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Erythema gyratum repens (EGR) is a rare, inflammatory dermatosis of unknown aetiology. The
morphology of the eruption is striking and displays rapidly evolving circinate and gyrate bands of
erythematous and scaly skin. Although the aetiology of the pattern is unknown, it has previously been
noted that the eruption shares morphologic features with the patterns of spatio-temporal chemical
concentration profiles observed in the Belusov-Zhabotinski (BZ) reaction. Yet this morphologic
correspondence has not been investigated further. Here we apply a simple non-linear reaction–diffusion
model, previously used to describe the BZ reaction, as a template for pattern formation in EGR, and
show how the mechanism may provide a biochemical basis for many of the dynamic and morphologic
features of the rash. These results are supported by the results of a cellular automaton simulation
approximating the dynamics of oscillatory chemical systems—the Hodgepodge machine—where the
spatio-temporal patterns developed show astonishing similarities to the morphology of EGR.
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1. Introduction

Erythema gyratum repens (EGR) is a rare, non-infectious

inflammatory dermatosis of unknown aetiology first

described by Gammel [1] (figure 1). The morphology of

the eruption is often described as serpiginous [2] or gyrate

with bands of inflammation moving across the skin surface.

It has been likened to ‘wood-grain’ and the clinical

appearance, which may affect the whole integument with

the exception of palms and soles, is distinctive. It has been

reported as paraneoplastic in 82% of cases where the

commonest association is carcinoma of the bronchus [2].

Despite its strong association with underlying malignancy,

the pathogenesis remains unknown. However, it is thought

by most investigators that the eruption is a manifestation of

an immune response in the skin [2,3]. Holt and Davies

suggested the rash may be a consequence of either tumour

antigens cross reacting with skin antigens, tumour induced

hapten production in the skin, or tumour antigen–antibody

complexes depositing in the skin [3]. In support of these

ideas Caux found positive direct immunofluorescence in

both the skin and tumour (bronchial) basement membrane

[4]. Although the histology is non-specific, Langerhans

cells have been found in an abnormal suprabasal position

suggesting the presence of antigen at that site [5]. Direct

immunoflourescence in affected tissue has been reported as

both negative [5,6] and positive; the latter has revealed

granular C3 and IgG deposition along the basement

membrane [4]. It is unknown why EGR is sometimes not

paraneoplastic, however, it has been postulated that

similar mechanisms to those noted above may occur if

non-tumour antigens were involved in the generation of

antibody [7].

Despite the distinctive and remarkable clinical appear-

ance of EGR, there is a paucity of discussion in the

literature regarding the aetiology of its morphology and

rapid evolution. Stone, writing on the causes of annular

eruptions, has suggested that cutaneous inflammation may

lead to changes in the physico-chemical properties of the

ground substance such that the diffusion of pro-

inflammatory mediators may be augmented [8]. Hence,

it was suggested ring-like structures may be a conse-

quence of outward diffusion. It was noted by Wakeel that

the migratory nature of the rash in EGR is difficult to

explain [5]. However, Moore, in a letter to the British

Journal of Dermatology in 1982, noted the similarity of

the eruption to the travelling wavefronts of the BZ

reaction and in the patterns of growth in agar of the slime
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mould D. Discoideum [9]. Yet this remarkable morpho-

logic correspondence has not been investigated further.

In 1952, Belusov discovered a chemical reaction in the

laboratory in which the concentration of certain chemicals

varied periodically in time [10]. It is now known that

chemical concentrations can vary periodically in time and

space, and if the chemical reactions are of sufficient

complexity, their long term behaviour may exhibit chaotic

spatio-temporal dynamics [11]. A mixture of malonic

acid, potassium bromate, cerous sulphate and sulphuric

acid can exhibit target-like patterns of expanding and

colliding rings in a thin layer if the differences in chemical

concentration are linked to an indicator, such as one that

changes color with variations in pH (figure 2). Rotating

spiral forms are also easily produced. The chemistry of

such a process is reasonably well understood and involves

auto-catalysis and inhibition [12]. Mathematical modeling

in one spatial dimension of these reaction sequences leads

to equations such that their solutions may exhibit spatio-

temporal oscillation in chemical concentration [13]. These

one-dimensional plane wave solutions can in fact model

the target patterns and the shock-like structures present in

the two-dimensional case [14]. In the following, a specific

reaction–diffusion model, previously described by Kopell

and Howard [13] to explain the concentric ring-like

appearance of the BZ reaction, will be used to describe

some of the morphologic and dynamic features of EGR.

