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The malignant brain tumour Glioblastoma multiforme (GBM) displays a highly invasive behaviour.
Spreading of the malignant cells appears to be guided by the white matter fibre tracts within the brain.
In order to understand the global growth process we introduce a lattice-gas cellular automaton model
which describes the local interaction between individual malignant cells and their neighbourhood.
We consider interactions between cells (brain cells and tumour cells) and between malignant cells and
the fibre tracts in the brain, which are considered as a prepattern. The prepattern implies persistent
individual cell motion along the fibre structure. Simulations with the model show that only the inclusion
of the prepattern results in invading tumour and growing tumour islets in front of the expanding tumour
bulk (i.e. the growth pattern observed in clinical practice). Our results imply that the infiltrative growth
of GBMs is, in part, determined by the physical structure of the surrounding brain rather than by
intrinsic properties of the tumour cells.
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1. Introduction

Glioblastomas (Glioblastoma multiforme WHO grade IV,

GBM) account for 50–60% of all primary brain tumours

and up to 30% of all intracranial neoplasms [1]. A typical

GBM consists of an irregularly shaped and well

vascularized solid tumour mass with a necrotic core

(figure 1). There is no sharp boundary between the tumour

and the parenchyma of the brain. Tumour cells infiltrate

the surrounding brain tissue and can be found at quite a

distance away from the main tumour mass in areas

completely inconspicuous by routine histopathological

analysis (see Chicoine and Silbergeld [2] and Silbergeld

and Chicoine [3]).

Standard therapy for GBMs consists of surgical removal

of all visible tumour (gross total resection) followed by

radiotherapy administered to the tumour bed (site of the

original tumour after it is surgically removed) maintaining

a safety margin of 2–3 cm. However, unfortunately all of

these GBMs will recur and more than 75% within the

radiation fields [4]. Chemotherapy is often used after

tumour recurrence [5]. Placement of biodegradable wafers

containing a chemotherapeutic agent at the time of surgery

may confer a modest survival benefit [6]. In spite of all

the progress in recent decades, average survival

in unselected neurosurgical series does not exceed

12 months [7].

Conceptually, GBMs grow by expansion and

by invasion [8]. Expansive growth can be localized to

areas with high blood supply and is characterized by

mitosis and volume increase of single malignant cells.

Due to tumour expansion, the brain undergoes defor-

mation, but the local topology (neighbourhood) of the

intact brain tissue is not destroyed. Growth by invasion is

defined by the movement of isolated single malignant

cells invading and alternately destroying the brain

parenchyma. Experimental and clinical data suggest that

malignant cells move faster in the white than in the grey

matter [8–10]. The white matter consists of axonal fibre

tracts providing physically permissive tracts for tumour

cells to migrate along the fibres. These white matter tracts

interconnect various ipsi- and contralateral (on the same

and on the opposite side, respectively) regions of the

brain, quite in accordance with the patterns of

GBM spread commonly observed in clinical practice.

On the contrary, the structure of the grey matter is more

complex and may actually constitute a physical barrier for

moving cells.
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There is strong evidence that the movement of tumour

cells is controlled by adhesion: “trails” in the brain used

by malignant glial cells and neural stem cells are probably

similar [11]. Malignant glial cells may fall back into stem

cell behaviour and follow tracts defined by neural cells

and blood vessels [11–13]. Furthermore, genetic altera-

tions observed in malignant cells affect cell movement

and adhesion [12].

In order to understand the basic principles of GBM

growth it is useful to create a mathematical framework that

models proliferation and invasion. The direction of

movement may be affected by the gradient of nutritive

and other molecular signals (chemotaxis) and could also

be a directed response to a gradient of adhesion

(haptotaxis). Other processes that must be taken into

account are proteolysis and contact inhibition. Subpopu-

lations may be used to model different behaviours

of malignant cells. Analysing travelling wave solutions

of partial differential equations (PDEs) provides informa-

tion about the infiltrative behaviour and the influence of

the respective processes [14–17]. When describing only

the malignant cell population, the GBM development can

be simulated in a first approximation by a simple reaction-

diffusion equation [18,19]. Space-dependent diffusion

coefficients allow modeling of the influence of the

heterogeneous distribution of white and grey matter on

tumour cell movement [20–24].

