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A wide variety of measures is currently in use in the morphometry of vascular systems. We introduce
two additional classes of measures based on erosions and dilations of the image. Each measure has a
clear biological interpretation in terms of the measured structures and their function. The measures are
illustrated on images of the arterial tree of the quail chorioallantoic membrane (CAM). The new
measures are correlated with widely-used measures, such as fractal dimension, but allow a clearer
biological interpretation. To distinguish one CAM arterial tree from another, we propose reporting just
three independent, uncorrelated numbers: (i) the fraction of tissue which is vascular (VF0, a pure ratio),
(ii) a measure of the typical distance of the vascularized tissue to its vessels (CL, a length), and (iii) the
flow capacity of the tissue (P, an area). An unusually large CL would indicate the presence of large
avascular areas, a characteristic feature of tumor tissue. CL is inversely highly correlated with fractal
dimension of the skeletonized image, but has a more direct biological interpretation.
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1. Introduction

How does one count blood vessels? For small numbers, we

begin with “one, two, three. . ..” Over larger areas, we

commonly think of some measure of vascular density, the

number of vessels per unit area or volume (as in, e.g. [10]).

There is a tremendous variety of measures in use (for an

overview, see [9]), and many of them are not necessarily

intuitive. For example, if we care primarily about vessel

length, we should use a measure of length density. Length

density is computed from a skeletonized image. If we

prefer ease of measurement, we use area density, the

fraction of a 2D image which is occupied by vessels and

their lumens. Area density corresponds to volume fraction,

the fraction of voxels in a 3D image which are occupied by

vasculature.

Choosing the right measure of vascular density requires

clarifying the purpose of the measurement. If our primary

interest is in how much mass of vascular tissue is present,

then volume fraction is the correct measure—but we must

exclude the lumens. If we are instead interested in the total

volume of the vasculature and its contents, we use volume

fraction and include the lumens. However, often the

feature that we are investigating is not anatomical but

functional: in the case of vascularization our underlying

concern is the flow. With the correctly derived measure,

we can estimate flow capacity from an image.

Fractals have become a very popular metric for vascular

systems e.g. [5], and software for computing the fractal

dimension of an image has become fairly widespread. For

many systems, the arterial tree is very well represented by

a fractal. The fractal dimension is a unitless number,

which can be tracked over time and compared across

treatments. It is straightforward to compute, but it does

come with some statistical liabilities [2].

We know what fractal dimension represents mathemat-

ically, but what it signifies biologically is less clear. We do

know that fractal dimension of the chorioallantoic

membrane (CAM) increases during development

[4,6,11]. That mathematical fact, however, does not tell

us which biological quantity is increasing over time, for

which the fractal dimension is an indicator. Is it total flow?

Is it flow homogeneity? We know that tumor vasculature

has a higher fractal dimension than normal vasculature,

and increases over time (for review, see [1]), yet a low

fractal dimension can be associated with a high grade of

tumor and poor patient outcome [8]. What is the biological

interpretation of these observations? Figure 1 illustrates

two CAM arterial trees with the same fractal dimension,

yet there are obvious differences in the structures.
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The fractal dimension alone cannot explain the difference,

which is obvious to the eye. The eye sees that there must

also be significant differences in the function of these two

trees.

The goal of this paper is to present a discussion of the

issues of vascular quantification and to suggest additional

measures of a vascular tree. We illustrate the measures

using a set of images of the CAM arterial tree and discuss

their biological significance.

2. Methods

Fertilized quail eggs were cultured and imaged at 72

pixels/in as in Parsons-Wingerter et al. [6]. Background

and veins were erased by hand, arteries were filled by

hand, and images were binarized, using NIH Image.

Thresholds for binarization were determined by manually

adjusting to retain the smallest arterial branches visible

[6]. Skeletonization of binary images was done by NIH

Image (figure 2). Image analysis was done on binary.tif

files in Matlab.

2.1 Definitions of measures

The two most commonly used measures in the vascular

morphometry literature go by almost as many names as the

number of papers in which they appear. We will call them

the vascular fraction and the fractal dimension of the

skeletonized tree.

