
Abstract action potential models for toxin recognition

JAMES PETERSON* and TAUFIQUAR KHAN

Department of Mathematical Sciences, Clemson University, Clemson, SC, USA

(Received 14 December 2005)

In this paper, we present a robust methodology using mathematical pattern recognition schemes to
detect and classify events in action potentials for recognizing toxins in biological cells. We focus on
event detection in action potential via abstraction of information content into a low dimensional feature
vector within the constrained computational environment of a biosensor. We use generated families of
action potentials from a classic Hodgkin–Huxley model to verify our methodology and build toxin
recognition engines. We demonstrate that good recognition rates are achievable with our methodology.
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1. Introduction

In this paper, we consider the problem of toxin recognition

using voltage clamp action potential classification by a

hybrid excitable nerve cell/silicon substrate with a

MOSFET based signal collection package. To do this,

we need a theoretical model of the input/output (I/O)

process of a single excitable cell that is as simple as

possible yet still computes the salient characteristics of our

proposed system. We focus on the general structure of a

typical action potential as shown in figure 1.

This wave form is idealized and the actual measured

action potentials will be altered by noise and the

extraneous transients endemic to the measurement process

in the laboratory. We know biotoxins alter the shape of the

action potential of an excitable cell in many ways. The

toxin guide of Adams and Swanson (1996) shows quite

clearly, the variety of ways that a toxin can alter ion gate

function in the cell membrane, second messenger cascades

and so forth. Older material from Kaul and Daftari (1986),

Wu and Narahashi (1988) and Schiavo et al. (2000) focus

on the details of specific classes of toxins. Kaul and Wu

focus on pharmacological active substances from the sea.

Schiavo investigates the effects of toxins that interfere

with the release of neurotransmitters (NTs) by altering the

exocytosis process. The effects of toxins on the

presynaptic side are analysed in Harvey (1990) and

Strichartz et al. (1987) presents a summary of how toxins

act on sodium channels. In our research, we only look at a

subset of these possible interactions. We deliberately

focus on a single action potential. We posit that the toxins

introduced into the input side of the biosensor elicit single

pulse outputs. We think this is a reasonable idealization as

current technology focuses on certain types of pyramidal

cells which are usually not in bursting mode in the sensor

application. Also, the generic biosensor generally lacks a

real dendritic field as it is difficult to encourage a cell to

grow its normal dendritic structure on the silicon substrate

and the axon is quite simple in comparison to what it

would be in situ. It is important to note that our modelling

and interpretation efforts are constrained to fit into this

more limited excitable nerve cell environment and for this

reason, it is not necessary to model the full characteristics

of such a cell. We will focus on four distinct methods for

feature vector extraction and recognition engine construc-

tion: the classic covariance technique, a total variation and

an associated spline method that uses knots determined by

the total variation approach and finally, a method that

extracts a low dimensional feature vector from the raw

action potentials by looking at biologically relevant

information such as the maximum time and amplitude of

the voltage peak and so forth.

In order to demonstrate the efficacy of this method-

ology, we will generate families of action potentials from a

classic Hodgkin–Huxley model. We assume a toxin in a

given family alters the action potential in a specific way

which we will call the toxin family signature. We will

study two type of signatures: first, families that alter the

maximum sodium and potassium conductance parameters

by a given percentage and second, families that perturb the

standard Hodgkin–Huxley a–b values. We deliberately

focus on the design of recognizers that will be feasible to
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implement in a hybrid biological cell/electronic sensor

package with limited on-board computational power for

feature vector extraction and classification such as the first

and second generation biosensors that are being

developed.

We also have another motivation for this work. In other

work on cognitive modelling, the interactions of cortical

modules with the limbic system are modulated by a

number of monoamime NTs. A useful model of generic

cortex, isocortex, is that given in Grossberg (2003),

Grossberg and Seitz (2003) and Raizada and Grossberg

(2003). Two fundamental cortical circuits are introduced

in these works: the on-centre, off-surround (OCOS) and

the folded feedback pathway (FFP) seen in figures 2 and 3.

We see that higher level cortical input is fed into the

previous column’s layer one and then via an OCOS circuit.

Outputs from the thalamus (perhaps from the nuclei of the

Lateral Geniculate Body) filter upward into the column at

the bottom of the picture. At the top of the figure, the three

circles that are not filled in represent neurons in layer four

whose outputs will be sent to other parts of the column.

There are two thalamic output lines: the first is a direct

connection to the input layer four, while the second is an

indirect connection to layer six itself. This connection then

connects to a layer of inhibitory neurons, which are shown

as circles filled in with black. The middle layer four output

neuron is thus innervated by both inhibitory and excitatory

inputs while the left and right layer four output neurons

only receive inhibitory impulses. Hence, the centre is

excited and the part of the circuit that is off the centre, is

inhibited. We could say the surround is off. It is common

to call this type of activation the off surround.

Next consider a stacked cortical column consisting of

two columns, column one and column two. There are

cortico-cortical feedback axons originating in layer six of

column two which input into layer one of column one. From

layer one, the input connects to the dendrites of layer five

pyramidal neurons, which connects to the thalamic neuron

in layer six. Hence, the “higher level cortical input” is

fed back into the previous column layer six and then

can excite column one’s fourth layer via the on-centre,

off-surround circuit discussed previously. This description

is summarized in figure 3. We call this type of feedback a

FFP. The OCOS and FFP are the two most basic cortical

circuits, but even though there are combined in even more

complicated modules, it is clear already that input from

areas outside the cortex is important in how the cortical

response is shaped.

The reticular formation (RF) is this central core of the

brain stem, which contains neurons whose connectivity is

characterized by huge fan-in and -out. Reticular neurons

therefore have extensive and complex axonal projections.

Note, we use the abbreviation PAG to denote the cells

known as periaqueductal gray and NG for the Nucleus

Figure 1. Prototypical action potential.

Figure 2. The on-centre, off-surround circuit.

Figure 3. The folded feedback pathway circuit.
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Gracilis neurons. Its neurons have ascending projections

that terminate in the thalamus, subthalamus, hypothalamus,

cerebral cortex and basal ganglia (caudate nucleus,

putamen, globus pallidus, substantia nigra). The midbrain

and rostral pons RF neurons thus collect sensory

modalities, project this information to intralaminar nuclei

of thalamus. The intralaminar nuclei project to widespread

areas of cortex causes heightened arousal in response to

sensory stimuli; e.g. attention. Our cortical column models

must therefore be able to accept modulatory inputs from the

RF formation. For example, dopaminergic neurons in

the midbrain (located in figure 4) influence many areas of

the brain as shown in figure 5.