Use of a hybrid cellular automaton takes into account

both the discreteness of cells and the continuous

concentrations of signals and nutrients (CA; see Moreira

and Deutsch [25]) for an overview about cellular automata

used in tumour modelling). Hybrid CA/PDE models may

be used to describe early tumour growth and the invasive

behaviour of malignant cells controlled by chemotaxis,

haptotaxis and interaction with blood vessels [26–30].

None of the mathematical approaches listed includes

explicitly the physical structure of the brain parenchyma at

a microscopic level as an integral part of the model.

Swanson et al. [20] consider the white matter fibres as an

isotropic structure merely at a macroscopic level.

In this study, we will use a lattice-gas cellular

automaton (LGCA) to demonstrate that the white matter

fibres of the brain (prepattern) do influence the local and

global growth pattern of the tumour indeed.

2. Model

We model the tumour system at a microscopic scale in

which single brain and tumour cells are the basic entities.

We assume that the growth of a vascularized GBM is

mainly guided by the brain structure. The influence by the

vascularization process is negligible. Furthermore, no

diffusible substance is modeled, due to the same reason.

Only tumour and brain cells were considered and only

local interactions are taken into account. We do not

include an explicit term for nutritive vascularization.

Instead, we look at vessels as part of the morphological

prepattern.

We describe the process of tumour cell invasion into

normal brain tissue by using a cellular automaton

(see figure 2, [31], for CA models). In our article, we use

the term “cellular automata” in the sense of an infinite

regular grid embedded in space. Each grid node has a state

and a neighbourhood consisting of grid nodes. These

neighbourhoods are translation invariant. Furthermore,

state space and time are discrete. Within each time step the

new states of the grid nodes will be simultaneously

calculated. Therefore, only information given by the state in

the neighbourhood and random noise will be considered.

If models include moving cells, a special CA, a lattice gas

cellular automaton (LGCA) has proved to be very useful.

In a LGCA, the cells move from grid node to grid node and a

reorientation takes place at each grid node.

Our automaton is a combination of a lattice-gas cellular

automaton that describes the mobile tumour cells, and

a simple cellular automaton for normal brain tissue.

We distinguish three kinds of nodes: cancer, brain and

“undefined” nodes. Starting with state cat it at time t, we

calculate the state catþ1 at time t þ 1 in a two-step process.

In the first step, a new state ca*
t is chosen at each node

simultaneously by a random process. The parameters

for the random processes at each node are defined

by the neighbourhood configuration. A second step of

translocation simulates the moving behaviour of tumour

cells. For computational reasons, we use a two-

dimensional square lattice embedded in the surface of an

infinite cylinder; one dimension of which is periodic and

the other (potentially) unlimited. Also death and birth of

tumour cells and death of brain cells are simulated.

Because we consider the Go or Grow hypothesis [32],

Figure 1. Glioblastoma multiforme located in the frontal lobe. Axial
magnetic resonance imaging (MRI) shows a necrotic core surrounded by
contrast enhancing, almost ring-shaped viable tumour tissue and
hypointense (low in signal) white matter edema. Malignant cells can be
found throughout the edematous white matter and even beyond [3].
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only resting tumour cells have a non-zero probability to

proliferate.

2.1 Cellular automaton and states

The state of a brain node specifies the number of cells in

the normal brain tissue. All cancer nodes together form a

LGCA. The state s of a LGCA-node is defined as a

configuration of particles (cancer cells) over channels.

Each channel has a capacity, the maximal number of

particles in this channel. For our LGCA, the set of all

possible states is defined as

L ¼ N £ {0; 1}4 , N{0;...;4}; ð1Þ

(N includes 0). We have one zero velocity or resting

channel (s0) with a potentially unlimited capacity and

four non-zero velocity channels ðs1; . . .; s4Þ with

capacity one. Each non-zero velocity channel is

associated with a direction of the von Neumann

neighbourhood N.

N ¼ {N1 ¼ ð1; 0Þ; N2 ¼ ð0; 1Þ;

N3 ¼ ð21; 0Þ; N4 ¼ ð0;21Þ}
ð2Þ

X ¼ {X1 ¼ ð1; 1Þ; X2 ¼ ð21; 1Þ;

X3 ¼ ð21;21Þ; X4 ¼ ð1;21Þ}
ð3Þ

The second neighbourhood X (cross neighbourhood)

is the connection between brain and cancer CA nodes

(see figure 2).