How, then, is this model justified?

First, the morphology of EGR, the BZ reaction and

cAMP waves in slime mould culture show striking

similarities. All display concentric rings of expanding

fronts and appear to have distinct “bulls-eyes” developing

randomly in the domain on which the patterns arise. In the

BZ reaction individual concentric ring patterns exhibit

their own characteristic wavelength [11], and this feature is

sometimes observed in EGR. In addition, the morphology

of the shock fronts† are similar. Spiral forms are present in

EGR (see figure 1) and such patterns are easy to produce in

the BZ reaction [11]. These morphologic considerations

suggest the patterns of cutaneous disease in EGR, by

analogy with the BZ reaction and cAMP waves in slime

mould culture, are due to a wave-like phenomenon.

Second, consider the dynamic properties of EGR. The

bands of inflammatory skin move with velocities up to 1 cm

per day [2]. Hitherto, there has been no adequate

explanation for this observation. As noted above, Stone

suggested ring-like phenomena in the skin may be due to

simple Fickian diffusion [8]. However, it is impossible for

biological molecules to diffuse as quickly as the reported

rates of ring expansion in EGR. Small ionic species such as

the bromide ion, with a diffusion coefficient of the order

1025 cm2 s21 [15], require tens of hours to be transported

1 cm. In vivo, the transport of biological molecules of

larger molecular weights will, over longer distances, lead to

transport times incompatible with the rates of ring

expansion reported in EGR.‡ For example, sucrose, with

a diffusion coefficient of 5 £ 1026 cm2 s21 [16], requires

approximately one month to be transported 5 cm.

Mathematical models of the BZ reaction reveal solutions

in which the bromide ion concentration waveform achieves

velocities of propagation far greater than can be expected

by diffusion alone [15]. In the following a similar process is

proposed to account for the speed of propagation of the

bands of inflammation in EGR.

Third, by analogy with the BZ reaction, EGR appears to

undergo a process of self-organisation. Hence, it may be

Figure 1. Erythema gyratum repens. Reproduced from Wakeel et al. [5]
with permission from Blackwell Publishing.

Figure 2. Morphology of the Belusov-Zhabotinski reaction.
Reproduced from Ball [17] with permission from Oxford University
Press.

†A shock is a discontinuity in a chemical concentration gradient and is produced when different expanding rings collide.
‡The characteristic time for diffusive transport is of the order x 2/D, where x is the distance and D is the diffusion coefficient.
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possible to think of the nature of the eruption as an example

of a dissipative structure, a term used by Prigigone to

describe physical systems held far from thermodynamic

equilibrium [18]. The organisation of spatio-temporal

pattern in the skin is reflected by a reduction in the Shannon

entropy of the system. It is a measure of the probability

distribution of finding a given molecule in a small volume of

skin. Clearly this measure is not maximal in EGR, since the

inflammation is spatio-temporally ordered and not smoothly

distributed. On the other hand, if the skin eruption in EGR did

not represent an example of a dissipative structure, with the

passage of time it would be expected that the appearance of

the rash would lose coherence, a feature not observed in

EGR. Dissipative structures depend on non-linear feedback

between the production and destruction of molecular

species, and such behaviour is likely to be an important

part of immune regulation.

Finally, it appears reasonable to suggest chemical

concentration waves can propagate in the skin microenvir-

onment since the existence of chemical concentration

waves in biological settings is now well established. For

example, macromolecules such as RNA have been shown

to exhibit wave-like properties in capillary tubes in vitro

[19], cAMP waves have been observed in slime mould

cultures, and calcium waves are thought to play an

important role in some aspects of embryogenesis [20].