These neurons project in overlapping fiber tracts to

other parts of the brain. The nigrostriatal sends

information to the substantia nigra and then to the

caudate, putamen and midbrain. The medial forebrain

bundle projects from the substantia nigra to the frontal and

limbic lobes. The indicated projections to the motor cortex

are consistent with initiation of movement. We know there

is disruption to cortex function due to dopamine neurons

ablation in Parkinson’s disease. The projections to other

frontal cortical areas and limbic structures imply there is a

motivation and cognition role. Hence, imbalances in

these pathways will play a role in mental dsyfunction.

Furthermore, certain drugs cause dopamine release in

limbic structures, which implies a pleasure connection.

It is, therefore, clear that cognitive models require

abstract neurons whose output can be shaped by many

modulatory inputs. Hence, we are interested in how much

information can be transferred from one abstract neuron to

another using a low dimensional biologically based

feature vector (BFV). The toxin study of this paper shows

we can successfully use such a BFV to extract information

about how a given toxin influences the shape of the output

pulse of an excitable neuron. The BFV can then also serve

that purpose for other modulatory inputs such as NTs.

Thus, we can infer from these studies, that the BFV can be

used for information transfer the other way. This allows us

to design an artificial neuron whose output is the BFV.

Modulatory inputs into the abstract neuron can be

modelled as alterations to the components of the BFV.

It is then straightforward to develop an algebra of BFV

interactions so that we can model cortical interactions

modulated by limbic system input. We are pursuing this

approach in current cognitive modelling efforts.

The outline of the paper is as follows. First, in section 2,

we discuss the basic Hodgkin–Huxley model for the reader

who may not be familiar with the cell modelling literature.

The Hodgkin–Huxley model depends on a large number of

parameters and we will be using perturbations of these as a

way to model families of toxins. Of course, more

sophisticated action potential models can be used, but the

standard two ion gate Hodgkin–Huxley model is sufficient

for our needs in this paper. In section 3, we present the toxin

recognition methodology for the first toxin family

that modify the maximal sodium and potassium con-

ductances. We believe that toxins of this sort include some

second messenger effects. Our general classification

methodology is then discussed in section 4 and applied to

the this collection of toxin families. We show that we can

design a reasonable recognizer engine using a low

dimensional biologically BFV. In section 5, we introduce

the second class of toxin families whose effect on the action

potential is more subtle. We show that the biological feature

vector performs well in this case also. Finally, in section 6,

we make concluding remarks and discuss future directions

of our work.

2. The basic Hodgkin–Huxley model

The salient variables needed to describe what is

happening inside and outside the cellular membrane

for a standard cable model Johnston and Wu (1995) are

given in table 1.

Figure 4. The dopamine neuron sites.

Figure 5. The dopamine innervation pathways.
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The cable equations are generally expressed in a per

length form as the variables in table 1 show. The current

density variables are traditionally denoted as K’s and the

corresponding currents as I’s. It is also traditional to use

lower case letters for the membrane capacitance and

conductance densities, with upper case letters for the total

values. The membrane voltage can be shown to satisfy the

partial equation (1) whose dimensional analysis shows has

units of volts/(cm2).

›2Vm

›z2
¼ ðri þ roÞKm 2 roKe: ð1Þ

A realistic description of how the membrane activity

contributes to the membrane voltage uses models of ion

flow controlled by gates in the membrane. A simple model

of this sort is based on Hodgkin and Huxley (1952),

Hodgkin (1952), (1954). We start by expanding the

membrane model to handle potassium, sodium and an all

purpose current, called leakage current, using a modifi-

cation of our original simple electrical circuit model of the

membrane. We will think of a gate in the membrane as

having an intrinsic resistance and the cell membrane itself

as having an intrinsic capacitance. Thus, we expand the

single branch of our old circuit model to multiple

branches—one for each ion flow we wish to model. The

ionic current consists of the portions due to potassium, Kk,

sodium, KNa and leakage KL. The leakage current is due to

all other sources of ion flow across the membrane which

are not being explicitly modelled. This would include ion

pumps; gates for other ions such as Calcium, Chlorine; NT

activated gates and so forth. We will assume that the

leakage current is chosen so that there is no excitable

neural activity at equilibrium. The standard Hodgkin–

Huxley model of an excitatory neuron then consists of

the equation for the total membrane current density, Km,

obtained from Ohm’s law:

Km ¼ cm

›Vm

›t
þ KK þ KNa þ KL: ð2Þ

The new equation for the membrane voltage is thus

›2Vm

›z2
¼ ðri þ roÞcm

›Vm

›t
þ ðri þ roÞðKK þ KNa þ KLÞ

þ ðri þ roÞ þ ðri þ roÞ2 roKe:

which can be simplified to what is seen in equation (3):

1

ri þ ro

›2Vm

›z2
¼ cm

›Vm

›t
þ KK þ KNa þ KL 2

ro

ri þ ro

Ke:

Under certain experimental conditions (the voltage

clamped protocol), we can force the membrane voltage to

be independent of the spacial variable z. In this case, we

find ›2Vm/›z 2 ¼ 0 which allows us to rewrite equation (3)

as follows

cm

dVm

dt
þ KK þ KNa þ KL 2

ro

ri þ ro

Ke ¼ 0: ð3Þ

The replacement of the partial derivatives with a normal

derivative reflects the fact that in the voltage clamped

protocol, the membrane voltage depends only on the one

variable, time t. Since, cm is capacitance per unit length, the

above equation can also be interpreted in terms of capaci-

tance, CM, and currents, IK, INa, IL and an external current

Ie. This leads to equation (4) which has units of amps.

Cm

dVm

dt
þ IK þ INa þ IL 2

ro

ri þ ro

Ie ¼ 0: ð4Þ

which we note has units of amps. Finally, if we label as

external current, IE, the term (ro/ri þ ro)Ie, the equation we

need to solve under the voltage clamped protocol becomes

equation (5).

dVm

dt
¼

1

Cm

ðIE 2 IK 2 INa 2 ILÞ: ð5Þ

We can think of a gate as having some intrinsic

resistance and capacitance. Now for our simple Hodgkin–

Huxley model here, we want to model a sodium and

potassium gate as well as the cell capacitance. So, we will

have a resistance for both the sodium and potassium.