If s [ L is a state of a cancer node, then the total

number jsj of tumour cells is:

jsj ¼
X4

k¼0

sk ð4Þ

and the local flux is

X4

n¼1

snNn: ð5Þ

A state of the cellular automaton is a partial function

ca : Z £ Z2n !N< L ð6Þ

which fulfills the following conditions:

caðx; yÞ [ N , ðx; yÞ [ ð2ZÞ £ ð2Z2nÞ ð7Þ

caðx; yÞ [ L , ðx; yÞ [ ð2Zþ 1Þ £ ð2Z2n þ 1Þ; ð8Þ

where 2n [ N is the circumference of the

cylinder. Equation (7) describes the normal brain tissue

and equation (8) the cancer LGCA. To simplify the

notation, we use db for an arbitrary brain and dc for an

arbitrary cancer node. The nearest cancer node in

direction v [ N of a cancer node dc is dc þ 2v: This

holds for brain nodes too. Please notice that there are

still undefined values. (In an extended model we will

use these values to simulate the interaction of tumour

cells with the extracellular matrix.) Further, we assume

that outside a finite region we will only find resting

tumour cells in the left (equation (9)) and brain cells in

the right (equation (10)) section. The desired cell

density is given by d. The possible values for brain

nodes are 0, d [ N and for cancer nodes ð0; 0; 0; 0; 0Þ;
ðd; 0; 0; 0; 0Þ [ L (empty and only resting cells,

respectively).

’x0 [ Z ;ðx; yÞ [ Z £ Z2n

ðx , x0Þ ) caðx; yÞ [ {0; ðd; 0; 0; 0; 0Þ}
ð9Þ

’x1 [ Z ;ðx; yÞ [ Z £ Z2n

ðx1 , xÞ ) caðx; yÞ [ {d; ð0; 0; 0; 0; 0Þ}
ð10Þ

The set CA2n solely includes all possible states

satisfying all conditions (7)–(9).

Figure 2. Cellular automaton for modeling cancer cell invasion. Top:
Cancer nodes are dark grey and brain nodes are light grey. The diagram
shows the initial state: the left area contains only cancer cells, the right
area only brain cells (ring shape indicates empty node). The prepattern is
shown as small gray arrows. The area of interaction controlled by density
is shown as gray squares. Bottom, from left to right: channels of a cancer
node (four non-zero-velocity channels and one zero-velocity channel),
von Neumann neighborhood, cross neighborhood.
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2.2 Target density of resting tumour cells

For each brain and cancer node the local brain and cancer

densities of cells ðrb; rcÞ are calculated as

rcðca; dcÞ ¼ jcaðdcÞj ð11Þ

rcðca; dbÞ ¼
1

4

X4

n¼1

caðHdb þ XnÞ ð12Þ

rbðca; dbÞ ¼ caðdbÞ ð13Þ

rbðca;dcÞ ¼
1

4

X4

n¼1

caðHdc þ XnÞ: ð14Þ

We postulate that inter-cellular adhesion takes place

between tumour cells and that its strength is a function of the

local density of tumour cells. If the adhesion is high then

tumour cells tend to rest. As a rough approximation for the

complex adhesion process, we define the target density of

resting tumour cells as the mean density of tumour cells in

the neighbourhood.

rrðca; dcÞ ¼
1

4

X4

n¼1

rcðca; dc þ 2NnÞ ð15Þ

Due to the Go or Grow hypothesis, the (local) tumour

growth is affected by this target density of resting tumour

cells (see below).

