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Non-linear elasticity theory may be used to calculate the coordinates of a deformed body when the
coordinates of the undeformed, stress-free body are known. In some situations, such as one of the steps
in the location of tumours in a breast, the coordinates of the deformed body are known and the
coordinates of the undeformed body are to be calculated, i.e. we require the solution of the inverse
problem. Other than for situations where classical linear elasticity theory may be applied, the simple
approach for solving the inverse problem of reversing the direction of gravity and modelling the
deformed body as an undeformed body does not give the correct solution. In this study, we derive
equations that may be used to solve inverse problems. The solution of these equations may be used for a
wide range of inverse problems in non-linear elasticity.
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1. Introduction

The accurate location of cancerous tumours in patients

undergoing surgery is of considerable clinical importance.

Tumours in women’s breasts are often located using

magnetic resonance (MR) imaging. When using this

technique, the woman lies in the prone position with her

breasts hanging downwards into the machine used to

detect the signal. Imaging techniques are then used to

locate the position of the tumour. Should the woman

require surgery, then during the surgery she will usually lie

in the supine position, and so her breast will occupy a

different shape and position. The location of the tumour

when the woman lies in this different position is not

obvious, and so a technique for locating this tumour is,

therefore, of much clinical interest.

The deformations of the breast described above are much

too big for the theory of linear elasticity to be used, and so the

theory of non-linear elasticity must be invoked. Non-linear

elasticity theory relates the coordinates of an undeformed,

stress-free body to the coordinates of the deformed, stressed

body via a partial differential equation. When solving the

forwards problem, the coordinates of the undeformed, stress-

free body are known, and the governing partial differential

equation may be used to calculate the coordinates of the
deformed, stressed body. In particular, a numerical solution
of the forwards problem may be computed using standard
numerical techniques for solving partial differential
equations. The procedure described above for locating the

tumour and performing surgery requires that the breast takes
two different deformed positions. In both cases, the
deformation is independent of time, and caused by gravity.
To map the location of the tumour from the prone position to
the supine position requires two steps. The first step is to map
the deformed breast in the prone position to a stress-free
position, the position the breast would occupy in the
hypothetical situation in which there is no gravity. The
second step is to map the breast from the stress-free position
to the position it will occupy when the woman lies in the
supine position. The second of these steps is relatively easy if
the constitutive relations for different tissue types are known,
because it requires only the solution of a forwards problem as
described above. However, the first step—the solution of the
inverse elasticity problem—is more difficult. This is because
for this step the coordinates of the deformed body are known,
and we wish to calculate the coordinates of the undeformed
body. We, therefore, know the solution of the governing
partial differential equation for the corresponding forwards
problem, but we do not know the computational domain—
the region occupied by the undeformed body—on which this
solution is defined.

In this study, we formulate equations that may be used to

solve the inverse problem. We also demonstrate that, in

general, the solution of inverse problems in non-linear

elasticity is not as simple as reversing the direction of

gravity and solving a forwards problem on the deformed

body. Whilst the motivation of this work is the solution of

inverse problems related to the location of tumours in

breasts, the technique described is generic and may be
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applied to other problems in non-linear elasticity. One set of

problems that could employ a technique for the solution of

an inverse elasticity problem is image registration

problems, where a deformable body organ is imaged in

two different stressed positions. For example, X-ray images

of the lungs are usually taken with the subject erect.

However, the X-ray image may also be taken with the

subject lying on their side should the clinician wish to

investigate something that may show up better with the

subject in that position. In addition, some subjects are so ill

that it is only possible to obtain an X-ray image with the

subject lying down. A soft tissue model of the lungs and the

ability to solve inverse elasticity problems would aid in the

fusion of data from these two images. A further set of

examples is the determination of parameters for the stress–

strain relationship of a given material. Gravity will always

be acting on a material, and so it is impossible for a material

to be in a truly stress-free state. The determination of

parameters for the stress–strain relationship are often

derived by loading the material with a known force. Stress–

strain relationships may be evaluated by solving an

inverse problem to estimate the stress-free configuration

from the configuration due to gravity, followed by a

forwards problem to calculate the configuration caused by

loading the material.