Significantly, the most successful explanation for the

migratory nature of the pigmentary patterns over the skin of

the angelfish Pomacanthus invokes a reaction–diffusion

wave [21].

2. Methods

2.1 A reaction–diffusion model

Consider the following set of chemical transformations:

C ) X þ D; ð1Þ

2X þ Y ) 3X; ð2Þ

G þ X ) Y ; ð3Þ

X ) E þ F: ð4Þ

Here, the spatio-temporal evolution of X and Y is to be

determined. By the law of mass action, the above

reaction sequence is equivalent to the following coupled

partial differential equations, where it is assumed D, E

and F have no biologic role and the diffusion of X and Y

(with common diffusion coefficient d) is included:

›A

›t
¼ k1

~C þ k2A2B 2 k3
~GA 2 k4A þ d

›2A

›x2
; ð5Þ

›B

›t
¼ 2k2A2B þ k3

~GA þ d
›2B

›x2
; ð6Þ

where A, B, ~C and ~G denote the concentrations of X, Y, C

and G, respectively ð ~C and ~G are assumed constant), the

k1–k4 are rate constants, and t is time. With the following

substitutions:

u ¼
A

~G
; v ¼

B

~G
; ~t ¼ k1t; L ¼

ffiffiffiffiffi
d

k1

r
; ~x ¼

x

L
; ð7Þ

a ¼
~C

~G
; b ¼

k3

k1

~G; c ¼
k2

k1

~G2; e ¼
k4

k1

; ð8Þ

the non-dimensional equations are obtained:

›u

›t
¼ a 2 eu 2 uðb 2 cuvÞ þ

›2u

›x2
; ð9Þ

›v

›t
¼ uðb 2 cuvÞ þ

›2v

›x2
; ð10Þ

where the tildes are dropped for convenience. For

simplicity parameters a, c and e are set to equal unity.

Equations (9) and (10) have been studied by Prigigone

and Lefever [22]. Wave train solutions will be found if

the substitution

z ¼ t 2 ða=vÞx ð11Þ

(where a and v are the non-dimensional wavenumber

and frequency, respectively) yield values of a and v such

that 2p-periodic solutions for u and v in z exist. The

existence of plane wave solutions for a more general

class of reaction–diffusion equations has been discussed

in detail by Kopell and Howard [13]. For the purposes of

this analysis, it suffices to show that a one-parameter

family of plane waves as solutions to equations (9) and

(10) will exist if the reaction kinetics, in the absence of

diffusion, exhibit stable limit cycle solutions. To

demonstrate the existence of a stable limit cycle it is

necessary to construct a trapping region in the phase

plane which contains an unstable spiral at the critical

point† (Poincare-Bendixon theorem‡). The Jacobian for

the reaction kinetics of equations (9) and (10) at the

†The nullclines are curves in phase space given by (9) and (10) where the space and time derivatives are set to zero. The critical point is found at the
intersection of the nullclines.

‡The Poincare-Bendixon theorem states that if a trajectory is confined to a closed, bounded region and there are no fixed points in the region, then the
trajectory must eventually approach a closed orbit.
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critical point (u ¼ 1, v ¼ b) is given by

b 2 1; 1

2b; 21

" #
:

For the critical point to be an unstable spiral the eigenvalues

must be complex with positive real part. This is only

satisfied for 2 , b , 4: Figure 3 shows the construction

of a trapping region PQRST in the u, v phase plane for

b ¼ 3:6:Along the boundaries TP, PQ, QR and RS dv=dt ,

0; du=dt . 0; dv=dt . 0 and du=dt , 0; respectively,

hence these trajectories point inward. Since

du

dt
2 2

dv

dt

� �
¼ 1 2 u ð12Þ

it follows that, for u . 1

du

dt
, 2

dv

dt
: ð13Þ

But the line segment ST has slope 21, hence, there are

no trajectories that can cross this line pointing outward.

This completes the trapping region PQRST, thus satisfying

the requirements of the Poincare-Bendixon theorem. Since

the intersection of the nullclines is an unstable critical

point with growing oscillations, a limit cycle solution

exists within this confined set. A stable limit cycle then

exists as a solution to the reaction kinetics of equations (5)

and (6). Thus a one-parameter family of plane waves will

exist as solutions to the reaction-diffusion equations (9)

and (10). For other choices of b, the existence of plane

wave solutions depends, as above, on the presence of the

corresponding confined set.

