes in the

glaucomatous optic disc. Cullinane et al. (2002) found the

average slope of the TopSSw instrument as capable of

discriminating OHT and POAG patients from normal

subjects (investigated at a fixed time). This topographic

parameter was also well correlated with the visual field mean

defect. Chauhan et al. (2001) followed up 77 patients with

glaucomatous visual field damages at the initial investi-

gation over a period of about 5.5 years and could

demonstrate that glaucomatous disc changes determined

with scanning laser tomography occur more frequently than

field changes. Most of these patients with field changes also

had disc changes. However, less than half of those with disc

changes had field changes. In greater detail, 27% showed no

progression with either technique, 40% progressed with

scanning laser tomography only, while 4% progressed

with conventional perimetry only. There were 29% who

progressed with both techniques, 45% progressed with

scanning laser tomography first and 41% with conventional

perimetry first, while 14% progressed at the same time.

Lan et al. (2003) found relations between some topographic

parameters, RNFL parameters and visual field indices

(based on 62 patients investigated at a fixed time). However,

great interindividual variation limited the prediction of one

parameter from the other. They suggested the evaluation of

both structural and functional aspects in order to obtain full

characterization of the glaucomatous damage for clinical

judgment and treatment. The results of theses studies are

encouraging to find a statistical model for predicting a

glaucomateous visual field defect.

However, on the other hand, there is a bulk of data which

suggests that functional changes may not necessarily be

linked with structural changes: there is also evidence to

support the idea that the loss of ganglion cell axons can

occur without the structural cupping of the optic nerve

head, e.g. optic atrophy. Harwerth et al. (2002) studied the

structure–function relationships from 12 monkeys with

unilateral experimenal glaucoma and compared the

ganglion cell loss (%) via the loss of sensitivity (dB).

This experiment revealed that visual sensitivity losses

were not correlated with retinal ganglion cell losses until

a substantial number of neurons (about 50%) have been

lost. Thus, ganglion cell losses lower than 50% cannot be

detected with standard clinical perimetry.

In addition, statistical models were suggested to

indicate functional changes, i.e. a deterioration of the

visual field or a deterioration of status of the

glaucomateous eye (Brigatti et al., 1996; Uchida et al.,

1996; Weinreb et al., 1998; Mardin et al., 1999; Iester

et al., 2000; Nicolela et al., 2001; Zangwill et al., 2001;

Bowd et al., 2002; Greaney et al., 2002).

In order to make a contribution to resolve these

paradoxical findings, this study has two objectives. The

first one is the attempt to answer the question: “Can a

classifier based on a standard ophthalmologic eye

parameters in combination with topographic parameters

of the TopSSw scanning laser tomograph be found to

detect eyes with a glaucomateous visual field defect?” The

findings of Harwerth et al. (2002) suggest that the relation

between structural and functional losses have to be

considered with more care. However, it cannot be

concluded that such a classifier does not exist. It is still

possible that TopSSw and standard ophthalmologic

parameters can discriminate between eyes with and

without a glaucomateous visual field defect, indepen-

dently of a beginning structural loss of ganglion cells.

The second objective raises the question whether/how

the generalization error of the proposed statistical models

was controlled (control of sample bias, cross-validation

procedures, training net size for valid generalization).

It was also looked up whether point estimators or 95%

confidence intervals were used to report specificity and

sensitivity rates. We refer to important insights and results

suggested by authors working in the field of statistical

learning theory. We follow these suggestions in order to

make results more reliable and comparable.

PATIENTS AND METHODS

A cohort of 4629 subjects were enrolled in the Salzburg-

Moorfields-Collaborative-Glaucoma Study (SMCGS)

between December 1996 and July 2003. For details of the

study, see Mistlberger et al. (1998). The following

inclusion criteria had to be fulfilled: age $ 40 years,

best spectacle corrected visual acuity . 6/9, refraction

ranging from 26.00 to þ4.00 dpts, difference of

refraction , 3.00 dpts.