In addition, we know that other ions move across the

membrane due to pumps, other gates and so forth. We will

temporarily model this additional ion current as a leakage

current with its own resistance. We also know that each

ion has its own equilibrium potential which is determined

by applying the Nernst equation. The driving electro-

motive force is the difference between the ion equilibrium

potential and the voltage across the membrane itself.

Hence, if Ec is the equilibrium potential due to ion c and

Vm is the membrane potential, the driving force is

Vc 2 Vm. In figure 6, we see an electric schematic that

summarizes what we have just said. We model the

membrane as a parallel circuit with a branch for the

Table 1. Hodgkin–Huxley variable units.

Variable Meaning Units

Vm Membrane potential MV
Km Membrane current per length nA/cm
Ke Externally applied current nA/cm
Ii Inner current NA
Io Outer current NA
Ie External current NA
Im Membrane current NA
Vi Inner voltage MV
Vo Outer voltage MV
ri Resistance inner fluid per length mohms/cm
ro Resistance outer fluid per length mohms/cm
gm Membrane conductance per length mSiemens/cm
cm Membrane capacitance per length nano Fahrads/cm
GM Membrane conductance mSiemens/cm
CM Membrane capacitance nano Fahrads/cm
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sodium and potassium ion, a branch for the leakage

current and a branch for the membrane capacitance.

From circuit theory, we know that the charge q across a

capacitor is q ¼ CE, where C is the capacitance and E is

the voltage across the capacitor. Hence, if the capacitance

C is a constant, we see that the current through the

capacitor is given by the time rate of change of the charge.

If the voltage E was also space dependent, we could write

E(z,t) to indicate its dependence on both a space variable z

and the time t. From Ohm’s law, we know that voltage is

current times resistance; hence for each ion c, we can say

Vc ¼ IcRc where we label the voltage, current and

resistance due to this ion with the subscript c. This

implies Ic ¼ GcVc, where Gc is the reciprocal resistance or

conductance of ion c. Hence, we can model all of our ionic

currents using a conductance equation of the form above.

Of course, the potassium and sodium conductances are

nonlinear functions of the membrane voltage V and time t.

This reflects the fact that the amount of current that flows

through the membrane for these ions is dependent on the

voltage differential across the membrane which in turn is

also time dependent. The general functional form for an

ion c is thus Ic ¼ Gc(V,t)(Vm(t) 2 Ec(t)) where as we

mentioned previously, the driving force, Vm 2 Ec, is the

difference between the voltage across the membrane and

the equilibrium value for the ion in question, Ec. Note, the

ion battery voltage Ec itself might also change in time

(for example, extracellular potassium concentration

changes over time). Hence, the driving force is time

dependent. The conductance is modelled as the product of

an activation, m and an inactivation, h, term that are

essentially sigmoid nonlinearities. The activation and

inactivation are functions of Vm and t also. The

conductance is assumed to have the form

GcðVm; tÞ ¼ G0m
pðVm; tÞh

qðVm; tÞ;

where appropriate powers of p and q are found to match

known data for a given ion conductance. We model the

leakage current, IL, as IL ¼ GL(Vm(t) 2 EL) where the

leakage battery voltage, EL, and the conductance gL are

constants that are data driven. Hence, in terms of current

densities, letting gK, gNa and gL, respectively denote the ion

conductances per length, our full model would be

KK ¼ gKðVm 2 EKÞ; KNA ¼ gNaðVm 2 ENaÞ;

KL ¼ gLðVm 2 ELÞ

We know the membrane voltage satisfies:

1

ri þ ro

›2Vm

›z2
¼ cm

›Vm

›t
þ KK þ KNa þ KL 2

ro

ri þ ro

Ke:

We can, therefore, rewrite this in current density form as

1

ri þ ro

›2Vm

›z2
¼ cm

›Vm

›t
þ gKðVm 2 EKÞ

þ gNaðVm 2 ENaÞ þ gLðVm 2 ELÞ

2
ro

ri þ ro

Ke:

which under the voltage clamped protocol has the current

form

Cm

dVm

dt
¼ IE 2 GKðVm 2 EKÞ þ GNaðVm 2 ENaÞ

þ GLðVm 2 ELÞ

We assume that the voltage dependence of our

activation and inactivation has been fitted from data.

Hodgkin–Huxley modelled the sodium and potassium

gates as

GNaðVm; tÞ ¼ GNa
0 m3ðVm; tÞ h ðVm; tÞ;

GKðVm; tÞ ¼ GK
0 n

4ðVm; tÞ:

where the activation variables,m and n, and the inactivation

variable h satisfy first order kinetics of the form tx
dx/dt ¼ x1 2 x, x0 ¼ x0, where x can be any of the

choices m, h or n. The model is further complicated by the

voltage dependence of the critical constant pairs (tx,x1)

and so forth. These parameters are computed at any given

voltage by tx ¼ 1.0/(ax þ bx) and x1 ¼ ax/(ax þ bx). The

needed (ax,bx) pairs for each activation/inactivation

variable are modelled using curve fits to data as sigmoid

type nonlinearities. The classic Hodgkin–Huxley model

computed the following curve fits:

am ¼ 20:10
Vm þ 35:0

e2:1ðVmþ35:0Þ 2 1:0
;

bm ¼ 4:0 e2ðVmþ60:0Þ=18:0;

ah ¼ 0:07 e2:05ðVmþ60:0Þ;

bh ¼
1:0

1:0 þ e2:1ðVmþ30:0Þ
;

an ¼ 2
0:01*ðVm þ 50:0Þ

e2:1ðVmþ50:0Þ 2 1:0
;

bn ¼ 0:125e20:0125ðVmþ60:0Þ:

ð6Þ

Figure 6. The simple Hodgkin–Huxley membrane circuit model.
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Our model of the membrane dynamics here thus

consists of the following differential equations:

dVm

dt
¼

IM 2 IK 2 INa 2 IL

CM

; tm

dm

dt
¼ m1 2 m;

th

dh

dt
¼ h1 2 h; tn

dn

dt
¼ n1 2 n;

ð7Þ

Vð0Þ ¼ V0
m; mð0Þ ¼ m1ðV

0
m; 0Þ;

hð0Þ ¼ h1ðV
0
m; 0Þ; nð0Þ ¼ m1ðV

0
m; 0Þ;

ð8Þ

We note that at equilibrium there is no current across

the membrane. Thus, the leakage conductance and

leakage battery voltage must be adjusted so that

current flow is zero at equilibrium. This then implies

the sodium and potassium currents are zero and the

activation and inactivation variables should achieve their

steady state values which would be m1,h1 and n1
computed at the equilibrium membrane potential which is

here denoted by V0
m.