Substitute z ¼ t 2 ða=vÞx into equations (9) and (10)

and define

du

dz
¼ q; ð14Þ

dv

dz
¼ r: ð15Þ

Then

dq

dz
¼

v2

a2
ðq 2 1 þ u þ 3:6u 2 u2vÞ; ð16Þ

dr

dz
¼

v2

a2
ðr 2 3:6u þ u2vÞ: ð17Þ

The coupled ordinary differential equations (14)–(17)

will yield a family of plane wave solutions for differing

values of v2=a2: Kopell and Howard have solved these

equations numerically giving specific values of v2=a2 and

initial conditions that correspond to 2p-periodic orbits in u,

v, du=dz and dv=dz phase space [13]. Since z ¼ t 2

ða=vÞx; it is clear that in the limiting case when the

wavenumber approaches zero (i.e. spatial homogeneity)

the system (14)–(17) reduces to the differential equations

(9) and (10) without diffusion which has a stable spatially

homogeneous limit cycle solution. Hence, as a2=v2

approach zero, a family of plane waves will exist as orbits in

u, v, du=dz and dv=dz phase space that will approach the

stable limit cycle in (u, v) space. Plane wave solutions for u

and v are shown in figure 4 plotted using initial conditions

supplied by Kopell and Howard [13]. Figure 4(a) shows a

representative sample of the family of plane waves that

exist for b ¼ 3:6: Since z ¼ t 2 ða=vÞx figures 4(b) and

4(c) can be interpreted as wave trains moving to the left with

wavelength a 21, frequency v and speed a21v: Figure 5

shows the limiting case wherea=v ¼ 0 which corresponds

to the stable spatially homogeneous limit cycle.

2.2 The Hodgepodge machine

The Hodgepodge machine, introduced by Gerhardt and

Schuster [23] is a cellular automaton originally developed

in order to model the oxidation of CO on a palladium

catalyst. However, as recognised by the authors, the

Hodgepodge machine is a simple one-variable model

capable of approximating the dynamics of many

oscillatory and auto-catalytic chemical processes. In

particular, the excited-refractory-receptive cycle charac-

teristic of excitable media is approximated by this simple

model, such as the oxidisation of malonic acid by

potassium bromate in the presence of iron or cerium.

The Hodgepodge machine is a discrete model,

implemented on a regular lattice, where each lattice site

can take on any integer value from zero to N inclusive.

The sites are updated as follows:

sijðt þ 1Þ ¼
KijðtÞ

m

� �
þ

IijðtÞ

v

� �
for sijðtÞ ¼ 0;

sijðt þ 1Þ ¼ minðSijðtÞ þ n;NÞ for 0 , sijðtÞ , N;

where SijðtÞ ¼
1

IijðtÞ

X
sijðtÞ;

sijðt þ 1Þ ¼ 0 for sijðtÞ ¼ N:

Figure 3. Schematic representation of the existence of a confined set
PQRST for the kinetics (9) and (10) without diffusion for b ¼ 3:6: Since
the critical point is an unstable spiral and all trajectories cross PQRST
pointing inward, a limit cycle solution exists within this bound.
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Here sij(t) is the value of the cell at site ði; jÞ at time t, the

Kij are the number of cells in the defined neighbourhood of

site ði; jÞ with value s ¼ N; the Iij are the number of cells

in the neighbourhood of site (i, j) with value 0 , s , N;
Sij(t) is an average value of the s sampled over the

neighbourhood of sij (excluding s ¼ N), and m, v and n

are positive constants. The square brackets define the

nearest minimal integer value.