The exclusion criteria comprised the following con-

ditions: pseudophakia, current glaucoma therapy, eye

diseases with a potential for visual field defects (except

glaucoma) or secondary increase of intraocular eye

pressure, contraindications against beta blockers, systemic

corticosteroid therapy or pregnancy. Eyes of patients which

did not fulfill the first or the second condition, were

removed from this study. All subjects underwent extensive

ophthalmologic examinations including history of pre-

existing eye diseases and eye therapy, family history (FH),

refraction, visual acuity, intraocular eye pressure, slit-lamp

and fundus examinations and assessment of subjective
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C/D-ratios. All in all, 3228 patients fulfilled the inclusion

and exclusion criteria.

Furthermore, the Visual Field Test Analyzer (Humphrey

Visual Field Test Program, Humphrey Instruments, Inc.,

San Leandro, CA, USA) calculated the mean deviation

(MD), corrected standard pattern deviation (CPSD) and

the glaucoma hemifield test (GHT). The GHT assesses a

visual field as normal, borderline or abnormal. A reliable

test of the visual field was defined as having fewer than

33% fixation losses. Each eye indicating a glaucomateous

visual field defect was retested after 3 and 6 months,

to confirm the glaucomateous visual field defect.

Eyes with a moderate visual field defect (glaucoma

hemifield test was ‘borderline’ of Humphrey Visual Field

Analyzer) were removed.

A short description of the optic nerve head parameters

of the scanning laser tomograph (TopSSw, Laser

Diagnostic Technologies, Inc., San Diego, CA, USA) is

given in the appendix (7 optic nerve head parameters).

Due to the amount of computations, only right eyes were

analyzed. All eyes with a normal GHT were allocated to

the first group (NGHT), eyes with an abnormal GHT were

allocated to the second group (AGHT).

STATISTICAL METHODS

Description of the Sample

Casewise deletion of missing data: all patients with

missing data in at least one variable were excluded from

the analysis. After data cleaning, 1130 eyes could be

included (NGHT: 1020, AGHT: 110).

Definition of Input Variables

All variables of Table I were used—except from MD and

CPSD. If these have been measured then the GHT is also

available providing a 100% correct classifier by definition,

so clinically a classifier including these two measures is

not useful. An existing eye disease was defined as follows:

(0) no eye disease and (1) an eye disease is present. Family

history was coded as follows: (0) there is no relative with

an eye disease, (1) glaucoma is present only in the patient’s

siblings, (2) parents, (3) other relatives, (4) parents and

siblings, (5) siblings and other relatives, (6) parents and

other relatives and (7) an eye disease other than glaucoma

is present.

The decision whether or not a proper identification of

glaucomateous visual field defects based on all specified

parameters is possible, is in general a question whether or

not the posterior distribution functions differ sufficiently

(Johnson and Wichern, 1999). To tackle this problem, four

different statistical approaches were done in order to cover

different aspects of the problem above.

Four Approaches were Carried out for this

Classification Problem

(A) Univariate, independent, two-sided t-tests were

applied to test the means in both groups. In order to

TABLE I Variables submitted to the analysis, except from MD and CPSD

Glaucoma hemifield test

Normal (NGHT) Abnormal (AGHT)

Mean Std Mean Std p-values

Standard parameters Gender (38,62)%* (35,65)% 0.51
Existing eye disease (92,8)%† (85,15)% 0.0011**
Family history (68,2,8,3,1,0,1,17)%‡ (64,1,11,2,1,0,1,20)% 0.87
Age 59.8 8.9 67.3 8.4 , 0.001**
Best corrected visual acuity 0.96 0.11 0.89 0.14 , 0.001**
IOP (mmHg) 15.3 3.1 15.5 3.4 0.47
Subj. C/D ratio 0.27 0.16 0.33 0.19 0.004