2.2 Vascular fraction

This is the fraction of the tissue volume (in 3D) or area

(of a 2D slice) which is occupied by the vessels. It is the

most obvious and straightforward measure of the gross

amount of vasculature in a tissue. In this study, vascular

fraction VF counts only the arterial tree. It is unitless, and

in our sample ranges from 15–20%. It is computed for a

2D structure by counting vascular pixels in the 2D binary

image, as a fraction of the total pixel number. The vascular

fraction of a 3D structure can be determined either by

voxel vascular fraction in a 3D stack, or extrapolated from

pixel vascular fraction of a 2D slice. There are issues

relating to the proper thresholding in the image analysis,

and these can be exacerbated by heterogeneity in marker

uptake [3,10], but vascular fraction remains conceptually

the most robust measure of vascular tissue.

2.3 Fractal dimension

The fractal dimension is a unitless quantity. It can be

defined as the negative of the slope of the log–log plot of

the number of pixels in the vascular portion against the

size of those pixels. As in [4,6], we use the box-counting

method: for each of several box sizes, the image is divided

into a grid, and boxes that contain some vessel are

counted. The slope of the log–log graph is computed by

linear regression. We define Df as the fractal dimension of

the arterial tree, and Dfsk as the fractal dimension of the

skeletonized tree. They are different measures. Although

Dfsk is far more commonly used in the vascular

morphometry literature than is Df, it is most often referred

to simply as the fractal dimension. In this paper, we make

a clear distinction between Df and Dfsk, because they are

correlated with different biological quantities. Our method

for calculating Df was tested on several artificial fractal

images (gif) whose Df is known from mathematical

Figure 1. Images from two CAM arterial trees. Scale is identical. Fractal
dimension is the same (a) Df ¼ 1.54 ^ 0.04, (b) Df ¼ 1.53 ^ 0.02 yet
there are major differences between the two trees.

Figure 2. CAM image (a) is skeletonized by removing boundary pixels
until the remaining object (b) is only 1 pixel thick.

Figure 3. CAM image (a) modified by (b) erosion, (c) dilation, and (d)
pruning processes. Pruning is accomplished by erosion followed by
dilation. In each case, the gauge is a disk of radius 4 pixels. Hence
pruning by a gauge of 4 pixels digitally removes all structures of radius
smaller than 4 pixels, while preserving the size of all thicker structures.
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principles (Koch snowflake and Sierpinski triangle,

square, pentagon and hexagon). Our algorithm slightly

underestimates Df for the test images by a mean of 0.05.

When this factor is applied to correct the measurements,

the error in Df as compared to the true (mathematically

derived) Df is within 0.02 for all test images. We do not

include this correction factor in our reported Df or Dfsk for

the natural (CAM) images.

2.4 Erosion and dilation

We examined a set of dilations and prunings of the

vascular tree. A dilation of the tree is the region in the

image which is within a particular distance of the vessels

(figure 3). The complement of the dilation is the fraction

of the tissue which is at least a particular distance from the

vessels. The complement farthest from the vessels is, for

example, more hypoxic. Finding the vascular complement

fractions CF(r) at all possible distances r from the

vasculature (figure 4) allows us to compute measures of

perfusion efficiency, such as the median distance to a

vessel, or to locate regions in the tissue which are

unusually far from a vessel (figure 5).

A pruning of the vascular tree is a subset of the vascular

tree which has all its branches below a certain radius

trimmed (figure 6). The set of vascular fractions VF(r) of

all possible pruning radii r could allow us to make

measurements of the flow efficiency, for example. Pruning

is accomplished by first eroding the image by a disk of

radius r, then dilating by the same amount (figure 3).

2.5 Regression

The measured functions VF(r) and CF(r) can be

approximated by curves, using nonlinear regression, or

linear regression on transformed data. We thus determine

parameters tuning these curves, which distinguish between

vascular trees with different anatomical features. In any

regression, it is important not simply to have small residuals

(R 2 large) but also to observe no trend in the residuals.

3. Results

3.1 Fractal measures

The CAM images that we analysed (displayed in figure 11)

were all very well-described by fractals Df and Dfsk.