3. Toxin recognition

When two cells interact via a synaptic interface, the

electrical signal in the pre-synaptic cell in some

circumstances triggers a release of a NT from the pre-

synapse which crosses the synaptic cleft and then by

docking to a port on the post cell, initiates a post-synaptic

cellular response. The general pre-synaptic mechanism

consists of several key elements: one, NT synthesis

machinery so the NT can be made locally; two, receptors

for NT uptake and regulation; three, enzymes that package

the NT into vesicles in the pre-synapse membrane for

delivery to the cleft. We will focus on two pre-synaptic

types: monoamine and peptide. In the monoamine case, all

three elements for the pre-cell response are first

manufactured in the pre-cell using instructions contained

in the pre-cell’s genome and shipped to the pre-synapse.

Hence, the monoamine pre-synapse does not require

further instructions from the pre-cell genome and response

is therefore fast. The peptide pre-synapse can only

manufacture a peptide NT in the pre-cell genome; if a

peptide NT is needed, there is a lag in response time. Also,

in the peptide case, there is no re-uptake pump so peptide

NT can’t be reused. On the post-synaptic side, we will

focus on two general responses. The fast response is

triggered when the bound NT/receptor complex initiates

an immediate change in ion flux through the gate thereby

altering the electrical response of the post cell membrane

and hence, ultimately its action potential and spike train

pattern. Examples are glutumate (excitatory) and GABA

(inhibitory) NTs. The slow response occurs when

the initiating NT triggers a second response in the interior

of the cell. In this case, the first NT is called the first

messenger and the intracellular response (quite complex

in general) is the second messenger system. Further

expository details of first and second messenger systems

can be found in Stahl (2000).

From the above discussion, we can infer that a toxin

introduced to the input system of an excitable cell

influences the action potential produced by such a cell in a

variety of ways. For a classic Hodgkin–Huxley model,

there are a number of critical parameters which influence

the action potential. The nominal values of the maximum

sodium and potassium conductance G0
Na and G0

K can be

altered. We view these values as a measure of the density

of a classic Hodgkin–Huxley voltage activated gates per

square cm of biological membrane. Hence, changes in this

parameter require the production of new gates or the

creation of enzymes that control the creation/destruction

balance of the gates. This parameter is thus related to

second messenger activity as access to the genome is

required to implement this change. We can also perturb the

parameters that shape the a and b functions used in

equation (7). These functions are all special cases of the

general mapping z(Vm,p,q) with p [ R
4 and q [ R

2

defined by

zðV ; p; qÞ ¼
p0ðVm þ q0Þ þ p1

ep2ðVmþq1Þ þ p3

;

with

am ¼ zðVm; p
a
m ¼ { 2 0:10; 0:0;20:1;21:0};

qam ¼ {35:0; 35:0}Þ;

bm ¼ zðVm; p
b
m ¼ {0:0; 4:0; 0:0556; 0:0};

qbm ¼ {60:0; 60:0}Þ;

ah ¼ zðVm; p
a
h ¼ {0:0; 0:07; 0:05; 0:0};

qah ¼ {60:0; 60:0}Þ;

bh ¼ zðVm; p
b
h ¼ {0:0; 1:0;20:1; 1:0Þ;

q
b
h ¼ {30:0; 30:0}Þ;

an ¼ zðVm; p
a
n ¼ {0:01; 0:0;20:1;21:0};

qan ¼ {50:0; 50:0}Þ;

bn ¼ zðVm; p
b
n ¼ {0:0; 0:125; 0:0125; 0:0};

qbn ¼ {60:0; 60:0}Þ:

The p and q parameters control the shape of the

action potential in a complex way. From our discussions
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about the structure of ion gates, we could

think of alterations in the ( p,q) pair associated with

a given a and/or b as a way of modelling how

passage of ions through the gate are altered by the

addition of various ligands. These effects are immediate

and changes in ion flow follow implying changes in

membrane potential.

Now assume that the standard Hodgkin–Huxley

model for g0
Na ¼ 120; g0

K ¼ 63:0 and the classical a, b

functions are labeled as the nominal values. Hence, there

is a nominal vector L0 given by

L0 ¼

G0
Na ¼ 120:0

G0
K ¼ 36:0

ðpamÞ
0 { 2 0:10; 0:0;20:1;21:0}

ðpbmÞ
0 {0:0; 4:0; 0:0556; 0:0}

ðpah Þ
0 {0:0; 0:07; 0:05; 0:0}

ðp
b
h Þ

0 {0:0; 1:0;20:1; 1:0}

ðpan Þ
0 {0:01; 0:0;20:1;21:0}

ðpbn Þ
0 {0:0; 0:125; 0:0125; 0:0}

ðqamÞ
0 {35:0; 35:0}

ðqbmÞ
0 {60:0; 60:0}

ðqah Þ
0 {60:0; 60:0}

ðq
b
h Þ

0 {30:0; 30:0}

ðqan Þ
0 {50:0; 50:0}

ðqbn Þ
0 {60:0; 60:0}

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

A toxin G thus has an associated toxin signature, E(G)

which consists of deviations from the nominal classical

Hodgkin – Huxley parameter suite: E(G) ¼ L0 þ d,

where d is a vector, or percentage changes from

nominal, that we assume the introduction of the toxin

initiates. As you can see, if we model the toxin signature

in this way, we have a rich set of possibilities we can

use for parametric studies.

3.1 Simple second messenger toxins

We begin with toxins whose signatures are quite simple as

they only cause a change in the nominal sodium and

potassium maximum conductance. These are, therefore,

second messenger toxins. This simulation will generate

five toxins whose signatures are distinct. Using Cþþ as

our code base, we have designed a TOXIN class

whose constructor generates a family of distinct signatures

using a signature as a base. Here, we will generate

twenty sample toxin signatures clustered around the

given signature using a neighbourhood size of 0.02.

First, we generate five toxins using the toxin signatures: of

table 2.