2. Methods

Throughout this study, we use the summation convention,

whenever, an index is repeated in a product, summation over

all values of that index is implied. We define V0 to be the

region occupied by the undeformed body, and V to be the

region occupied by the deformed body. These regions have

boundaries ›V0 and ›V, respectively. We begin by defining

the stress and strain tensors that we use, and then write down

the formulations of both the forwards and inverse problems

in terms of these tensors. Finally, we demonstrate that the

forwards and the inverse problem are identical in the special

case, where quadratic and higher terms in the strain may be

neglected, i.e. under the conditions where classical linear

elasticity theory may be applied.

2.1. Stress and strain

Suppose X1, X2, X3 are the coordinates of the undeformed

body and x1, x2, x3 are the coordinates of the deformed

body. Then, the deformation gradient tensor F ¼ ðFiMÞ is

defined by

FiM ¼
›xi

›XM

: ð1Þ

The Lagrange–Green strain tensor E ¼ ðEMNÞ is then

defined in terms of the deformation gradient tensor by

EMN ¼
1

2
ðFiMFiN 2 dMNÞ ¼

1

2

›xi

›XM

›xi

›XN

2 dMN

� �
ð2Þ

where dMN is the Kronecker delta [1].

The stress tensor can be defined in terms of the coordinates

of the deformed or the undeformed body. We use two stress

tensors in this study, the second Piola–Kirchoff stress tensor

and the Cauchy stress tensor. The second Piola–Kirchoff

stress tensor, T ¼ ðTMNÞ; is the force per unit undeformed

area acting on the undeformed body. The Cauchy stress

tensor,s ¼ ðsijÞ is the force per unitdeformed area acting on

the deformed body.

For most materials a strain energy function, W, exists

[2]. Typical strain energy functions for incompressible

materials are

for biological tissue

W ¼ aðebðI123Þ 2 1Þ2
1

2
pðI3 2 1Þ ð3Þ

for Mooney–Rivlin materials

W ¼ aðI1 2 3Þ þ bðI2 2 3Þ2
1

2
pðI3 2 1Þ ð4Þ

where a and b are constants, p is the pressure (allowed to

vary within the body) and the quantities I1, I2 and I3 are

independent of any rotation of the coordinate axes and are

given by [3]

I1 ¼ 3 þ 2ðE11 þ E22 þ E33Þ ð5Þ

I2 ¼ 3 þ 4ðE11 þ E22 þ E33Þ þ 4ðE11E22 þ E22E33

þ E33E11 2 E2
12 2 E2

23 2 E2
31Þ ð6Þ

I3 ¼ 1 þ 2ðE11 þ E22 þ E33Þ þ 4ðE11E22 þ E22E33

þ E33E11 2 E2
12 2 E2

23 2 E2
31Þ þ 8ðE11E22E33

2 E11E
2
23 2 E22E

2
13 2 E33E

2
12 þ 2E12E23E31Þ: ð7Þ

In this study, we shall restrict ourselves to simulations

using the strain energy function for biological tissue,

equation (3), although the technique which we describe is

applicable to any valid strain energy function. The second

Piola–Kirchoff stress tensor is then given in terms of the

strain energy function by [3]

TMN ¼
1

2

›W

›EMN

þ
›W

›ENM

� �
: ð8Þ

The Cauchy stress tensor can then be calculated using

the following relation between the Cauchy and second

Piola–Kirchoff stress tensors [3]

s ¼
1

detF
FTF t: ð9Þ

2.2. The forwards problem

When solving the forwards problem, we know the

coordinates of the undeformed body, X1, X2, X3 and wish

to calculate the coordinates of the deformed body x1, x2, x3.

We, therefore, formulate the forwards problem as a
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differential equation with X1, X2, X3 as the independent

variables and x1, x2, x3 as the dependent variables.