The curves of pixel size against vessel count were highly

linear for Df (R 2 . 0.998) and Dfsk (R 2 . 0.97), though

for Dfsk there was a slight trend in the residuals, a slight

downward curvature at the coarser scales. Hence, we may

reasonably assume that the CAM arterial tree is fractal

rather than multifractal [13]. The range of fractal

dimensions was quite small in our collection of CAM

images. Df ranged from 1.43 ^ 0.02 to 1.54 ^ 0.04. Dfsk

ranged from 1.02 ^ 0.05 to 1.13 ^ 0.10. Note that both

measures had an observed range in the CAM of 0.11, but

Dfsk had a much larger standard error of each individual

measurement.

3.2 Vascular fractions

The vascular fractions of the prunings, VF(r), were

modelled by several curves, in particular, a linear, an

exponential, a power law, a Weibull function, and a

quadratic function. Surprisingly, all these function

families had either poor fits or strong trends in the

residuals, except for two functions.

Figure 4. Calculation of complement fraction CF(r). Original image (a) and regions of the tissue which are at least (b) 10, (c) 20, and (d) 30 pixels from
any vessel. Complement fractions CF(r): (a) 78%, (b) 38%, (c) 15%, (d) 5%.

Figure 5. Significance of complement fraction. Outlined in image is the
portion of the tissue which is in the upper 5% of distance to a vessel. The
95th percentile distance is 325mm; hence we say that 95% of the tissue is
within 1/3 mm of a vessel, and CF(325mm) ¼ 0.05. The spatial
distribution of these poorly vascularized regions is fairly uniform in
the CAM; however, in tumor tissue we would expect much more
patchiness.
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One was the quadratic function VFqðrÞ ¼ VF0½1 2

ðr=LqÞ�
2 where r and Lq are in mm or mm and VF0 is

unitless. Regression was linear on transformed data, fixing

VF0 at the measured value, with R 2 . 0.93. Range of Lq
was 233–581mm with SE 8–37mm.

The other function which performed well was a com-

pound exponential, VFeðrÞ ¼ exp ðln ðVF0Þ exp ðr=LeÞÞ;
fitting VF0 and Le for each curve. The range of Le was

158–421mm, with SE 8–28mm, and R 2 . 0.86.

Interestingly, the fitted values of VF0 for the compound

exponential model differed from the observed (raw) VF0,

with a correlation of only 0.72. The compound

exponential fit least well at r ¼ 0, where the data for

VF(r) were unusually level (figure 7). This may be an

artifact of the imaging method, or it may be an artifact of

the vascular growth process itself. It is reasonable to

assume that there is a minimum size of capillary below

which we see no vessels at all; this would naturally tend

to level off the curve of VF(r) near r ¼ 0, as we observe.

The R 2 values are fairly low, but that is because the data

for VF(r) have natural irregularity (figure 7).

3.3 Complement fractions

The complement fraction, CF(r) (see figure 8), was fitted

to several test functions, including an exponential decay

and several hyperbolas, but the only functional form

examined which had an excellent fit to all images

and had no trend in the residuals was CFðrÞ ¼

CF0 exp ð1 2 exp ðr=CLÞÞ; where CL is a characteristic

length (mm) and CF0 is the highest value of CF (the

same as 1 2 VF0). For this function, all images had R 2

. 0.99.

Table 1 presents the measurements for a sample of 8

images. Standard errors are reported for all quantities

except VF0 and CF0, which are dependent solely on the

pixel size, which was small enough that we assume

negligible error.

Figure 6. Prunings of a CAM arterial tree at different radii: (a) original arterial tree, (b-e) all vessels of radius below the gauges (b) 48mm, (c) 96mm,
(d) 144mm, (e) 192mm, (f) 240mm have been digitally pruned (removed). Note that digitally-pruned vessels may not remain connected. Vascular
fraction VF(r) can be determined from this process as a function of pruning radius r. VF(0mm) ¼ 15.4%, VF(48mm) ¼ 11.4%, VF(96mm) ¼ 6.2%,
VF(144mm) ¼ 3.1%, VF(192mm) ¼ 2.2%, VF(240mm) ¼ 0.0%.