2.3 Target flux of tumour cells

Non-resting cells are mobile and their movement is

influenced by the densities of brain and tumour cells in the

neighbourhood as well as by a prepattern. To find a new

channel occupancy we have to define the net target flux gf

of tumour cells at each cancer node. This flux is a linear

weighted combination of density gradients and the vector

field of the prepattern. As a first step, we use a simple

prepattern g p generated by the brain cells.

gf ðca; dcÞ ¼ gpgpðca; dcÞ þ gbgbðca; dcÞ

2 gcgcðca; dcÞ ð16Þ

gcðca; dcÞ ¼
X4

n¼1

caðdc þ 2NnÞj jNn ð17Þ

gbðca; dcÞ ¼
X4

n¼1

caðdc þ XnÞXn ð18Þ

gpðca; dcÞ ¼
rbðdcÞ

rbðca; dcÞ þ rcðca; dcÞ
ð1; 0Þ ð19Þ

With equation (19), we incorporate a persistence in the

movement of the malignant cells in our model which has

been observed in in vitro studies [33]. The directed motion

along the fibres is a presumed property of malignant cells

and we analyse the effects of this on the global growth

process. We are not interested in modeling the mechanism

that is responsible for this persistence.

2.4 Energy and probability

For any given target density of resting cells and a given

target flux of tumour cells, every possible local channel

configuration of tumour cells is associated with an energy.

Eðs; ca; dcÞ ¼ Grðrrðca; dcÞ2 s0Þ
2

þ Gf kgf ðca; dcÞ2
X4

n¼1

snNnk
2

ð20Þ

The energy function E measures the degree of

fulfillment of the two properties: target density of resting

cells and target flux of tumour cells. The two coefficients

Gr and Gf determine the fraction of energy of these

properties, respectively. The lower the fraction Gr=Gf the

more the energy depends on the flux of tumour cells. We

use Boltzmann weights to choose one of all possible states

at one node.

s 7! expð2Eðs; ca; dcÞÞ ð21Þ

These weights define probabilities and one state is

selected at random. This is performed for all cancer

nodes dc simultaneously to produce a new channel

configuration ca+tðdcÞ for these nodes.

pðs; ca; dcÞ ¼

expð2Eðs;ca;dcÞÞP
js0 j¼jsj

expð2Eðs0;ca;dcÞÞ
if jsj ¼ jcatðdcÞj

0 otherwise

8<
:

ð22Þ

ca+tðdcÞ ¼ s with probability pðs; cat; dcÞ ð23Þ

This intermediate step considers only the reorientation

of cancer cells. Before cancer cells move to their

new positions proliferation (of cancer cells) and death

(cancer and brain cells) take place.

2.5 Birth and death

Brain cell death, e.g. due to nutrition competition or

induced apoptosis, is modeled as a function of local

tumour cell density.

ca*
t ðdbÞ¼

catðdbÞ21 if rc.1a:w:p:m2
b

rcðcat ;dbÞ
rbðcat ;dbÞþrcðcat ;dbÞÞ

catðdbÞ otherwise

8<
:

ð24Þ

Here, we also have a random process: a.w.p. means

“and with probability”. The sensitivity of the process is

M. Wurzel et al.24



controlled by the parameter m2
b : Birth and death of tumour

cells are modeled as functions of local density represented

by Fþ and F2, respectively. Only resting cells take part in

these processes (Go or Grow hypothesis). A resting

tumour cell proliferates at rate mþ
c only if space is

available, whereas a resting tumour cell disappears at rate

m2
c if the local density is too high. Each random process is

implemented as iteration over resting cells (variable k in

equations (27) and (28)).

ca*
t ðdcÞ¼F2ðsþ0 ; sþ;rbðca*

t ;dcÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
independent of cancer nodes

Þ ð25Þ

with

sþ¼Fþ s+0;s
+;rb ca*

t ;dc

� �� �
and s+¼ca+tðdcÞ ð26Þ

Fþðk;s;rÞ¼

s if jsjþr$d or k¼0

Fþðk21;sþr;rÞ if jsjþr$da:w:p:mþ
c

Fþðk21;s;rÞ otherwise

8>><
>>:

ð27Þ

F2ðk;s;rÞ¼

s if jsjþr#d or k¼0

F2ðk21;s2r;rÞ if jsjþr.da:w:p:m2
c

F2ðk21;s;rÞ otherwise

8>><
>>:

ð28Þ

with r¼ð1;0;...;0Þ ð29Þ

2.6 Translocation

The translocation of the tumour cells is deterministic

;n [ {0; . . .; 4} : catþ1ðdc þ 2NnÞn ¼ ca*
t ðdcÞn; ð30Þ

with N0 ¼ ð0; 0Þ and ca...ð. . .Þn is the channel in direction

n. As there is no translocation of brain cells,

catþ1ðdbÞ ¼ ca*
t ðdbÞ: ð31Þ

3. Simulations

We implemented the above model as a Cþþ program and

used a pseudo random generator to simulate the

probabilities. The program generates chains of configura-

tions for the whole cellular automaton:

ca0 ! ca1 ! ca2 ! · · ·! cat21 ! cat ! catþ1 ! · · ·: ð32Þ

Such a chain is a realisation of the Markov-like two-step

process. The outcome of the simulation is controlled by

ten parameters:

General

2n circumference of cylinder

d desired density

Gradient

gp prepattern

gb brain cells

gc tumour cells

Tumour

Gr rest

Gf flux

mþ
c birth

m2
c death

Brain

m2
b death

For all simulations, we set 2n ¼ 50 and d ¼ 4: The

initial state ca0 is (see also figure 2):

ca0ðdcÞ ¼
ðd; 0; . . .; 0Þ if dc ¼ ðx; yÞ and x , 10

ð0; 0; . . .; 0Þ otherwise;

(

ð33Þ

ca0ðdbÞ ¼
0 if db ¼ ðx; yÞ and x , 10;

d otherwise:

(
ð34Þ

For computational simplification, the state cat(x,y) is

kept constant for all t if x , 2: Please notice that the ratio

of the total number of cancer and brain cells does not

correspond to any biological or clinical property. We only

simulate a small fraction of a real brain tumour.

We used a brute force method to scan the parameter

space. For each parameter set, we calculate and analyse

the mean density of malignant cells and brain cells along

the y-axis as functions of the x-position and time. Out of

the five resulting growth patterns (I)–(V) that can be

observed (see figure 3), we only consider the first three.

In pattern (IV) the resting probability of the malignant

cells is zero and only the prepattern decides on the

movement of the malignant cells and in pattern (V) the

constant states cat(x,y) at the left boundaries constitute

the source of the cell flux. We disregard these two

patterns as being side effects of the boundaries of the

model. In addition to the results shown in figure 3, the

observed local density of malignant cells in the cancer

bulk can vary with the parameters (above or below the

target density d).

The three travelling wave-like patterns (I)–(III) differ

in the time evolution of their shape. In the first pattern

(I), the shape is nearly constant in time and there are no

isolated single invading cancer cells farther away from

the cancer bulk. The second pattern (II) differs from the

first one in that two growth speeds can be observed: the

speed of the cancer bulk front and the higher speed of

invasion of single malignant cells into the healthy brain

tissue. The shape of the travelling wave splits into two

Cancer invasion of brain tissue 25



Figure 3. Observable growth behaviour. The mean densities (i.e. mean number of tumour cells (thick line) or brain cells (thin line) per CA node) in x
direction alter 300 (dotted line), 600 (dashed line) and 900 (solid line) time units are shown. The local density of malignant cells can vary with the
parameters (not shown). Traveling wave-like behavior: (I): Constant shape in time, no invading cells far away from the cancer bulk. (II): Bulk boundary
with constant speed and invading cells with higher speed. (III): Like (II) but with density instabilities. Artefacts: Caused by boundary conditions and the
approximation of the prepattern as a vector field. The density of brain cells is nearly constant over time. (IV): Detached traveling wave and only invading
cells without a cancer bulk. (V): Constant cell flux caused by boundary condition at the left edge of the LGCA.
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parts: the section dependent on the bulk boundary is

constant in time and only the density section of the

moving cells grows in length. This occurs only if gpGf is

greater than zero. In the third pattern (III) density

instabilities can additionally be observed. A time series

of the two-dimensional density plots of pattern (III)

identifies growing islets of malignant cells just in front

of the tumour bulk (see figure 4). Due to the existence

of these islets, the tumour front develops in a

discontinuous fashion (see (D) in figure 4).