Visual field Mean defect (MD) 20.51 1.4 23.6 4.4 , 0.001**
Corrected pattern standard

deviation (CPSD)
0.94 0.75 4.22 2.5 , 0.001**

Optic nerve head
topographic analysis:
TOPSSw

Total contour area (mm2) 2.0 0.45 2.0 0.37 0.15

Effective area (mm2) 0.9 0.41 0.9 0.37 0.51
Neuroretinal rim area (mm2) 1.2 0.32 1.1 0.34 0.03
Volume below (mm3) 20.3 0.19 20.3 0.22 0.34
1/2 Depth volume (mm3) 0.3 0.21 0.4 0.19 0.25
1/2 Depth area (mm2) 20.1 0.05 20.1 0.06 0.38
C/D ratio (TopSSw) 0.4 0.15 0.4 0.15 0.06

Means, standard deviations and corresponding p-values of all eye parameters in patient groups with normal (NGHT) and abnormal glaucoma hemifield test (AGHT).

* Male and female.
† Eye disease (not present and present).
**After Bonferroni adjustment, a difference is considered as statistically significant, if the corresponding p-value is smaller than 0.05/16 ø 0.003.
‡ See, “Statistical Methods” section.
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estimate the magnitude of the effect under the alternative

hypothesis, the standardized effect size is estimated

(Cohen, 1988). This dimensionless number divides the

difference of the expectation values by the common

standard deviation and is independent of the sample size.

If the effect size is zero, the corresponding null hypothesis

cannot be rejected with any sample sizes. For our sample

sizes (n1 ¼ 1020 and n2 ¼ 110), that effect size is

estimated at which the independent t-test is statistically

significant (EScrit). The empirical effect size is the point

estimator obtained by the concerning plug-in estimator,

i.e. the observed mean estimates the expectation value, the

empirical common standard deviation estimates the

common standard deviation. Differences among means

with empirical effect sizes larger than EScrit are detected

by the t-test, differences smaller than those are not.

Comparisons of categorical variables were done with the

Maximum Likelihood Chi-square statistic. It is well

known that multiple comparisons demand the use of a type

I error rate adjustment in order to protect against an

increase of the overall type I error rate (Miller, 1981). The

unadjusted type I error was set to 5%. The p-value

adjustment was done with the Bonferroni-method.

(B) A linear discriminant analysis with a forward

stepwise algorithm was applied to compare this frequently

used method with other models (as defined below).

Attention was given to the question whether the ratio of

the number of variables to the number of eyes was

adequate (about 20 or more, Huberty, 1975; Barcikowski

and Stevens, 1975). Prior probabilities were set to 85% for

the NGHT group and 15% for the AGHT group. These

estimations are based on accumulate observations made in

our glaucoma screening program.

(C) In order to use models with a hierarchical nature, four

classification tree analyses (Breiman et al., 1984) were

done to compare the results with those of the discriminant

analysis. The same prior probabilities as in approach B

were used. Different split selection methods were used.

SL1: discriminant based univariate splits and SL2: CART

style for exhaustive search for univariate splits (Gini

measure for goodness of fit). Also, different stopping rules

were applied. SP1: pruning on misclassification error

(1 SE rule) and SP2: FACT-style direct stopping (fraction

of objects 10%). The following models were tested: (C.1)

SL1 and SP1, (C.2) SL1 and SP2, (C.3) SL2 and SP1 and

(C.4) SL2 and SP2. For details of these methods, see

Breiman et al. (1984) and StatSoft, Inc. (1999).

(D) Finally, the following types of neural networks were

tested: linear networks, radial basis function networks and

three-layer perceptron networks (Bishop, 1995). Radial

basis function networks with a hidden layer of radial units,

each actually modeling a Gaussian response surface

(center assignment was done by the k-means algorithm

and each unit’s deviation is individually set to the mean

distance to its k nearest neighbors). Pre-processing

involved conversion of nominal values and scaling of

numeric values. The minimum and maximum of each

input variable was found and scaling factors were selected

so that these were mapped to 0 and 1. The normalized

input values were then fed into the neural network.