Figure 7. Vascular fraction VF(r) after prunings to radius r. Shown are
VF(r) for the images with Le and Lq the smallest X (Le ¼ 158 ^ 9mm,
Lq ¼ 233 ^ 8mm) and largest B (Le ¼ 421 ^ 16mm, Lq ¼ 581 ^
17mm). Fitted curves are VFe(r) (dashed) and VFq(r) (solid).

Figure 8. Complement fraction CF(r) of material a radius r from any
vessel. Shown are CF(r) for the images with the smallest and largest CL
(V CL ¼ 168 ^ 4mm; X CL ¼ 311 ^ 4mm), with fitted curves. CL is
the distance (vertical reference line) marking the 18th percentile
(horizontal reference line) of non-vascular tissue’s proximity to a vessel.
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3.4 Derived quantities

Once we know the gauge-dependent vascular fraction

VF(r), the measure can be used to calculate derived

measures for area density, length density and volume

density at the different gauges. In the case of planar

vasculature (such as in the CAM), the area, length and

volume of vessels in a particular range of gauges r1 to r2

per unit area of tissue are given in table 2.

Hence, for example, the area density of vessels at

all gauges is 2
Ð1

0
ðd=drÞðVFðrÞÞdr ¼ VFð0Þ2 VFð1Þ ¼

VF0; the vascular fraction. Also, we see that for planar

vasculature, area density is equivalent to vascular fraction,

since ADðr;1Þ ¼ 2
Ð1
r
ðd=drÞðVFðrÞÞdr ¼ VFðrÞ:

Note that it is not possible to calculate the length

density of vessels at the smallest gauges from the formula,

because the formula for length density blows up at a radius

r1 ¼ 0. The most widespread method of measuring length

density, the grid intersection method, avoids this difficulty

by missing many of the vessels smaller than the grid size.

Real vessels, however, do have a minimum size, so the

blowup of the length density at small radii presents little

practical difficulty.

The volume density is well-behaved, and can be used as

another measure of a vascular tree, if we are particularly

concerned, for instance, with volumes of planar vascular

trees, or with quantities closely related to volumes.

Figure 9 illustrates the volume density distribution

(integrand of volume density) for a CAM image whose

VF(r) was fitted by the quadratic and exponential

functions VFq(r) and VFe(r).

Similarly, we can use VF(r) measured from an image to

derive any quantity which may depend on the radius of a

vessel. For example, mean flow rate depends on the 4th

power of the vessel radius, if Poiseuille’s law applies.

We can estimate the permeability coefficient P as P ¼

2
Ð1

0
r 2ðd=drÞðVFðrÞÞdr such that the total flow rate

through a vascular bed will be proportional to the product

of P and the ratio of pressure drop to viscosity [4]. There

will be additional factors determining the actual flow rate,

such as tortuosity and elasticity of the vessels, but our

permeability coefficient P gives a fair quantitative

comparison between the flows expected in geometrically

similar structures. P has area units (length4 per unit area).

In figure 10 we see how the permeability is shared

among vessels of different radii, and we see that the

estimation of the permeability’s dependence on radius also

depends on which function is chosen to approximate

VF(r). The functions VFq(r) and VFe(r) are not

fundamental to any measures, but are simply convenient

ways of smoothing the VF(r) data, which naturally have

some roughness. Because of the simple form of VFq(r), we

can estimate P as the simple expression ðVF0=6ÞL2
q: The

numerical estimate of P by use of VFe(r) correlates very

well (r ¼ 0.98) with the estimate using VFq(r). Table 3 is a

comparison of the permeability coefficients. Actual flow

rate through a vascular bed would depend on vessel

tortuosity and elasticity, the viscosity of the blood, and the

pressure drop.

Table 1. Eight measures for eight images.