2.2.1. The differential equation. The governing equations

for static incompressible elasticity are [4]

›

›XM

TMN

›xj

›XN

� �
þ rgj ¼ 0 j ¼ 1; 2; 3 in V0 ð10Þ

detF ¼ 1 in V0 ð11Þ

where r is the density of the body and gj is the gravitational

force per unit mass in coordinate direction Xj. We see, on

using equations (2)–(4) and (8), that equations (10) and (11)

are differential equations with X1, X2, X3 as the independent

variables and x1, x2, x3 as the dependent variables, as

required. Note that equations (10) and (11) are four

equations for four unknowns, three spatial coordinates x1, x2,

x3 and the pressure p.

2.2.2. Boundary conditions. The boundary of the

undeformed body is partitioned into two non-intersecting

sets. On the first set, ›VD
0 ; there are Dirichlet displacement

boundary conditions. On the second set, ›VND
0 ; there are

non-Dirichlet traction boundary conditions. The boundary

conditions are

xj ¼ x0
j j ¼ 1; 2; 3 on ›VD

0 ð12Þ

TMNFjNNM ¼ sj j ¼ 1; 2; 3 on ›VND
0 ð13Þ

where ðx0
1; x

0
2; x

0
3Þ are the displacement boundary conditions,

(N1,N2,N3) is the outward pointing unit normal vector to the

undeformed body and (s1, s2, s3) is the force per unit

undeformed area acting on the body.

2.3. The inverse problem

When solving the inverse problem the coordinates of the

deformed body, x1, x2, x3 are known and we wish to

calculate the coordinates of the undeformed body X1, X2,

X3. We, therefore, require a governing equation with x1,

x2, x3 as the independent variables and X1, X2, X3 as the

dependent variables.

2.3.1. The differential equation. We begin by writing the

governing equations for static incompressible elasticity in

terms of the Cauchy stress tensor [1]:

›sij

›xi
þ rgj ¼ 0 j ¼ 1; 2; 3 in V ð14Þ

detF ¼ 1 in V: ð15Þ

However, equations (2), (3), (8) and (9) express sij in

terms of the quantities ›xi/›XM, and so we have not yet

achieved our objective of writing a differential equation

for XM ¼ XMðx1; x2; x3Þ: Instead, we must first re-write the

deformation gradient tensor, defined in equation (1), in

terms of the quantities ›XM/›xi. Noting that

›xi

›XM

›XM

›xj
¼

›xi

›xj
¼ dij

we have

F21
Mj ¼

›XM

›xj
ð16Þ

and so we may write

F ¼ ðF21Þ21 ¼

Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

0
BB@

1
CCA

21

ð17Þ

¼

YyZz 2 YzZy 2XyZz þ XzZy XyYz 2 XzYy

2YxZz þ YzZx XxZz 2 XzZx 2XxYz þ XzYx

YxZy 2 YyZx 2XxZy þ XyZx XxYy 2 XyYx

0
BB@

1
CCA

ð18Þ

because, by equation (11), detF21 ¼ detF ¼ 1: We now

have F, and therefore (on using equations (2), (8) and (9))

E, T and s, in terms of the quantities ›XM/›xi. Equations

(14) and (15) now become differential equations for the

four dependent variables X1, X2, X3 and p, as functions of

the independent variables x1, x2, x3 as required. We may

now write equations (14) and (15) as

›

›xi
ðFiMTMNFjNÞ þ rgj ¼ 0 j ¼ 1; 2; 3 in V ð19Þ

detF21 ¼ 1 in V: ð20Þ

Equations (19) and (20), with entries of F given by

equation (18), are therefore, the equations that govern the

solution of the inverse problem.

2.3.2. Boundary conditions. We partition the boundary of

the deformed body into two sets in the same way as for the

undeformed body. On the first set, ›VD, there are Dirichlet

displacement boundary conditions. On the second set,›VND,

there are non-Dirichlet traction boundary conditions.