To compare the observed speeds we use the slope of a

linear approximation of the growth process. We define the

CA node as part of the cancer bulk if the local

tumour density is at least the same as local brain density

ðrc $ rbÞ: The speed of the bulk boundary is calculated by

linear regression of the x-coordinate of the rightmost

cancer bulk CA node position, which depends on time (see

figure 4)

posbulkðtÞ ¼max{xj’y

: catðx; yÞ is part of the cancer bulk}: ð35Þ

The speed of single invading cells is calculated by linear

regression of the x-coordinate of the rightmost malignant

cell position, which depends on time

possingleðtÞ ¼ max{xj’y : catðx; yÞ is cancer node

and jcatðx; yÞj . 0}: ð36Þ

The speed vbulk of the boundary of the cancer bulk

and the speed vsingle of single invading cells are equal

Figure 4. Time evolution of two characteristic invasion behaviours (A) þ (B): Tumour growth from left to right: malignant cells are visualised as black
dots; one can distinguish tumour bulk and single invading cells. (A): Without influence of prepattern. The observed growth pattern corresponds to a
benign cancer in the grey matter with expansive growth and (almost) no invasion. (B): With influence of prepattern. The growth pattern corresponds to a
malignant tumour in the white matter. Due to the high density of malignant cells in front of the cancer bulk cancer islets are observable. (C) þ (D):
Position of the rightmost CA node marked as tumour bulk and the rightmost malignant cells (see top row) in time. The invasion speed can be calculated
as the slope of the linear regression line. (C): No influence of the prepattern. The speeds of invasion front and of tumour boundary do not differ. (D): Due
to the influence of the prepattern the tumour boundary changes. Now the speed of the invading front is higher then the speed of the tumour boundary
(corresponding to the situation shown in the top row).
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in pattern (I) and unequal in patterns (II) and (III).

We inspect the fraction vbulk=vsingle because vbulk #

vsingle: If vbulk=vsingle ¼ 1; the speed does not differ and if

vbulk=vsingle , 1 the invading front is faster then the bulk

boundary. In order to eliminate random side effects we

repeated the simulations 10 times for each parameter set

and calculated the mean value and second moment of the

speeds. For each parameter set, the calculated speeds have

only a small standard deviation. Typical results are shown

in figure 5.

The invasion speed vsingle highly depends on the product

gpGf controlling the prepattern (see figure 5, left column).

The bulk speed is, for example, controlled by the death

rate m2
b of brain cells. If m2

b is large, the proliferation of

malignant cells is not restricted by space due to the higher

probability for brain cells to be killed. And if there is a

high flux of malignant cells (gpGf is high), then there is

more space for proliferation and the bulk speed increases.

The ratio vbulk=vsingle is 1 if gpGf ¼ 0 but if gpGf . 0 we

observe a different speed ratio and the ratio vbulk=vsingle is

less than one. With growing gpGf, the ratio vbulk=vsingle

decreases nearly linearly, but if the influence of the

prepattern reaches a parameter-dependent level we

observe a saturation in the ratio vbulk=vsingle (see figure 5).

4. Discussion

We have introduced a lattice-gas cellular automaton to

simulate and to analyse the influence of the fibre tract

structure of the brain on the development of the brain

tumour Glioblastoma multiforme. In the model, we

consider healthy immobile brain tissue and potentially

mobile malignant cells. Malignant cells may move or rest

and only resting malignant cells proliferate (Go or Growth

hypothesis). Movement and resting behaviour are con-

trolled by local cell densities and density gradients of brain

and cancer cells (haptotaxis). Chemotaxis and any cellular

interactions not dependent on cell densities are not included

in the model. The brain tissue is destroyed by cancer cells

and it is assumed that the brain can not regenerate. The

physical structure of the brain, in particular its white matter

tracts are considered as a prepattern represented by a vector

field, which introduces unidirectional persistence in

malignant cell movement. Such persistence of GBM cell

movement has been experimentally observed.

We have characterised the speeds of bulk boundary and

malignant cell invasion and found three different

travelling wave-like growth patterns (figure 3 (I)–(III)).

In the first scenario (I), a constant travelling wave shape

without invading cells far away from the cancer bulk is

observed. The travelling wave shape is non-constant in the

second scenario (II) because here invading cells possess a

higher speed than the bulk boundary. The third scenario

(III) is similar to the second, but, additionally, density

instabilities appear, visible as growing islets of malignant

cells just in front of the tumour bulk (see also figure 4).