These percentage changes are applied to the base

conductance values to generate the sodium, potassium

and leakage conductances for each simulation.

We use these toxins to generate 100 simulation runs

using the 20 members of each toxin family. We believe

that the data from this parametric study can be used to

divide up action potentials into disjoint classes each of

which is generated by a given toxin. Each of these

simulation runs use the synaptic current injected as

in figure 7 which injects a modest amount of current over

approximately 2 s. The current is injected at four separate

times to give the gradual rise seen in the picture. For

additional details, see Peterson (2002b). In figure 8, we see

all 100 generated action potentials. You can clearly see

that the different toxin families create distinct action

potentials.

4. Building the recognition engines

We can now use the toxin data discussed above to build

a toxin recognition engines. There are many approaches

to recognition as are discussed in Theodoridis and

Koutroumbas (1999) including the use of artifical neural

technologies. In this paper, we choose four distinct

approaches to build a recognizer. We can

(1) Use the eigenvectors corresponding to the largest

eigenvalues of the covariance matrix. We will discuss

this below, but essentially we use the average trace

Table 2. Toxin conductance signature.

Toxin Signature ½dg0
Na; dg

0
K�

A [0:45, 20:25]
B [0:05, 20:35]
C [0:10, 0:45]
D [0:55, 0:70]
E [0:75, 20:75]

Figure 7. The applied synaptic pulse.
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for each variable to construct the difference vectors

used in the computation of the covariance

matrix. This approach tends to remove noise in

the data, so we expect it to be robust in the face

of errors in measuring a signal. Our simulations add

40% noise to the data to test this. As expected, the

recognition of toxins is unaffected by noise in this

case.

(2) Use a total variation approach which focuses

on the places in the data where the variable in

question changes the most. We would expect that the

components of the resulting feature vector have some

physical meaning. This recognition engine should

be adversely affected by noise.

(3) Use a spline approach with the knots suggested by the

total variation method. This approach will lack

physical meaning and will also be affected by the

noise in the data.

(4) Use a biological relevant feature vector obtained by

extracting from each variable of interest information

that has relevant physical meaning. This is, of course,

more subjective, but has the advantage that the

components of the feature vector have some physical

meaning. Of course, it is important that the extraction

algorithm that we use is not sensitive to noise in the

raw data.

4.1 The covariance recognizer

A standard covariance recognition algorithm is now

described. We assume the data size N is generally much

larger than the number of samples M. Here, the simulation

generates time traces of the form (ti,zi) for any variable z of

interest. We compute the variables over 25 mS and

generate a waypoint every 0.025 mS; hence, each such

vector is size 1001. The number of runs in each simulation

is 100. Thus, the restriction that N is much larger than M

is clearly followed. For the voltage variable, the data is

therefore {Vi,1 # i # M}, each Vi [ R
N. We store this in

the matrix B where the ith row of B is the data Vi and

compute the average of each column in B to create an

average vector m. Then, we compute the difference

vectors di ¼ vi 2 m for 1 # i # M and store them in the

M £ N matrix A. Letting C* ¼ (1/M)AA T, an M £ M

matrix, we compute the M eigenvalues and associated

eigenvectors of C*, l1,. . .,lM and {f1,. . .,fM}. The

eigenvalues of C* are known to be the same as the

eigenvalues of the much larger N £ N covariance matrix

C ¼ (1/M)A TA with eigenvectors Qi ¼ A Tfi, normalized

into unit vectors, zi. To construct a simple recognizer,

simply choose an integer Q less than or equal to M.

The eigenvectors {z1,. . .,zQ} corresponding to the top Q

eigenvalues then provide a low dimensional subspace of

Figure 8. The toxin families for the applied pulse.
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R
N, EQ. Project all difference vectors to EQ to create a

feature vector fi ¼ {kdi,z1l,. . .,kdi,zQl}T.

For each toxin class there are samples. Assume there are

P toxins, P divides M evenly and each class has the same

number of samples, L ¼ M/P. The feature vectors can thus

be organized into classes using the index sets {I1,. . .,Ip}

where each index set Ik consists of the L indices that

correspond to toxin class k. Hence, for a given toxin

class k, the feature vector set F k defined as {f ki ; i [ Ik}

collects all the samples corresponding to toxin k. If we

then compute the average feature vector for each toxin

class, Tk ¼ ð1=LÞ
P

i[Ik
Fk
i , we have a way to determine if

a new sample belongs to one of the toxin classes we have

identified. Given a new sample j to test, we compute its

difference d ¼ j 2 m and compute the feature vector Fj

by projecting d to EQ. Then, we calculate the euclidean

distance from this feature vector to each toxin class vector,

rk ¼ kFj 2 Tkk, for 1 # k # P. The index i correspond-

ing to the minimum, ri ¼ mink rk, is considered the

correct toxin class for the sample.

Using the data discussed in section 3.1, we can use

the algorithm and code above to implement a recognition

engine. From the simulation data, we then compute the

average variable time traces for the variables of interest.

It is instructive to look at a plot of the logarithm

of the eigenvalues of the covariance matrix. When the

covariance matrix is built without noise, a plot of

the logarithm of the resulting eigenvalues is shown

in figure 10. There is a clean break in eigenvalue size.

When noise is added, the eigenvalues grow in size and

separation is diminished, but there is still a significant

drop in the eigenvalue size at eigenvalue 5 as shown in

figure 10.

In figure 11, we look at two recognizer engines built

according to the discussion in section 4; one using a one

dimensional (Q ¼ 1) and the other, a five dimensional

projection (Q ¼ 5). In the left panel, we show the results

for the recognizer built using the one-dimensional

projection; i.e. only the eigenvector corresponding to the

maximal eigenvalue of the covariance matrix is used

(figure 12). The distance of each toxin to the toxin class

feature vectors are plotted in five separate curves. The

samples are organized as 20 from each toxin class starting

with Toxin A. Hence, for the Toxin A samples, if our

recognizer is working well, we expect to see the first 20

distances are very low and the other 80 distances are very

high. In the right panel, the results are shown for a

recognizer built using a 5 dimensional projection; i.e. the 5

eigenvectors corresponding to the 5 top ranked eigen-

values of the covariance matrix are used. Clearly, these

toxin classes are very nicely separated from each other as

you can see from the distance plots and we get stable

Figure 9. Logarithm of eigenvalues without noise.
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recognition even if we simply use the

dominant eigenvector direction for our projections.