A forward, backward and genetic variable selection

algorithm (StatSoft, Inc., 1999) was applied to determine

an “optimal” set of input eye parameters. Binary masks

were constructed which indicate which inputs to retain and

which to discard. The network complexity (number of

hidden units) was determined automatically by

the software used (StatSoft, Inc., 1999). Levenberg-

Marquardt (Bishop, 1995) was used for training of the

three-layer perceptrons. After testing linear, radial basis

function and three-layer perceptron networks with

different architectures, the model with the best perform-

ance was selected. Doubt option: In first step, the accept

and reject thresholds were set automatically such that the

misclassification rate was minimized. If the activation was

above the accept threshold, the eye was deemed to belong

to the risk class (AGHT); if it was below the reject

threshold, the eye was deemed to belong to the class

without risk (NGHT), and if it was in between, the

prediction is deemed to be ‘unknown’. In second step, the

accept thresholds were increased and the reject thresholds

decreased step-by-step to avoid dubious classification,

perhaps reflecting a point in areas of overlap between the

two classes and to increase the classification rates. In order

to learn more about the performance of the best model, the

thresholds for accept and reject were readjusted to find

models with high specificity and as high sensitivity as

possible (model D.1) and high sensitivity rates and as high

specificity as possible (model D.2).

Test of Performances of the Approaches

(A) Data splitting into training, verification and test

sample: different approaches used different sample splits

to check that a model was generalizing properly by

observing whether the error in the test sample was

reasonably low. Approach A did not use a sample split.

A 10-fold cross-validation (Stone, 1974) procedure was

applied to the approaches B and C. Data were split into

training and test samples in the ratio of 9:1. Approach D

used a training sample, a verification sample and a test

sample in the ratio 6:3:1, respectively. The verification set

was used to track the neural network’s error performance

during training, to identify the best network and to stop

training, if over-learning occurred (early stopping method

of training, Morgan and Bourlard, 1990; Amari et al.,

1996). The test set was not used in training at all and was

designed to give an independent assessment of the

network’s performance when an entire network design

procedure was completed. (B) Sufficient large training

sample size for valid generalization: different methods to

estimate the training sample size were applied to obtain

models with valid generalization. Firstly, a method

suggested by Vapnik and Chervonenkis (1971) was

applied that estimates the worst-case measure of

generalization performance. This measure estimates

the maximum discrepancy which can occur between
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generalization performance estimated from the sample

and the true generalization. Secondly, a method suggested

by Baum and Haussler (1989) was applied for single-

hidden-layer feedforward neural networks with k units and

d weights. As suggested by Baum and Haussler (1989),

such a network that has been trained on m examples so that

at least a fraction of 1 2 ð1=2Þ; where 0 , 1 , 1=8 of the

examples were correctly classified, the network will—

with a probability approaching 1—correctly classify the

fraction 1 2 1 of future random test samples drawn from

the same distribution as long as m $ Oðd=1 log2ðk=1ÞÞ:
Thirdly, a method suggested by Haykin (1998) was

applied that is similar to Widrow’s rule of thumb. This

method suggests ‘good generalization’, if the condition

m ¼ Oððd þ kÞ=1Þ is satisfied. Further details of the

described methods are given in Vapnik and Chervonenkis

(1971), Baum and Haussler (1989), Bishop (1995) and

Haykin (1998). Based on the results of the 10-fold cross-

validation, 95% confidence intervals for the true, but

unknown sensitivity and specificity rates of the models

were computed (Pearson-Clopper values; Hartung, 1993).

All computations and illustrations were done with

STATISTICA 5.5 (StatSoft, Inc., 1999) and MATHE-

MATICA 3.0.1 (Wolfram, 1996).