The boundary conditions are

XM ¼ X0
M M ¼ 1; 2; 3 on ›VD ð21Þ

sijni ¼ tj j ¼ 1; 2; 3 on ›VND ð22Þ

where ðX0
1;X

0
2;X

0
3Þ are the displacement boundary

conditions, (n1, n2, n3) is the outward pointing unit normal

vector to the deformed body and (t1, t2, t3) is the force per unit

deformed area acting on the body.

2.4. The necessity of equations (19) and (20)

In classical linear elasticity theory, very few workers

distinguish between the second Piola–Kirchoff stress

tensor and the Cauchy stress tensor. As a result, properties

of the original configuration of the body, such as, whether
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it is in the stressed or stress-free state, are rarely taken into

consideration. If the stressed body is treated as a stress-

free body, the formulation of the inverse problem is a

forwards problem where the coordinates of the deformed

and undeformed body have been interchanged and the

direction of gravity has been reversed. In this section we

investigate the validity of using this approach.

Suppose we were to attempt to solve the problem in the

manner described in the previous paragraph. Then we may

solve equations (10) and (11), interchanging the xi’s and

XM’s, interchanging V and V0, and reversing the direction

of gravity. Equation (11) is unchanged, equation (10)

becomes

›

›xM
T̂MN

›Xj

›xN

� �
2 rgj ¼ 0 j ¼ 1; 2; 3

which may be written

›

›xM
ðT̂MNF̂jNÞ2 rgj ¼ 0 j ¼ 1; 2; 3 ð23Þ

where

F̂iM ¼
›Xi

›xM
ð24Þ

Ê ¼
1

2
ðF̂ tF̂2 IÞ ð25Þ

and

T̂MN ¼
1

2

›Ŵ

›ÊMN

þ
›Ŵ

›ÊNM

� �
: ð26Þ

The strains used in this calculation would be those

calculated using equation (25), and so the strain energy

function Ŵ for this problem is defined by

ŴðÊMNÞ ¼ WðEMNÞ: ð27Þ

On using equation (16), we may write

F̂iM ¼ F21
iM ð28Þ

and so equation (23) may be written

›

›xi
ðT̂iNF

21
jN Þ2 rgj ¼ 0 j ¼ 1; 2; 3 ð29Þ

which is different to the true governing equation of the

inverse problem, equation (19). Hence, in general, this

approach to solving the inverse problem is not valid.

2.4.1. Approximate solution when quadratic and

higher order terms in the strain may be neglected.

Writing the displacements as xi ¼ Xi þ ui; i ¼ 1; 2; 3 we

may write the deformation tensor as

F ¼ I þ U

where

UiM ¼
›ui

›XM

:

Suppose the displacements are so small that we may

neglect quadratic and higher order terms in ui, as is the

case in classical linear elasticity. Define

G ¼ I 2 U ð30Þ

then

FG ¼ ðI þ UÞðI 2 UÞ

¼ I 2 U 2

¼ I on neglecting quadratic terms in ui

or equivalently F21 ¼ G: ð31Þ

When neglecting quadratic and higher order terms in ui,

we see from equations (30) and (31) that we may write the

inverse of F as

F21 ¼ I 2 U

and we may then use equations (24)–(28) to give

F̂iM ¼ diM 2
›ui

›XM

ÊMN ¼ 2
1

2

›uM

›XN

þ
›uN

›XM

� �
¼ 2EMN

and T̂MN ¼ 2TMN :

As TMN ¼ OðEMNÞ ¼ OðUiMÞ; we see that, on neglecting

quadratic and higher order terms in the strain, equation (19)

is identical to equation (29). We, therefore, see that under

conditions where quadratic and higher order terms in the

strain may be neglected, i.e. where the assumptions in linear

elasticity theory are valid, there is no need to distinguish

between the stress-free and the stressed body.