In figures 13 and 14, we see the results of a ten

dimensional projection on the data used to build the

recognizer—the training data. We also show in the right

panel, how the ten dimensional recognizer performs on

toxin samples that are generated with a larger neighbour-

hood window.

In figures 13 and 14, we show results for a recognizer

built using a 10 dimensional projection (Q ¼ 10); i.e.

the 10 eigenvectors corresponding to the 10 top ranked

eigenvalues of the covariance matrix are used. The

distances within each class are lower as the approxi-

mation is better; i.e. if we look at the distance from a

Toxin A class sample to the Toxin A feature vector, this

distance is lower here in the 10 dimensional

approximation. However, the separation between toxins

is very good even when we use the 1 dimensional

recognizer. In section 3.1, we detailed the construction

of the original training samples using a neighbourhood

size of 0.02 around each toxin class signature. For the

results shown in the right panel, we also generated

samples using the neighbourhood size of 0.2, which is

ten times larger. This should generate samples in each

toxin neighbourhood, which are not in that Toxin class

because the toxin signature used exceeds the toxin

class specifications. The plot shown in figure 13 shows

the distance results for all the samples using

the neighbourhood size of 0.02. The plot for the larger

neighbourhood size of 0.2 is shown in figure 14. As you

can see, some of the samples from each toxin class now

have a fairly high distance from their toxin class feature

vector.

We will now test the viability of this approach by

attempting to build a recognizer from very noisy data. We

created the noisy version of the data by adding noise to

the data we had generated in section 3.1. The randomly

altered data is then used to build a covariance based

recognition engine. The covariance matrix is quite

different for this data. The first 100 eigenvalues are all

quite large, although there is a drop off from the

initial high value of eigenvalue 0. We show this in

a log eigenvalue plot in figure 9. If you look at eigen-

values 0 to 5, {148378, 64738.3, 45474.3, 37868.7,

19793.3, 14954.3}, you note there is a sharp drop off at

eigenvalue 5.

To see how this recognizer performs, in figures 15

and 16, we see the plots of a 5 and 10 dimensional

recognizer. In figure 15, we show how the noisy recognizer

built using a 5 dimensional projection performs on itself;

Figure 10. Logarithm of eigenvalues with noise.
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i.e. on the data that was used to build the recognizer. The

distance of each toxin to the toxin class feature vector,

vectors are plotted in five separate curves as we did in

earlier graphs. In figure 16, the results are shown for a

recognizer built using a 10 dimensional projection.

Despite the fact that the distances to the class feature

vectors are larger than in the case, where the recognizer

was built for data that was not noisy, there is still good

Figure 11. 1D covariance recognizer.
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Figure 12. 5D covariance recognizer.

J. Peterson and T. Khan210



Figure 13. 10D covariance recognizer size 0.02.
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Figure 14. 10D covariance recognizer size 0.2.
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Figure 15. 5D covariance recognizer on noisy data.
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Figure 16. 10D covariance recognizer on noisy data.
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Figure 17. 5D covariance noisy recognizer on clean data.
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Figure 18. 10D covariance noisy recognizer on clean data.
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class distance separation. From the log eigenvalue plot, we

see that the five dimensional engine is probably adequate;

that is indeed the case as we can see from the left hand

plot. The noisy recognizer here is being tested on the data

that was used to build it. Next, we test it on the noiseless

data from section 3.1. This is shown in figures 17 and 18.

In figure 17, we show how the noisy recognizer built using

a 5 dimensional projection performs on the clean toxin

data. The results for a recognizer built using a 10

dimensional projection are shown in figure 18. Again,

there is still good class distance separation.

4.2 The total variation recognizer

The general feature of the action potential as shown in

figure 7 exhibits an upside down cone like shape with a

narrow top and two steep sides. Therefore the purpose

of developing an adaptive non-uniform grid or feature

vector generation method is to best accommodate

these specific features of the action potential. In fact,

for each action potential curve, the grid or feature

vector generation program distributes N grid point ti
in such a way that grid points are spaced with higher

density in the region where the variation of the action

potential are larger. More specifically, the adaptive

grid generation program evaluates the change of a

combined variation function B(t) and ensuring that

the changes between any two neighbouring grid

points are kept to be the same while positioning

the grid points Wang et al. (1999) for similar

grid generation algorithm for data surface reconstruc-

tion). For convenience, define dVj ¼ Vjþ1 2 Vj and

DV
j ¼ ðVjþ1 2 Vj=tjþ1 2 tj). The combined variation

function B(t) used in our algorithm then takes the form

CðV ; jÞ ¼ ðlj0 þ l1d
V
j21j þ l2jD

V
j 2 DV

j21jÞ

BðtÞ ¼ Bðtj21Þ þ
t2 tj21

tJ 2 tj21

CðV ; jÞ

for t in the interval [tj21,tj] andB(t1) ¼ 0. It can be seen that,

using this combined variation function, the effects of both

the action potential variation (second term in parenthesis)

and their rate of variation (third term in parenthesis) are

considered together with the time variation in the

distribution of the grid points. The coefficients lk are the

adjustable weights for different components. For a typical

action potential curve, the algorithm calculates the

combined variation B(t) which is shown in figure 19.

It is clear from figure 19 that the feature vector

generation program calculates the combined variation

function B(t) given in equation above for a given action

potential. We note thatB(t) is an increasing function of time

with 0 # B(t) # 1 and hence one to one. Therefore, if we

equally subdivide the interval from [0,1] intoN ¼ 12 points

(shown in circles in figure 19) then we can project these

points into the t axis which are given by crosses in figure 19.

So these feature vectors (in crosses) are distributed such

that the density is higher where combined variation

function is steeper.

In order to compare how this total variation feature

vector generation compares with our previous recognition

engines, we computed the total variation BFVs for all of the

100 action potential curves. In figure 20, we show how the

total variation based recognizer built using a 5 dimensional

feature vector performs on the clean data while figure 21

shows the results for the toxin data with 40% noise added.

Similarly, we show results for clean and noisy data using a

10 dimensional recognizer in figures 22 and 23.