RESULTS

Results of the Study with the Scanning Laser

Tomograph (TopSSw)

(A) The percentage of subjects with an eye disease

was slightly higher in AGHT than in NGHT (95% CI:

5.5–8.5%). Age was higher in AGHT than in NGHT

(95% CI: 5.9–9.3 years). The best corrected visual acuity

was slightly better in NGHT (95% CI: 0.04–0.09). The MD

was considerably higher in NGHT (95% CI: 2.3–3.9 db).

The CPSD was considerably higher in AGHT (95% CI:

2.8–3.8 db). The observed means and standard deviations

are given in Table I. No further statistically significant

differences could be detected (Table I). Variables with an

effect size larger than 0.38 are statistically significantly

different (Fig. 1). An overview of the performance of the

models with approximative 95% confidence intervals of the

sensitivity, specificity, overall correct classification rates and

percentages of unclassified eyes is given in Table II for the

approaches B, C.1, C.2, C.3, C.4, D.1 and D.2. A table that

characterizes the best three layer perceptron network is given

in Table III. A table with the corresponding weights and

thresholds are given in Table IV.

The method suggested by Vapnik and Chervonenkis

(1971) for the worst-case generalization suggested an

inappropriate large sample size. The method of Baum and

Haussler (1989) suggested a training sample size of

m ¼ 1580 for 1 ¼ 1=8; k ¼ 12 and d ¼ 30: The method of

Haykin (1998) suggested for the above values a training

sample size of m ¼ 240.

Results of the Literature Study

A table with an overview of important contributions in this

field is given in Table V. This table lists the applied

statistical models, the instruments to detect structural

changes of the eye, whether eyes with a moderate risk for

glaucoma/moderate glaucomateous visual field defect

were excluded and the number of the used variables.

In addition, it indicates the observed sensitivity and

FIGURE 1 Line plot of the effect sizes of 13 eye parameters of eyes with normal and glaucomateous visual field. Labeled eye parameters are
statistically significantly different and have high univariate separation power.
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specificity rates and the type of cross-validation that was

used. Based on the given results, lower 95% confidence

limits for specificity and sensitivity are given by the

authors of this study. The literature study turned out that

the models in Table V were tested with different extent of

accuracy. There were three out of 18 models that did not

use any cross-validation procedure. There were two

models that were cross-validated in a test sample:

Zangwill et al. (2001) applied the model of Weinreb

et al. (1998) to 50 healthy subjects and 41 patients with

glaucoma to estimate the classification rates in their

sample. While Weinreb et al. (1998) suggested an

observed sensitivity of 74%, Zangwill et al. (2001)

suggested an observed sensitivity rate of 54% for the same

statistical model, i.e. the rate was 20% lower than those

given by Weinreb et al. (1998). An approximative 95%

confidence interval for the true sensitivity rate based on

the 41 patients in the test sample ranges from 38 to 69%

and shows that a considerable loss of accuracy (about

31%) is entailed. Iester et al. (2000) applied the model of

Mikelberg et al. (1995) and Bathija et al. (1998a,b)

(Table V, 8a and 8b). A 95% confidence interval for the

true sensitivity rate based on the 61 patients ranges from

74 to 93% (for Mikelberg et al., 1995). The same

confidence interval holds for the model of Bathija et al.

(1998a,b). All other models listed in Table V used a k-fold

cross-validation method to compute the standard

error/95% confidence interval of the area under the

ROC. No author reported 95% confidence intervals for the

true but unknown specificity and sensitivity rates for a

fixed cut-off.

DISCUSSION

Study with Scanning Laser Tomograph (TopSSw)

Discussion of the Results

Approach A showed that—besides the MD and CPSD of

the Humphrey Visual Field Test Analyzer—only age,

existing eye diseases and the best corrected visual acuity

were statistically significantly different. However, the

confidence intervals showed that the means of those

variables are close together. No parameter of the TopSSw

scanning laser tomograph could be shown as statistically

significant among both the groups (Table I). The critical

effect size EScrit was 0.38. An effect size of 0 indicates that

the distribution of the first group overlaps completely the

distribution of the other group, i.e. there is 0% of

nonoverlap. An effect size of 0.5 indicates a nonoverlap of

33% in the two distributions. So, the effect size suggests a

considerable overlap of most marginal distributions. This

result can be considered as a first indication that a proper

discriminiation of both distributions is difficult—if at

all—to achieve and that the parameters of the scanning

laser tomograph (TopSSw) may have relative small

univariate separation power. Although a high overall

TABLE II Number of eyes in the training sample, number of variables used and approximative 95% confidence intervals with lower and upper limits
for different performance parameters for the corresponding approach