2.5. Numerical methods for soft tissue modelling

Previous work on soft tissue modelling has been applied to

the breast [5–9], the heart [10–12] and the liver [18]. All of

these authors use the finite element method to solve the

governing equations although, as full details of the scheme

used are sometimes not given, it is not always possible to

comment on the suitability of the scheme used.

Breast tissue is assumed to be incompressible by

most authors [5–9]. However, with the exception of [8],

other workers do not enforce incompressibility using the

mathematically correct procedure described above, where

the constraint equation (11) and the additional dependent

variable pressure are added to the governing equation for

non-linear elasticity, equation (10). Instead, incompressi-

bility is modelled by setting the Poisson ratio of breast

tissue to 0.5 2 e, where e is a small, positive number.

Having enforced incompressibility in this manner, a variety

of methods were used to solve the governing equations.

Schnabel et al. [9] used linear elasticity to approximate the
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displacement of breast tissue. Azar et al. [5, 13] model the

whole displacement as consisting of a large number of tiny

displacements that are computed using linear elasticity, this

approach allows an exponential stress–strain relationship

to be built into the model. Samani et al. [6] and Liu et al. [7]

used non-linear elasticity when computing displacements,

allowing more general stress–strain relationships to be

built into the model.

There are numerical complications caused by modelling

incompressible tissue as the limit of the Poisson ratio

tending upwards to 0.5. Standard finite element schemes,

where the displacement is approximated by a continuous

piecewise linear function, exhibit the phenomenon known

as locking [14,15]. Locking is a problem caused by these

schemes being incapable of resolving both incompressi-

bility and traction conditions, and leads to poor

convergence rates as the mesh is refined. Locking may

be avoided either by using schemes where the continuity

requirement is relaxed, or schemes with a higher order

polynomial approximation to the displacement. In all the

publications on breast modelling cited above where

authors described the finite element scheme used, the

scheme used continuous piecewise linear functions for the

approximation to the displacement. Nash and Hunter [12],

who model passive cardiac tissue as being incompressible,

avoid locking by (i) using a Hermite cubic approximation

to the displacements, and (ii) modelling compressibility as

has been described in section 2.2.

3. Numerical simulation

In this section we demonstrate numerically that equation

(23) does not give the true solution to inverse problems in

non-linear elasticity, and that equations (19) and (20)

should instead be used to calculate the true solution.

3.1. Description of simulation

For ease of presentation we simulate a displacement in

two dimensions, although qualitatively similar behaviour

is seen in three dimensions. We simulate the displacement

of the unit square. The edge y ¼ 0 is fixed, all other

boundaries are free to move and are stress-free. We use the

strain energy function for biological tissue given in

equation (3) with parameters a ¼ b ¼ 1; this strain energy

function is used for isotropic tissue with an exponential

relationship between stress and strain. Density was chosen

so that r ¼ 1: Gravity was given by g ¼ ð0; 2Þt:
We fully accept that this simulation is not representative

of deformations of a breast, this simulation is in only two

dimensions; the shape is different; no account is taken of

different tissue types; the material is assumed to be

isotropic; and the parameters used have no physiological

significance. In reality, a breast will consist of at least three

tissue types, fibroglandular tissue, fatty tissue and skin.

These different tissues will all have different stress–strain

relationships, different degrees of anisotropy and different

densities. However, the derivation of equations (19) and

(20) permitted the use of a very general strain energy

function. This algorithm, therefore, allows us to use many

tissue types, anisotropic tissue and a general compu-

tational domain. We have chosen this simulation purely on

the basis that a numerical solution may be calculated using

standard numerical techniques. This simulation is

included in this study only to demonstrate that, in general,

using equation (23) is not a suitable technique for solving

inverse problems in non-linear elasticity and that

equations (19) and (20) should be used instead.

We denote the coordinates of the unit square by X ¼

ðX1;X2Þ: For the simulation described above, we perform

three calculations.

(1) We calculate the coordinates of the deformed body,

x ¼ ðx1; x2Þ; as a function of X using equations (10)

and (11).