In addition, there are artefact scenarios with only invading

cells and without a growing cancer bulk. Particularly, in

scenario (IV) there are no resting cells ðGr ¼ 0Þ and thus

there is no proliferation; due to the imposed prepattern a

moving cluster of malignant cells emerges which is

composed of the cells of our initial state. In scenario (V)

proliferation ðGr . 0Þ occurs, but almost only at the left

boundary due to the boundary condition (there are always

malignant cells at the left boundary). In both cases the

brain tissue remains nearly unchanged because the death

rate of brain cells m2
b and the density of malignant cells

are small.

The main difference between scenario (I) and scenarios

(II) and (III) is the absence and presence of the prepattern,

respectively. Even under a small influence of the

prepattern ðgpGf . 0Þ; isolated malignant cells can be

detected far away from the cancer bulk. Note that no

density gradients of brain or cancer cells are required

to observe this behaviour. Without the influence of the

“fibrous” prepattern isolated cells are only found in the

vicinity of the bulk.

4.1 Scenario (I)

The observed growth pattern in scenario (I) corresponds to

a “benign” cancer in the grey matter with expansive

growth and (almost) no invasion. Clinically, such a growth

mode is visible within the grey matter. This behaviour is

observed only if there is no influence of the “fibrous”

prepattern ðgpGf ¼ 0Þ and is nearly independent of the

other parameters. In addition, surrounding tissue is

dissolved by direct contact of cancer bulk and brain

tissue. Scenario (I) is comparable to travelling wave

solutions in the reaction-advection model analysed in

Perumpanani et al. [14] and Marchant et al. [15,16]. Here,

as in our lattice-gas cellular automaton only malignant

cells and surrounding tissue cells are considered.

Additionally, in the cited model the tissue is dissolved

by a non-diffusible protease secreted by the tumour cells.

Furthermore, in order to simulate proliferation of tumour

cells the authors use a bounded non-linear term (as in the

Fisher-KPP equation, [34,35]) and the movement along

the density gradient of the tissue (haptotaxis) has been

explicitly taken into account. In a reduced 1D-PDE system

a travelling wave solution with unlimited support (i.e. the

density function of malignant cells is non-zero every-

where) is observed, which declines quickly towards zero,

and, in addition, shock wave-like solutions (unlimited

only in one direction and declining rapidly to zero in the

other direction). In contrast, in our model without

influence of the prepattern ðgpGf ¼ 0Þ we also find a

rapid decay of tumour cells in the observed travelling

wave but no shock wave-like pattern. The explanation for

the rapid decay is the random walk of isolated tumour cells

in the homogeneous healthy brain tissue. This undirected

movement limits the speed (vsingle) and range of the

invasion front. In combination with the proliferation of

tumour cells and the death of brain cells, the random walk
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produces a bulk speed vbulk as fast as vsingle. Because a

travelling wave analysis of a CA system is much more

complicated than of a PDE system we diagrammed only

numerical results in figure 5.

The speeds of cell movement converge to a maximum

(see figure 4) with increasing influence of density

gradients ðGf " 1Þ: This can be explained as follows:

because the more malignant cells lose contact to

Figure 5. Typically observed speeds of bulk boundary and invading front. Left: Scenario (I), without influence of the prepattern. The tumour bulk growth
(vbulk) is nearly as fast as the invasion front (vsingle) due to the random walk of malignant cells. This undirected movement also reduces the expansion space
in front of the tumour and therefore proliferation is limited. The death rate of the brain cells determines the maximal speed of tumour expansion. Right:
Scenario (II), with influence of prepattern only. Due to the directed random walk, the invasion front is slowed down only slightly. The tumour bulk growth
speed is increased because the malignant cell flux towards the brain tissue creates a constantly available expansion space just in front of the tumour bulk
which allows further proliferation. This is also the reason why the maximum speed does not approach any limit. The speed of the tumour bulk is lower than
the speed of the invasion front due to the death rate of brain cells. Except for a short transition phase the ratio of both speeds is constant.
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the tumour bulk, the more expansion space for the tumour

growth exists in front of the tumour bulk and due to the

proliferation process this space is filled up with new

malignant cells. The speed vbulk of the bulk is then limited

by the death rate of the brain cells (the higher this rate the

higher the speed).