Number of
eyes in the

training
sample

Number
of variables

included in the
final model

Specificity Sensitivity

Overall correct
classification

rate Unclassified (%)

Approach Lower Upper Lower Upper Lower Upper Lower Upper

Linear discriminant analysis B 1017* 13 98 99 4 16 88 92 0 0
Classification tree model C.1 1017* 0 99.6 100 0 3 88 92 0 0
Classification tree model C.2 1017* 0 99.5 100 0 3 88 92 0 0
Classification tree model C.3 1017* 0 99.6 100 0 3 88 92 0 0
Classification tree model C.4 1017* 3 99.3 100 0.6 7.8 88 92 0 0
Three layer percpetron model D.1 678 6 98.1 99.4 6.9 19.9 91.1 94.2 50.1 53.8
Three layer perceptron model D.2 678 6 14.9 18.4 93.5 97.8 27.5 31.4 21.1 24.2

* No verification sample.

TABLE III Details of the three-layer perceptron network model

Event to be predicted Abnormal glaucoma
hemifield test

Sample sizes of subsamples
in training, verification and
test sample

(678,339,113)

Number of networks tested
to find a model with “good”
network architecture

35

Type of network Three-layer perceptron model
Feature selection Forward, backward and

genetic algorithm
Type of training algorithm used Levenberg-Marquardt
Maximal number of epochs 100
Cross verification in verification

sample to identify best network
and stop training, if over-learing
occurred

Yes

k-fold cross-validation Yes, 10-fold
Number of input neurons 6
Number of hidden neurons 5
Error function Sum-squared
Layer 1: PSP-function* Linear
Layer 1: Activation function Linear
Layer 2: PSP-function Linear
Layer 2: Activation function Logistic
Layer 3: PSP-function Linear
Layer 3: Activation function Logistic
Observed correct classification

rate in the training sample
97.2%

Observed correct classification
rate in the test sample

92.6%

Threshold for acceptance 0.9 for D.1 and 0.05 for D.2
Threshold for rejectance 0.03 for D.1 and 0.02 for D.2

* Post-synaptic potential function.
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correct classification rate (95% CI: 88–92%) could be

achieved in B, the sensitivity rate of this approach was

small (95% CI: 4–16%). The approaches C.1, C.2, C.3

selected trivial classifiers with 0 input variables with the

given settings, the approach C.4 selected three input

variables. The results of these four approaches showed

very similar classification rates as approach B (Table II).

The comparison of linear, radial basis function and three-

layer perceptron networks suggested a three-layer

perceptron network with 6 input units and 5 hidden units

as to be useful. The results of the genetic algorithm was

compared with those of the forward and backward

stepwise variable selection algorithms. Age, eye disease

and best corrected visual acuity were selected by the

stepwise algorithms as well as the genetic algorithm.

However, the algorithms differed in the remaining variable

combinations. This suggests that there is too less structure

in the data such that both groups can be properly

discriminated. After adjusting the accept and reject

thresholds to achieve a model with a high specificity rate

and an as high sensitivity rate as possible, the model

D.1 could be found (accept threshold: 0.9, reject

threshold: 0.03). The specificity rate was very high (95%

CI: 98.1–99.4%). The sensitivity rate, however, was low

(95% CI: 6.9–19.9%). About 52% of all eyes were

unclassified (95% CI: 50.1–53.8%). The model D.2

(accept threshold: 0.05, reject threshold: 0.02) could be

found with very good sensitivity rate (95% CI: 93.5–

97.8%), but the specificity rate considerably decreased

(95% CI: 27.5–31.4%). The observed overall classifi-

cation rate in the training sample was 23% and remained

stable in the test sample with 29.5%. About 22.6% of all

eyes were unclassified (95% CI: 21.4–24.2%). No model

could be found with both, a high specificity and a high

sensitivity rate (e.g. lower confidence limits larger than

90% for both rates).