4.3 The spline based recognizer

The spline approximation to the action potential generated

by our algorithm has the form Schumaker (1980)

VmðtÞ ¼
XNþL21

k¼1

qkfkðtÞ ð9Þ

where L is the order of the spline function used and {fk}

are the basis elements for polynomial spline functions of

order L defined on the generated adaptive non-uniform

grid tj. The coefficients qk or the feature vector

q ¼ (q1,. . .,qNþL 2 1) in equation (9) are determined by

minimizing the following functional:

JðqÞ ¼ g0

XN1

j¼1

jVmðtjÞ2WðtjÞj
2
þ g1

ðtf
t0

jVmðtÞ2WðtÞj
2
dt

þ g2

ðtf
t0

j _VmðtÞ2 _WðtÞj
2
dt;

Figure 19. Variation function for one potential.
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Figure 20. 5D total variation recognizer: on clean data.
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Figure 21. 5D total variation recognizer: on noisy data.
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Figure 22. 10D total variation recognizer: on clean data.
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Figure 23. 10D total variation recognizer: on noisy data.
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where N1 is the number of experimental data points for

action potential. W(t) is the linear interpolation of the

experimental data, Vm(tj). Note that, in our feature vector

calculation algorithm, not only the difference in the values

of the action potential but also the difference in the rates of

change between approximation and the experimental data

(third integral including the differential term) are

considered. The inclusion of this term allows us to control

the regularity of the approximated action potential and

reduce the amount of oscillations often observed in the

approximation of rapidly varying data. In fact, by

choosing coefficients g0,g1 and g2, we can significantly

increase the robustness of the calculated featured vector

and yet produce satisfactory fit to the experimental action

potential. To demonstrate our ideas, we construct a feature

vector for the simple Hodgkin–Huxley model. The

simulated action potential and the associated spline

approximation are shown in figure 24.

Here, the number of non-uniform grid points generated is

N ¼ 12 and the order of the spline used is cubic (L ¼ 3).

Therefore, we need only 14 basis elements (f1,f2,. . .,f14).

Therefore, the feature vector is a vector in R 14 which

approximates the feature of the simulated action potential

accurately as shown in figure 24. In figure 24, the dotted

line represents the approximated V(t) using cubic splines

and the solid line represents the actual action potential. The

crosses on the t axis represents the non-uniform grid points

used for the cubic spline approximation from the combined

variation approach explained in the previous section. For

this choice of the splines used, we get the following

coefficients for the approximation depicted in figure 24,

q ¼ ð2 2:3388;20:1799;20:4169;

2 0:0874; 0:1066; 0:1122; 0:1008;20:2977;

2 0:8060;20:9457;21:3772;21:4718;

2 1:5603;21:2548Þ:

In order to compare how this total variation feature

vector generation compares with our previous recognition

engines, we computed the cubic spline BFVs (mainly

(q ¼ q1, . . ., qNþL 2 1)) for all of the 100 action potential

curves.

The performance of the spline based recognizer using a

10 dimensional recognizer is shown in figure 25 for clean

data and figure 26 for the noisy data.

4.4 The biological feature vector based recognizer

One can easily observe that for a typical response, as in

figure 1, the potential exhibits a combination of cap-like

shapes. We can use the following points on this generic

action potential to construct a low dimensional feature

vector:

j ¼

ðt0;V0Þ start point

ðt1;V1Þ maximum poing

ðt2;V2Þ return to reference voltage

ðt3;V3Þ minimum point

ðg; t4;V4Þ sigmoid model of tail

2
666666664

3
777777775
;

where the model of the tail of the action potential is of

the form

VmðtÞ ¼ V3 þ ðV4 2 V3Þ tanh ðgðt2 t3ÞÞ;

Note that

V 0
mðt3Þ ¼ ðV4 2 V3Þg:

We approximate V0
m(t3) by a standard finite difference.

We pick a data point (t5,V5) that occurs after the

minimum—typically, we use the voltage value at the time

t5 that is 5 time steps downstream from the minimum and

approximate the derivative at t3 by

V 0
mðt3Þ <

V5 2 V3

t5 2 t3

The value of g is then determined to be

g ¼
V5 2 V3

ðV4 2 V3Þðt5 2 t3Þ

which reflects the asymptotic nature of the hyperpolariza-

tion phase of the potential. Note that j is in R
11. We have

deliberately chosen a very simple feature vector extraction

to focus on how well such a simplistic scheme will

perform in comparison to the more sophisticated

covariance, total variation and spline methods. We shall

see that even this rudimentary feature vector extraction is

quite capable of generating a functional recognizer.

Figure 24. Feature vector construction.

J. Peterson and T. Khan222



Figure 25. 10D spline recognizer: on clean data.
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Figure 26. 10D spline recognizer: on noisy data.
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In all of the recognizers we have constructed,

the classification of the toxin is determined by finding

the toxin class, which is minimum distance from the

sample. The distances generated by the biological feature

vector are still very capable of discerning toxin class;

however, the raw distances are very different. For

example, in table 3, we show the computed distances for

some of the samples. The first three rows are distances

from Toxin A samples, the next three are Toxin B sample

distances and so forth. The code that generated

these distances set the distance to 5 if the distance was

more than that for ease of display in the graphs shown in

figures 27 and 28. Note that the classification of each toxin

is still quite easy as the distances to each toxin class are

cleanly separated.

Figures 27 and 28 show how the biologically based

recognizer built using a 5 dimensional feature vector

performs on both the clean and noisy data. Similar results

are shown for the performance of the 10 dimensional

recognizer in figures 29 and 30. The manner in which the

biological feature is constructed shows that it is not a

robust technique in the presence of noise. Searching

the data for minimum, crossing and maximum points

is problematic when there are many local extrema.

However, the raw signal could easily be filtered to remove

such ripple.

5. Toxins that reshape a–b parameters

From our earlier discussions, we know toxins of this type

that only cause a change in the nominal sodium and

potassium maximum conductance are effectively second

messenger toxins. However, the 36 additional a–b

parameters that we have listed all can be altered by toxins

to profoundly affect the shape of the action potential

curve. In this section, we will focus on parameter changes

that effect a small subset of the full range of a–b

possibilities.