(2) Using the values of x from the first calculation, we

solve the equations that govern the inverse problem,

equations (19) and (20).

(3) Using the values ofx from the first calculation, we solve

equations (23) and (11) to calculate the predicted

coordinates of the undeformed body by reversing

gravity and making no distinction between the stressed

and stress-free body, as described in section 2.4. We

denote these predicted coordinates by X̂:

The maximum displacement of the forwards problem,

D0, is given by

D0 ¼ maxjX 2 xj: ð32Þ

We then define D1(X) to be the distance between the

true deformed coordinates and the undeformed coordi-

nates predicted by equations (23) and (11):

D1ðXÞ ¼ jX̂ðXÞ2 Xj: ð33Þ

As an indicator of the error induced by using the

incorrect formulation of the inverse problem we calculate

the maximum and the average value of D1, scaled by the

maximum displacement of the forwards problem, D0.

We therefore calculate the following quantities:

maxðD1Þ

D0

and
�D1

D0

ð34Þ

where �D1 is the area weighted average of D1, given by

�D1 ¼

ð
V0

D1ðXÞ dS0

� �� ð
V0

dS0

� �

3.2. The finite element solution

The governing equations were solved using the finite

element method, see for example, [16]. The unit square was

discretised into 800 uniformly sized elements, there were

20 elements in the x direction and 40 elements in the y

direction. A bilinear approximation was used for the
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dependent spatial variables in each of these elements. For a

stable approximation to the pressure as element size is

reduced, a lower order approximation must be used to

calculate the pressure, see for example, [16]. We, therefore,

use a piecewise constant approximation on each element to

calculate pressure. The non-linear equations arising in the

finite deformation calculations were solved using

Newton’s method (see for example, [17]).

3.3. Results of the simulation

In figure 1(a) we plot, the boundary of the deformed body

(solid line); the boundary of the region that is the solution

of the inverse problem (dashed line); and the boundary of

the region that is calculated by reversing the direction of

gravity (dot-dashed line). In figure 1(b), we show a close

up of figure 1(a), to show more detail of the region around

x ¼ 0: It is clear from figure 1 that the true solution of the

inverse problem (dashed line) differs significantly from

the solution of the inverse problem that has been

calculated by reversing the direction of gravity (dot-

dashed line). This is confirmed in table 1 where we list the

errors that are induced by the incorrect formulation of the

inverse problem. We see that the maximum error is 23%

of the true displacement. The magnitude of the error seen

here would not be acceptable for the location of a tumour.

4. Discussion

We have seen in this paper that, unless quadratic and higher

order terms in the strains may be neglected, the solution of

inverse problems in non-linear elasticity is more complex

than simply reversing the direction of gravity, interchanging

the role of the deformed and undeformed coordinates, and

solving the resultant forwards problem. We have therefore

formulated equations (equations (19) and (20)) that express

the coordinates of the undeformed body in terms of

coordinates of the deformed body, and may therefore be used

to solve the inverse problem. Solving these equations allows

us to solve the inverse elasticity problem described in the

Introduction, which was one of the steps that are used to

locate tumours in breasts. In addition, the technique is valid

for any suitable strain energy function, and so may be applied

in other areas where the solution of inverse elasticity

equations is required.

It should be remembered that many assumptions are made

when deriving a mathematical model of soft tissue. The

assumptions made for the simulations in this study are listed

in section 3.1. These assumptions will all induce errors in the

computed displacements to some degree. For example, the

fact that motivates this study—the location of tumours in

breasts—each individual breast is of different shape, consists

of different tissue types, and has a different stress–strain

relationship. Quantifying the error induced by making these

assumptions is very hard to predict. However, it is evident

that in situations where non-linear elasticity is an appropriate

mathematical model, the solution of inverse problems

requires careful consideration. In these situations solving

inverse problems correctly eliminates one component of the

total error—the error that would be induced by solving a

forwards problem with the direction of gravity reversed

instead of solving the inverse problem.
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