The results of the four approaches suggest that

knowledge of the standard ophthalmologic and TopSSw

parameters is not sufficient to classify an eye as having a

glaucomateous visual field defect. In general, we suspect

that functional losses (e.g. glaucomateous visual field

defects) will be difficult—if at all—to be detected based

on structural changes measured with the current

instrument.

Discussion of the Methods for Generalization

The observed overall classification rate in the training set of

D.1 was 97.2%. Although the method of Baum and

Haussler (1989) could not be applied, this method

suggested a correct classification rate of 94.6%. In fact,

92.6% were correctly classified in the test sample. This is in

accordance to the method as described by Haykin (1998).

One might speculate whether other classifiers (e.g

Gaussian Kernel support vector machines, comittee

machines) could show better performance. Although this

is theoretically possible, we suppose—based on the

current findings—that these models will not perform

significantly better.

Further Remarks Concerning the Study Design

We would like to emphasize that eyes with a suspect

glaucoma hemifield test were not included in this study.

We expect that the inclusion of these eyes will make it

much more difficult to discriminate properly among these

three patient groups (normal, borderline, abnormal

glaucoma hemifield test).

Literature Study

Remarks to the Results

Most authors (beside Brigatti et al., 1996) reported only

point estimators for the specificity and sensitivity rates.

The k-fold cross-validation procedure was used by almost

all authors for computation of standard errors or confidence

intervals for the area under the ROC. No author reported

95% confidence intervals for the true but unknown

specificity and sensitivity for a fixed cut-off. However,

more efforts should be made to control the generalization

abilities of the classifiers used, because the specificity and

sensitivity rates of the studies in Table V are not reported in

the training and test samples separately. Haykin (1998) and

many other authors emphasize that there are various

sources to bias a point estimator in connection with neural

networks. If sensitivity or specificity rates are estimated

based on training data alone, nothing can be said of how the

model performs when faced with new data, previously

unseen (variance/bias dilemma). If sensitivity or specificity

TABLE IV Input variables used, weights and thresholds for the input and hidden layer of the best three-layer perceptron model

Hidden node 1 Hidden node 2 Hidden node 3 Hidden node 4 Hidden node 5

Input layer Threshold 0.2219908 0.4324216 0.7126304 20.646 20.7253
Age (years) 21.301592 0.7465843 20.02862 23.167576 23.068769
Eye disease 20.6893 20.4334 20.346 1.050109 20.2273
Family history 0.4558598 20.1097 20.6847 21.524361 20.009787
IOP (mmHg) 20.9422 0.9893949 0.3516825 21.486126 20.1271
Total Contour Area (mm2) 20.901 20.6168 20.08261 0.04717 0.9559903
Neuroretinal Rim Area (mm2) 0.4983845 20.6972 0.4459717 1.39762 1.822461

Hidden layer Threshold
0.002056 21.326357 1.236196 0.05219 23.620329 23.64186
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rates are estimated by a point estimator obtained by cross-

validating the sample, one gets a (approximative) unbiased

estimation of the sensitivity and specificity rates. However,

in order to be able to draw statistically convincing

conclusions, it is important to estimate the uncertainty

around the error estimate. Such an estimation should be

done by estimating the lower limit of an (at least

approximative) 95% confidence intervals. Such esti-

mations usually reveal that the model falls short of the

expectations, especially, in case of small sample sizes. This

situation can be observed in Table V. The differences

between the observed sensitivity rate and the lower limit of

the approximative confidence interval range between 5 and

12%, the corresponding difference for the specificity rate

ranges between 7 and 16%.