This simulation will generate five toxins whose

signatures are distinct. Using Cþþ as our code base,

we have designed a TOXIN class whose constructor

generates a family of distinct signatures using a given

signature as a base. Here, we will generate 20 sample

toxin signatures clustered around the given signature

using a neighbourhood size for each of the five toxin

families. First, we generate five toxin families. The

types of perturbations each toxin family uses are listed

in table 4. In this table, we only list the parameters

that are altered. Note that Toxin A perturbs the

q parameters of the a 2 b for the sodium activation

m only; Toxin B does the same for the q parameters of

the sodium h inactivation; Toxin C alters the q

parameters of the potassium activation n; Toxin D

changes the p (Grossberg 2003) value of the a–b

functions for the sodium inactivation h; and Toxin E,

does the same for the potassium activation n. This is just

a sample of what could be studied. These particular

toxin signatures were chosen because the differences in

the generated action potentials for various toxins from

family A, B, C, D or E will be subtle. For example, in

Toxin A, a perturbation of the given type generates the

a–b curves for mNA as shown in figure 31. Note all we

are doing is changing the voltage values of 35.0 slightly.

This small change introduces a significant ripple in the

a curve.

Note, we are only perturbing two parameters at a time in

a given toxin family. In all of these toxins, we will be

leaving the maximum ion conductances for we use these

toxins to generate 100 simulation runs using the 20

members of each toxin family. We believe that the data

from this parametric study can be used to divide up action

potentials into disjoint classes each of which is generated

by a given toxin.

Each of these simulation runs use the synaptic current

injected as in figure 7 which injects a modest amount of

current over approximately 2 s using the protocol

described earlier. The current is injected at four separate

times to give the gradual rise seen in the picture. For

additional details, see Peterson (2002b). In figure 32, we

see all 100 generated action potentials. You can clearly see

that the different toxin families create distinct action

potentials.

5.1 The recognition engines

We will only build the covariance and the biological

feature vector recognition engine for this data. The

previous sections have shown that the simple biological

feature vector approach is quite good at capturing

information content from the action potential pulse. In

figures 33 and 34, we look at the recognizer engines

built according to the discussion in section 4 using a

twenty dimensional projection (Q ¼ 20). The distance of

each toxin to the toxin class feature vector, vectors are

Table 3. BFV: 10D recognizer data.

Distance

A B C D E

0.32988 3.02567 5 5 5
0.09334 2.6891 5 5 5
0.10856 2.6964 5 5 5
2.34489 0.50764 5 4.50301 5
2.25101 0.62203 5 4.61276 5
2.88308 0.27830 5 4.05954 5
5 5 0.15268 5 5
5 5 0.29684 5 5
5 5 0.20283 5 5
5 4.03615 5 0.14421 5
5 3.94194 5 0.21688 5
5 4.12045 5 0.37244 5
5 5 5 5 0.08755
5 5 5 5 0.71222
5 5 5 5 0.56732
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Figure 27. 5D biological feature vector recognizer: on clean data.

J. Peterson and T. Khan226



plotted in five separate curves presented in two separate

figures. The samples are organized as 20 from each

toxin class starting with Toxin A. Hence, for the Toxin

A samples, if our recognizer is working well, we expect

to see the first 20 distances are very low and the other

80 distances are very high. The toxins corresponding to

class A and C are actually fairly close, although their

distances are cleanly separated. In order to have clean

graphical output, the distances we plot in these graphs

are set to 200 is the actual distance exceeds 200. The

Toxin A and C distances are typically in the 20–80

range, while the other distances are much higher; on the

order to 800 when we calculate the out of class distance.

Hence, to show the distance separation more clearly, we

Figure 28. 5D biological feature vector recognizer: on noisy data.
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Figure 29. 10D biological feature vector recognizer: on clean data.

J. Peterson and T. Khan228



Figure 30. 10D biological feature vector recognizer: on noisy data.
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graph the Toxin A and C distances figure 33 and the

Toxin B, D and E distances figure 34. In general, these

toxin classes are very nicely separated from each other

as you can see from the distance plots and we get stable

recognition.

Using the same biological feature as before, we see this

rudimentary feature vector extraction is quite capable

of generating a functional recognizer. The classification

of the toxin is still determined by finding the toxin

class, which is minimum distance from the sample.

The distances generated by the biological feature vector

in this case are still very capable of discerning toxin

class; however, the raw distances are now much

smaller. For purposes of exposition, we set all distances

to 10 if the actual distance to a toxin class exceeds 10; this

will show the class recognition more clearly. Figures 35 and

36 show how the biologically based recognizer built using a

5 and 11 dimensional feature vector performs on the data.

6. Conclusions

In this work, we have shown that a low dimensional

feature vector based on biologically relevant information

extracted from the action potential of an excitable nerve

cell is capable of subserving biological information

processing. We can successfully use such a BFV to extract

Table 4. Toxin a–b signatures.

Toxin A dqam ¼ {0:2;20:1}
dqbm ¼ { 2 0:1; 0:1}

Toxin B dqah ¼ { 2 0:1; 0:1}
dq

b
h ¼ {0:1;20:2}

Toxin C dqan ¼ { 2 0:2; 0:1}
dqbn ¼ { 2 0:1; 0:1}

Toxin D dpah ¼ {0:0; 0:0; 3:0; 0:0}
dp

b
h ¼ {0:0; 0:3; 0:0; 0:0}

Toxin E dpan ¼ {0:0; 0:3; 0:0; 0:0}
dpbn ¼ {0:0; 0:3; 0:0; 0:0}

Figure 31. m perturbed Alpha–Beta curves.

Figure 32. Generated voltage traces for the a–b Toxin families.

J. Peterson and T. Khan230



information about how a given toxin influences the shape

of the output pulse of an excitable neuron. Hence, with

suitable filtering of the raw measured voltage traces via an

embedded sensor, the BFV can serve as a very low

computational cost implementation of a toxin recognition

strategy.

This work also implies the BFV can extract

such information for other modulatory inputs such as

NTs. Our studies therefore suggest we can design an

artificial neuron whose output is the BFV. Modulatory

inputs into the abstract neuron can be modelled as

alterations to the components of the BFV. It is then

straightforward to develop an algebra of BFV interactions

so that we can model cortical interactions modulated by

limbic system input. We believe artificial neurons whose

outputs are such low dimensional feature vectors are

suitable for the modelling of these complicated neural

modules. Future directions of this research therefore

include cognitive modelling efforts using abstract neuron

models in a distributed processing environment.

Figure 33. 20D covariance recognizer: Toxin A and C distances.

Figure 34. 20D covariance recognizer: Toxin B, D and E distances.
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Figure 35. BFV recognizer: 5D.
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Figure 36. BFV recognizer: 11D.
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