Thus the Hodgepodge machine represents an approxi-

mation to the reaction kinetics of equations (5) and (6)

where the cellular automaton variable may be associated

with X. The autocatalytic reaction (2) approximates the

Hodgepodge terms K and I, whereas k1 in equation (5)

may be approximated by n. Indeed, examination

of figure 4(b) shows the solution waveform for

the concentration of X demonstrating a rapid rise in

concentration followed by a gradual fall and a relatively

long refractory period. The advantages of the cellular

automaton implementation are clear—in contrast to the

difficulties associated with finding two-dimensional

solutions to non-linear partial differential equations—

qualitative results in terms of some of the spatial patterns

that may form in excitable media are easily obtained.

3. Results

Various investigators have modelled the BZ reaction using

reaction–diffusion equations and in many examples

quantitative results can be obtained. With a reasonable

knowledge of the important chemical reactions and the

values of rate constants and diffusion coefficients it is

possible to make predictions regarding the expected wave

front velocities. In the case of the bromide ion, predictions

have proven reasonably accurate [15]. The reaction–

diffusion model above has been used by Kopell and

Howard [13] to describe plane waves in one spatial

dimension in the BZ reaction; these are parallel waves far

from the centre or boundary of the pattern. Equations (5)

and (6) with their particular non-dimensionalisation as

described can be used to account for some aspects of the

dynamic behaviour of the BZ reaction—for example

setting the wavespeed to ,1023 cm s21 and the

wavelength to ,0.1 cm (where a2=v2 ¼ 0:3) yields

d ¼ 2:5 £ 1025 cm2 s21 and k1 ¼ 1022 s21—in this case

matching the physical properties of the bromide ion and its

experimentally measured rate of production.

Consider the dynamic properties of EGR. The speed of

propagation of the inflammatory bands is approximately

1 cm per day while the wavelength (i.e. distance between

the midpoints of the successive bands) is of the order 1 cm.

With a ¼ 0:5447 and v ¼ 0:9945 [13], the preceding

constraints determine unique values of the diffusion

coefficient d and the rate constant k1. Here,

d , 2.5 £ 1026 cm2 s21 and k1 , 1025 s21. With the

specific non-dimensionisation used, the values of the other

rate constants are not explicitly defined. Thus, the model

and its particular non-dimensionalisation can account for

Figure 4. (a) Phase portrait of the oscillating solution to the system
(14)–(17) where b ¼ a 2=v 2 and z ¼ t 2 ða=vÞx: The solution for three
values of b are shown, each an example of the family of plane waves with
differing periods and wavelengths associated with a particular value of b.
In this example, b ¼ 3:6: The chemical concentration waveform (b) is
shown as u as a function of z, and in (c) as v as a function of z. The
examples shown in (b) and (c) correspond to b ¼ 0:3: These waveforms
propagate to the left with speed a 21v.

Figure 5. The limit cycle solution without diffusion ðb ¼ 0Þ for
b ¼ 3:6:
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the wavelength and wavespeed of the inflammatory bands;

in addition it imposes constraints on the numerical values

of physical constants. It suggests X is a relatively small

diffusable molecule (with molecular weight of the

order ,1–10 kDa) [24] and that its rate of production

plays a critical role in the generation and maintenance

of the pattern. The application of the mathematical

model to the physical system in the skin—as for the BZ

reaction in a petri dish—demands that the solutions are

stable to perturbation; this in general is a difficult

issue mathematically and will be addressed in the

discussion.

What global morphologies can these solutions

exhibit? Howard and Kopell have shown that equations

(9) and (10) can account for some aspects of

the two-dimensional morphology of the BZ reaction

[14], suggesting it may be possible to use the model to

explain the patterning in EGR. Here we approximate

the typical excitable kinetics described above by the

implementation of the Hodgepodge machine. In the

example presented, a 12 neighbourhood lattice is

used to increase spatial resolution, while the

parameters m and v are generalised to non-integer

values. Figure 6 shows the typical morphology of Type

4 behaviour from t ¼ 100 to t ¼ 106; with random

initial conditions and where m ¼ 0:5;v ¼ 5; n ¼ 15 and

N ¼ 100: The patterns display a remarkable correspon-

dence to those observed in both the BZ reaction and

EGR. A striking feature observed in both the

Hodgepodge simulation and EGR is the presence of

Figure 6. Simulation of the hodgepodge machine on a 200 £ 200 grid, with N ¼ 100; showing the evolution of a Type 4 pattern (with random initial
conditions) from t ¼ 100 (left to right, then top to bottom) to 105: Model parameters are defined in the text.
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shock-like structures, parallel-like plane waves, con-

centric rings and “C” shaped double spirals.