Suggestions to Improve the Generalization Abilities and
for Reporting Classification Results

We refer to important insights and results concerning

learning and generalization as suggested by Vapnik and

Chervonenkis (1971), Stone (1974), Morgan and Bourlard

(1990) and Amari et al. (1996). These methods are

described in a broader context by Bishop (1995) and

Haykin (1998). Important methods to build models of the

underlying process which generates the data are, e.g. early

stopping method of training, training with noise, weight

elimination, regularization methods, comittees of net-

works, test sample or k-fold cross-validation.

One of the most important issues—the computation of

(approximative) 95% confidence intervals for the true, but

unknown specificity and sensitivity rates—is still not

considered to its full necessity for glaucomateous visual

field defects/glaucomateous eyes. We suggest interval

estimators for the true, but unknown sensitivity and

specificity rates for a fixed cut-off rather than for the area

under the ROC. Knowledge of such an area (e.g. 0.8 and

0.9) does not allow drawing convincing conclusions about

the number of correct classified healthy and abnormal eyes.

General Remarks

More efforts should be made to improve the generalization

ability of possible models and interval estimators should

be reported to give a more realistic picture of the true

performance of the classifiers. The results based on the

TopSS
w

instrument are discouraging, if they are applied to

one point in time. In order to learn more about structural

and functional losses, we suggest the application of an

instrument as sensitive as possible for identification of

structural losses over time. This might include the use of

objective electrophysiological methods (ERG) (Harwerth

et al., 2002) or ultrahigh-resolution optical coherence

tomography (Drexler et al., 2003).

A study design that applies such an instrument at the

initial investigation, measures the changes within a short

period of time (e.g. one or two years) and tries to predict

visual field defects at, e.g. the five year follow-up, might

have better chances to find a statistical classifier with

sufficient high sensitivity and specificity rates. In any

cases, the generalization ability of such a model should be

tested as carefully as possible.

CONCLUSIONS

(A) The results of this study indicate that the posterior

distribution functions of eyes with/without a glaucoma-

teous visual field defect are very similar. An identification

of eyes with a glaucomateous visual field defect based on

TopSS
w

is hard or even impossible. The inclusion of eyes

with a suspect glaucomateous visual field will even make

it more difficult to find a classifier with sufficient

discrimination power in this situation. The results suggest

that the moderate relationships between TopSS
w

and

visual field parameters (Cullinane et al., 2002; Lan et al.,

2003) are not sufficient for a prediction of a glaucoma-

teous visual field defect of individual eyes.

(B) We follow important suggestions given in statistical

learning theory for proper generalization and suggest the

application of these methods to the given models or to

models in future. At least three conditions should be met:

(1) confidence intervals instead of point estimators to

assess the classification performance of a model (control

of sample bias); (2) sensitivity and specificity rates should

be estimated instead of reporting a point estimator for the

area under the ROC. If a model is applied to a patient’s eye

in daily clinical practice, it has to prove its performance

with a fixed cut-off value or threshold to accept and

threshold to reject; (3) control of the size of the training

sample size for valid generalization: the results of the

literature study suggest that the generalization error

should be reported both in a training and a test sample and

methods should be applied to select a appropriate training

sample size for valid generalization.
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APPENDIX

Scanning laser tomograph parameters (TopSSw): The total

area is the area within the user-drawn contour area, the

effective area is the cup area located 100 microns below the

total area, the neuroretinal rim area is the difference

between the total area and the effective area, the volume

below is the volume of the cup below the effective area, the

half depth area is the area at a height located halfway

between the average height along the perimeter of the user-

drawn contour area and the deepest points of the cup, the

half depth volume is the volume of the cup below the half

depth area, the cup to disc ratio is the ratio between the

effective area and the total area. The units of measure of all

parameters are mm, mm2, mm3 or for distances, areas,

volumes or unitless for ratios, respectively.
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