Image VF0 Df Dfsk CL (mm) CF0 ¼ 12VF0 Lq (mm) Le (mm) VF0 (fitted)

CAM0 0.17 1.48 ^ 0.03 1.07 ^ 0.07 226 ^ 8 0.83 233 ^ 8 158 ^ 9 0.21 ^ 0.02
CAM1 0.16 1.47 ^ 0.03 1.05 ^ 0.07 237 ^ 8 0.83 256 ^ 25 218 ^ 28 0.19 ^ 0.03
CAM2 0.15 1.43 ^ 0.02 1.02 ^ 0.05 239 ^ 5 0.85 285 ^ 17 245 ^ 12 0.16 ^ 0.01
CAM3 0.20 1.52 ^ 0.02 1.04 ^ 0.06 268 ^ 4 0.80 405 ^ 8 284 ^ 8 0.22 ^ 0.02
CAM4 0.23 1.54 ^ 0.04 1.13 ^ 0.10 168 ^ 4 0.76 416 ^ 37 255 ^ 15 0.21 ^ 0.01
CAM5 0.19 1.49 ^ 0.03 1.09 ^ 0.08 204 ^ 3 0.80 264 ^ 13 197 ^ 8 0.21 ^ 0.02
CAM6 0.17 1.47 ^ 0.02 1.05 ^ 0.07 259 ^ 2 0.82 263 ^ 15 199 ^ 21 0.20 ^ 0.01
CAM7 0.20 1.53 ^ 0.02 1.03 ^ 0.06 311 ^ 4 0.80 581 ^ 17 421 ^ 16 0.22 ^ 0.02

VF0, vascular fraction, and CF0, complement fraction, assumed to have no error. VF0 (fitted) is usually larger than VF0 from the raw image, because of a lower limit of
capillary size. Df, fractal dimension, and Dfsk, fractal dimension of the skeletonized image. CL, characteristic length, derived from shape of CF(r). Lq (quadratic) and Le
(exponential), are lengths derived from shape of VF(r). For definitions, see Appendix.

Table 2.

Measure units formula

Length density
LD(r1,r2)

length/area 2
Ð r2

r1

1
2r

d
dr
ðVFðrÞÞdr

Area density
AD(r1,r2)

area/area 2
Ð r2

r1

d
dr
ðVFðrÞÞdr ¼ VFðr1Þ2 VFðr2Þ

Volume density
VD(r1,r2)

volume/area 2
Ð r2

r1

pr
2

d
dr
ðVFðrÞÞdr

Figure 9. Planar volume density distribution (unitless) at a given gauge
r (mm), shown calculated from the fitted functions VFq(r) (solid curve)
and VFe(r) (dashed curve) for the same image. Note that the greatest
contribution to volume is at an intermediate gauge, and this gauge is
somewhat different for the two functions. The total volume per unit area
for this arterial tree is estimated differently by the exponential
(22.5mm3/mm2) and quadratic(27.8mm3/mm2) functions.
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3.5 Correlations

Some of the measures we have examined for the CAM

arterial trees are highly correlated, and others are

uncorrelated (table 4). Interestingly, the two fractal

dimensions Df and Dfsk are only weakly correlated with

each other. Fractal dimension Df is strongly correlated

with VF0, the fraction of the image which is vascular, and

in fact the measured VF0 correlates better with Df than it

does with the fitted VF0. On the other hand, the

skeletonized fractal dimension Dfsk is strongly negatively

correlated with CL. In turn, CL is uncorrelated with Df and

with VF0. Thus we could use VF0 as a surrogate measure

for Df, and CL as a surrogate measure for Dfsk. Le and Lq
are highly correlated, as is expected for different measures

of the same feature, and they in turn are strongly

correlated with the permeability coefficients Pe and Pq. A

principal component analysis (PCA) was performed, but

the results do not provide new insight.

To distinguish one CAM arterial tree from another, in

general it should suffice to report just three numbers. The

measures should not be correlated with each other, or they

will be presenting redundant information. A useful trio of

independent, mostly uncorrelated measures could be VF0,

CL, and P. They represent, respectively, the fraction of

tissue, which is vascular (VF0, a pure ratio), a measure of

the distance of the vascularized tissue to its vessels (CL, a

length), and the flow capacity of the tissue (P, an area).

The three measures, along with fractal dimension Df, are

shown for several images in figure 11.

4. Discussion

The goal of this paper is to present a comparison of

different common and uncommon measures of a vascular

tree, with an eye to increasing the amount of biological

insight gained from the use of these measures.