4.2 Scenario (II 1 III)

The growth pattern in scenario (II) and (III) corresponds to

a malignant tumour in the white matter. The pattern is

mainly caused by the prepattern. Even if the influence of

the fibre structure is very small ðgpGf . 0Þ; we observe a

flux of malignant cells moving ahead of the tumour into

the healthy brain. The prepattern allows persistent cell

movement even through homogeneous (uniform density)

tissue regions. In particular, the existence of density

gradients (as in chemo- or haptotaxis cell movement) is

not required. In addition, vbulk=vsingle , 1 (see figures 3

and 5), since, due to the directed random cell motion, the

invasion front is slowed down only slightly, contrary to the

tumour bulk that is slowed down significantly due to

interaction with brain cells. This is again a travelling

wave-like behaviour even if the travelling wave shape is

not constant. No such behaviour has been described so far

for PDE systems modeling tumour invasion. Note that

movement of tumour cells that have left the tumour bulk

remains directed since the “fibrous” prepattern induces a

movement preference also in the homogeneous brain

region. Because of the directed movement of malignant

cells, there is less crowding and more space for expansion,

i.e. proliferation. Accordingly, the number of tumour cells

grows faster with than without a prepattern. Because the

degradation probability of brain cells is a function of local

cancer cell density, the tissue in the immediate vicinity of

the tumour bulk is degraded with a larger probability due

to the prepattern-imposed cell flow. The combination of

enhanced proliferation of tumour cells and degradation of

healthy brain tissue implies a higher growth speed of the

tumour bulk compared to scenario (I). The same reasoning

explains why no saturation is observed: after a short

transitional phase in which random movement dominates

the directed tumour cell movement (depending on the

parameter weights) the ratio of both speeds vbulk and vsingle

remains constant.

4.3 Scenario (III)

The surface of the bulk in scenario (III) loses its

connectivity and normal brain tissue is incorporated into

the tumour. The density in the flux of malignant cells is

high and hence the probability for malignant cells to rest is

high. In combination with proliferation (only possible for

resting cells) we observe a density instability: the higher

the flux of invading cells, the higher the density of

malignant cells in front of the cancer bulk and the higher

the probability for the creation of small “cancer islets”

(see figure 3). The jumps in time evolution of the tumour

front in figure 4 originate from these islets.

Note that in our lattice-gas cellular automaton we have

not explicitly modeled subpopulations of cancer cells but

distinguish moving and resting malignant cells. This is

justified since from a biological point of view it is not clear

how to subdivide the malignant cell population in disjunct

subpopulations with different properties. In particular, we

have not explicitly modeled any flux between subpopu-

lations of malignant cells as, e.g. in Sherratt and Chaplain

[17] or in the hybrid PDE/CA models of Dormann and

Deutsch [28] and Anderson [30]. An approximating

continuous PDE system for our LGCA model would be a

single-species advection reaction-diffusion model, in

which the parameters (e.g. diffusion coefficient or

proliferation rate) are functions of the local cancer cell

density.

In the linear reaction-diffusion model of Swanson (see

e.g. [20]) the orientational information about fibrous brain

structures is not considered. In this model, cell motion is

approximated by isotropic diffusion, which corresponds to

the assumption that the movement of single malignant

cells is random even in regions of high coherency of fibre

structures (as in the corpus collosum). A spatio-temporal

analysis of the invasion front is only possible indirectly

via the definition of detection thresholds. In addition, one

can correlate the temporal evolution of tumour volume

with the mean time of survival. Travelling wave solutions

do not appear due to the linear formulation of the reaction-

diffusion equation.

Although we have so far considered only a first

approximation of the complex developmental process of a

GBM in the proposed lattice-gas cellular automaton

model, clinical observations agree in principle with the

results of our model-based analysis. For instance, it is a

common assumption that the origin of a butterfly-shaped

GBM lies in one hemisphere, and then grows very fast

through the corpus collosum so that a symmetrically

shaped cancer is observable in both halves of the brain.

The fast traverse through the corpus collosum is explained

by the highly parallel aligned fibres in this anatomical

structure. The aim of our further work is to collect these

data from the clinical practice of neurosurgery and analyse

the relation of fibre structure and speed of infiltration. In

the next step, our model will be validated against original

clinical and radiographic data.
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