4. Discussion

Motivation for considering EGR as a dynamical system

stems from Moore [9] where it was noted that the BZ

reaction and EGR look similar, hence suggesting a

common physical cause. Moreover, he suggested that it

may be possible to perform a quantitative analysis by

analogy with the BZ reaction and thus obtain insight into

the pathogenesis of disease. The aforementioned, then, is

an attempt at providing a mathematical and quantitative

framework that can account for some aspects of the

morphology and dynamics of EGR.

The major features of the model that may be of

relevance to the pathogenesis of EGR are twofold. First,

it suggests that wave-train like phenomena, if existing in

the skin, are due to oscillating concentrations of

immunoregulatory mediators. This in turn is dependent

on the presence of autocatalysis and inhibition of

molecular species. It is known that the immune response

in general is characterized by both exponential increases

in concentrations of chemical mediators and the

subsequent damping of such responses. Chronic inflam-

mation is likely to reflect a balance between both the

production and destruction of immunoregulatory

mediators and the relative concentrations of agonist and

antagonist. The current model embodies these concepts

of molecular regulation. Furthermore, systems where

there are periodic fluctuations in the concentrations of

chemical species—biochemical oscillators—are well

known to biochemists; for example, the intracellular

glycolytic pathway reveals periodic fluctuations in the

concentration of various intermediates [25]. The ideas

presented here suggest it may be of value to investigate

the skin in EGR looking for spatio-temporal oscillations

in the concentrations of various inflammatory mediators.

Second, matching the wavelength and wavespeed of EGR

to the model yields unique values of d and k1, the

diffusion coefficient of X and the rate constant for its

production. The values determined for these constants are

reasonable biologically. Additional experimental data are

required in EGR so that potential future models are not

strictly hypothetical but take into account known

cutaneous biochemistry. As a first step, the model

suggests investigators should look for immunoregulatory

mediators in the skin with molecular weights of the order

1–10 kDa. The rate constant k1 plays an important role in

the generation of the pattern. Hence, the rate at which X

is produced in the skin is critical to the maintenance of

the rash. The wave-train pattern would cease not only if

the rate of production of X decreased—as one would

expect intuitively, particularly if X were a pro-

inflammatory mediator—but also if its rate of production

increased. It may then be possible to switch off an

eruption such as EGR by administering a drug that

augments the production in the skin of a pro-

inflammatory mediator!

The concentration gradients in the skin are hypoth-

esised to directly lead to the generation of pattern in

EGR. The concentration profiles of chemical species will

not coincide in space with the rash; rather, there will

exist a phase shift (which is not necessarily an integer

multiple of the wavelength) that will be determined by

the time required for the peak (or trough) concentration

of X to lead to maximal skin inflammation. A constraint

on the system, however, is that the inflammation must

possess identical spatio-temporal behaviour as the

chemical wave-train. Thus the inflammation must

resolve in a given location before the next band arrives.

The coupled reaction sequence inherent in the model

described has the advantage that X and Y are out of

phase, hence, when X is at maximal concentration Y is at

a minimum and vice-versa. This means that the damping

of the inflammation (which clinically correlates with the

reversal of the skin to normal) may be augmented by not

only a reduction in the concentration of X but, if Y were

an antagonist of X, an increase in the concentration of Y.

Coupled agonist and antagonist activity may be

necessary in order to render inflamed skin normal in

relatively short time frames.

Chronic immune stimulation (such as antigen–antibody

deposition in the skin as proposed by various investi-

gators) may lead to the continual production of X. This is a

non-spatially dependent phenomena and may occur

widely over the integument. What is X? As a first guess,

consider the primary cytokine Interleukin-1 (IL-1). Many

of the biological properties of IL-1 are captured in

principle by the simple reaction kinetics and the

predictions of the model. What are these features? First,

one of its active forms is a relatively small extracellular

diffusible protein with molecular weight 17 kDa [26].