In particular, we find that the common fractal dimension

Df has some common problems. First, the fractal

dimension which is most widely reported as a vascular

measure is actually of the skeletonized image, not the raw

image, yet typically this distinction is not recognized.

Second, it is not clear whether any groups reporting fractal

dimensions of natural images have calibrated their

algorithms on mathematical images of known Df. When

we did so with the most commonly used algorithm (grid-

based box counting), we found a consistent underestimate

of Df, possibly due to prior compression of the fractal

images by the authors who had generated them. We

strongly recommend that researchers reporting fractal

dimension of their natural images (a) indicate whether the

images have been skeletonized, and (b) calibrate their

algorithms on mathematical fractals.

We find that the abstract fractal dimension Df is really a

surrogate measure for the vascular fraction VF0. Since VF0

is much more straightforward to measure, it would seem

Figure 10. Distribution of flow capacity (arbitrary units) among vessels
of gauge r (mm), as estimated by two different functions VF(r) for a
particular CAM image. The quadratic function VFq(r) (solid curve)
estimates a higher overall flow rate than the exponential function VFe(r)
(dashed curve). Flow distribution units are arbitrary because actual flow
rate depends on viscosity and pressure drop.

Table 4. Correlations among measures reported in tables 1 and 2.

VF0 meas VF0 fit CL Lq Le Df Dfsk Pq Pe

VF0 meas 1.00
VF0 fit 0.72 1.00
CL 2 0.24 0.14 1.00
Lq 0.65 0.49 0.46 1.00
Le 0.42 0.29 0.62 0.95 1.00
Df 0.94 0.86 0.00 0.74 0.53 1.00
Dfsk 0.64 0.36 2 0.84 -0.09 2 0.34 0.48 1.00
Pq 0.62 0.54 0.52 0.99 0.95 0.74 2 0.12 1.00
Pe 0.47 0.49 0.65 0.95 0.97 0.63 2 0.27 0.98 1.00

Quantities which use different methods to measure the same physical feature (such as Lq and Le) should be highly correlated. Quantities which measure very different physical
features should have low correlations, unless there is some biological reason for a high correlation.

Table 3. Estimates of permeability coefficient P (mm2).

Image Pq Pe

CAM0 1900 1562
CAM1 2075 2471
CAM2 2166 2291
CAM3 6014 5509
CAM4 6057 4069
CAM5 2439 2428
CAM6 2306 2263
CAM7 12377 12106

P is derived from vascular fraction VF(r) of vessels of different radii,
P ¼ 2

Ð1
0
r 2ðd=drÞðVFðrÞÞdr: Pq calculated from VFqðrÞ ¼ VF0ð1 2 r=LqÞ

2; Pe
calculated from VFeðrÞ ¼ expðln ðVF0Þexp ðr=LeÞÞ: True flow rate depends on
several other factors, such as pressure drop and tortuosity.
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superfluous to use Df, which has no intrinsic biological

meaning. More commonly used than Df is Dfsk, the fractal

dimension of the skeletonized image. We have seen that

(at least for the CAM) Dfsk is a surrogate measure for CL, a

length which is characteristic of the complement fraction

CF, the space between the vessels. What is the CL? To be

precise, it is the negative reciprocal of the initial slope of

the curve of CF(r); exp ð1 2 exp ð1ÞÞ ¼ 18% of the non-

vascular tissue, or 13–15% of the whole tissue, is farther

from a vessel than that distance (as illustrated in figure 8).

Therefore, the CL is a measure of how close most of the

interstitium is to the vessels, and it is a surrogate measure

for Dfsk (conversely, Dfsk is a surrogate measure for how

close most of the interstitium is to the vessels). The higher

the fractal dimension Dfsk, the lower the characteristic

length, and the closer most of the tissue is to the vessels.

When we observe that the fractal dimension Dfsk is

increasing over time during development of the CAM, we

can interpret it as the average piece of tissue getting closer

to a vessel over time, the vasculature increasing its

geometric efficiency.