Second, it is produced constitutively in the skin [27]

hence, the reaction sequence in the model may be

augmented—with the subsequent development of the

rash—by its increased production (still at a constant rate)

reflected quantitatively by a change in the value of k1.

Third, IL-1 may be produced by leukocytes and

keratinocytes in the presence of antibody [27] (in EGR

the skin is thought to be rendered antigenic by cross

reactivity with tumour antigens). Fourth, IL-1 can

augment its own production (auto-catalysis) [27] and

will be degraded at a rate proportional to its concentration

by non-specific proteases. In addition, IL-1 will be

transformed either by binding to its membrane-bound

receptor (with subsequent cellular internalisation and

destruction), or by reacting with its extracellular soluble

receptor [26]. Finally, IL-1, as a primary cytokine, is

capable of producing skin inflammation when injected

into the skin in vivo [28]. The typical histology resulting

from the administration of IL-1 shows a non-specific

perivascular inflammatory infiltrate which shares many

morphologic features with the histopathology of

EGR. Thus, although IL-1 at minimum is likely to play
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a non-specific role in the generation of inflammation in

EGR, only further investigation can determine whether

IL-1 is of primary importance in the aetiology of both the

pattern and pathology of the rash.

There are a number of problems with the mathematical

model in attempting to explain a physical phenomenon

existing in the skin. First, the model does not take into

consideration boundary conditions [13]. Although, this

may be reasonable for the region the wave is expanding

into (since the skin is a closed two-dimensional surface

without bound), the analysis does not account for the

centre or bulls-eye of the pattern. Second, a major

consideration is the issue of stability of solutions. The

mathematical demonstration of stability in wave-like

solutions to reaction–diffusion equations is in general an

intractable problem; indeed only the simplest of examples

will yield to analysis [29]. Kopell and Howard [13] have

discussed the issue of stability in regard to plane wave

solutions of general reaction–diffusion equations; in the

model above it is conjectured that the solution is stable.

Mathematical criteria are set forth which are required for

stability and the above model possesses properties in

which these conditions are met. As the chemistry

underpinning the BZ reaction is reasonably well under-

stood it is likely the solutions to the foregoing

mathematical model are in fact stable since they correlate

well with the phenomena, which, by direct

observation, must be stable [13]. If no solutions were

stable then no patterns in the BZ reaction could exist. This

argument, however, cannot be carried over to EGR since

the underlying mechanisms of rash production are

unknown.

There are other differences between the use of the

current model in EGR and in the BZ reaction. It is

assumed that wave-front velocities in EGR are slow in

comparison with the BZ reaction. This is likely to have a

profound affect on stability. Solutions must exist in a

coherent manner for significant time periods. In EGR the

wave is required to maintain its form over periods of

time that may be measured in weeks—granted this is a

significant difficulty—yet the model suggests it is

possible at least in principle. Despite the uncertainty of

the latter, a remarkable feature of dissipative structures

in general is the fact that such systems can maintain

themselves for long periods of time [18]. Simple patterns

in the BZ reaction have been maintained for days in the

laboratory (thus avoiding the degradation expected as a

consequence of the second law of thermodynamics) by

the continual supply of raw materials and energy and the

drainage of products [30]. In the skin (which is an open

system) there is a continual supply of matter and energy

and drainage of products, directly from the dermis if

the reaction – diffusion mechanism occurs in the

epidermis or, alternatively, from the blood supply if the

reactions are primarily located in the dermis.

Only further analysis and experiment can determine

whether such slow waves exist in the skin for prolonged

periods of time.

Finally, the remarkable similarities of the spatio-

temporal patterns observed in the Hodgepodge machine

and in EGR add considerable weight to the above

hypothesis. It suggests excitable kinetics may be an

integral part of some examples of immune regulation. The

idea that the morphology and dynamics of EGR may be

due to successive waves of chemical concentration

propagating in the skin is both novel and without direct

experimental support. The lack of convincing alternative

hypotheses, however, has provided a major impetus for the

current proposal.
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