A large number of derived measures based on the

complement fraction CF(r) are possible, and are

straightforward to implement. For example, it is well

known that tumor tissue has large avascular areas; this

characteristic would appear quantitatively either as a large

CL or small Dfsk, or visually as the easily computed

regions which are more than a particular distance from a

vessel (figure 5).

Other authors [6,11] have found high correlations

between Dfsk and what is called either rn, vascular density,

or Si, vessel length. Note that rn is not the same as VF0; it

is the vascular fraction of the skeletonized image, hence is

more correctly a measure of length density, or equivalent

to Si per unit area. We may conclude that for CAM arterial

trees, Dfsk is a measure of both length density and of

interstitial proximity, but is uncorrelated with any of the

other measures we have examined.

The vascular measures based on digital “pruning” of the

vascular tree allow us to estimate the effectiveness of

functioning of the vascular tree with various derived

measures. For example, we were able to use the measured

functions VF(r) to estimate the permeability coefficient P

of the vascular beds. If our primary biological interest is in

studying the efficiency of a vascular tree and its

dependence on our experimental conditions, the most

important measurement of the tree may be P. If our

interest is in determining whether a particular growth

factor is affecting linear versus radial growth of the

vasculature, the length density LD(r1, r2) gives us a

measure of the linear density of vessels in that particular

range of gauges. LD may be easier to implement than

measures of branch generations [7,12].

We proposed a trio of independent, uncorrelated

measures: VF0, CL, and P. They represent, respectively,

the fraction of tissue which is vascular (VF0, a pure ratio),

the distance of the vascularized tissue to its vessels (CL, a

length), and the flow capacity of the tissue (P, an area).

These units may be more intuitive than the fractal

dimension, and two of the measures are highly correlated

with fractal dimensions. Our proposed trio can replace

fractal dimension as a measure of a vascular tree, and each

VF0 0.23

Df 1.54

CL 168 µm

Pq 6057 µm2

Figure 11. Eight images of CAM arterial trees. Trees on the left are in
an intermediate range for the four measures shown. Trees on the right are
at either a maximum or a minimum of one or more of the displayed
measures (boldface).
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of our three measures has a straightforward biological

interpretation.
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Appendix: Measures discussed in this paper

Symbol Name Units Definition

Df fractal dimension – –slope of log–log plot of box counts at each gauge
Dfsk fractal dimension of skeletonized image – –slope of log–log plot of box counts at each gauge
r gauge length pruning radius or dilation radius
VF(r) volume fraction – fraction of image consisting of vessels larger than a given

gauge r
CF(r) complement fraction – fraction of image which is farther from any vessel than

distance r
VF0 volume fraction – fraction of image which is vascular tissue
CF0 complement fraction – fraction of image which is not vascular tissue
CL characteristic length of complement fraction length best-fitting parameter in CFðrÞ ¼ CF0exp ð1 2 exp ð r

CL
ÞÞ

VFq(r) quadratic fit of volume fraction – VFqðrÞ ¼ VF0 1 2 r
Lq

� �2

VFe(r) compound exponential fit of volume fraction – VFeðrÞ ¼ exp ln ðVF0Þexp r
Le

� �� �

Lq characteristic length of vascular fraction length see definition for VFq(r); best fit to data
Le characteristic length of vascular fraction length see definition for VFe(r); best fit to data

LD(r1,r2) length density length/area 2
Ð r2

r1

1
2r

d
dr
ðVFðrÞÞdr

AD(r1,r2) area density area/area 2
Ð r2

r1

d
dr
ðVFðrÞÞdr ¼ VFðr1Þ2 VFðr2Þ

VD(r1,r2) volume density volume/area 2
Ð r2

r1

pr
2

d
dr
ðVFðrÞÞdr

P permeability coefficient area P ¼ 2
Ð1

0
r 2 d

dr
ðVFðrÞÞdr

Pq permeability coefficient (quadratic method) area Pq ¼ 2
Ð1

0
r 2 d

dr
ðVFqðrÞÞdr ¼

VF0

6
L2
q

Pe permeability coefficient (compound exponential method) area Pe ¼ 2
Ð1

0
r 2 d

dr
ðVFeðrÞÞdr
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