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Hepatitis C virus (HCV) is one of the leading known causes of liver disease in the world. The
HCV is a single-stranded RNA virus. The genomes of HCV display significant sequence
heterogeneity and have been classified into types and subtypes. Types from 1 to 11 have so far
been recognized, each type having a variable number of subtypes. It has been confirmed that
90% approximately of the isolates HCV infections in Egypt belong to a single subtype (4a)
[10]. In this paper, we construct a mathematical model to study the spread of HCV-subtype 4a
amongst the Egyptian population. The relation between HCV-subtype 4a and the other
subtypes has also been studied. The values of reproduction numbers R01, R02 have been
derived [5]. Also, threshold conditions for the value of the transmission rates k1 and k02, in
terms of R01, R02 and the mutation factor m have been determined to insure that the disease
will die out. If the conditions fail to happen the disease takes off and becomes endemic.
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1. Introduction

It is known that hepatitis C virus (HCV) is one of the leading known causes of liver disease in

the world. It is a common cause of cirrhosis and hepatocellular carcinoma HCC as well as the

most common reason for liver transplantation. HCV infection is found in 0.5–8.0% of blood

donors worldwide. Because the infection is chronic in more than 60% of infected persons, the

disease is a serious economical problem [7]. The WHO organisation estimates that 3% of the

world population is infected with HCV and about 20–30% of them may develop cirrhosis

and 1–3% of the infected persons may develop liver cancer [2]. This problem needs to be

studied more to give a clearer insight to the dynamics of this mysterious disease and possibly

solve or try to solve this major worldwide problem.

Egypt has possibly the highest HCV prevalence in the world; 10–20% of the general

population are infected and HCV is the leading cause of HCC and chronic liver disease in the

country [4]. The genomes of HCV display significant sequence heterogeneity and have been

classified into types and subtypes. Six types from 1 to 6 have been recognized, each type

having a different number of subtypes like a, b, c, etc. Recently, new variants have been

identified and assigned to proposed types 7–11. The worldwide presence of the virus and

the geographic distribution of genotypes clearly indicate that HCV is an old companion of

human kind [8].
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It is believed that the HCV has evolved over a period of several thousand years. This would

explain the current general global patterns of genotypes and subtypes [3].

Most of the Egyptian HCV isolates belong to a single subtype (4a), which responds less

successfully to interferon therapy than the other subtypes [10]. Within a hepatitis C subtypes,

individual viruses differ from each other, ever so slightly. Such viral differences are not

significant enough to form another subtype but instead form what’s known as “quasispecies”

[6]. Heterogeneous genomes “quasispecies” resulting from mutations due to high error rates

in RNA replications are found within the same host. Many important biological features of

several viruses are attributable to their “quasispecies” nature, including vaccination failure,

persistent infection and resistance to antiviral drugs [8]. To date, there is no successful HCV

vaccination nor control strategy. So, we require an understanding of the nature and variability

of epidemic behavior among subtypes.

In the present work, this public health problem will be studied mathematically and using

computer simulations. We construct a mathematical model to study the spread of HCV-

subtype 4a in the Egyptian population and the relation between HCV-subtype 4a and other

subtypes of HCV.

In the model, we assume that people from the Egyptian population have some factors which

lead to substitutions or mutations of the different genotypes of HCV into HCV-subtype 4a. We

analyze and solve ourmodel and derive new results about the behavior of the spread ofHCV.The

mutation factorm plays a key role for this study. We derive the R01, R02 which are defined as the

expected number of secondary cases produced by a single infected individual entering a disease

free population at equilibrium [5]. These numbers are crucial to our study. We determine

conditions onR01,R02 for the disease to be endemic or die out. Intuitively, the disease will die out

when both R01 and R02 are less than one in value otherwise the disease becomes endemic.

The numerical solutions of our models predict the behavior of the dynamics of the disease

and estimate the numbers of persons in each stage. Mathematica 5.1, has been used to

conduct our numerical simulations for our model.

2. The model

We suggest that, the model of the spread of the HCV-subtype 4a disease has the following

assumptions,

1. The total population size is a constant N and the population is divided into three groups:

(a) The susceptible class, S, comprising those people who are capable of catching

the disease;

(b) the HCV subtype 4a infective class, I1, the persons who are infected by virus

HCV subtype 4a directly or by virus HCV other subtypes and had mutated to

subtype 4a; and

(c) the HCV from all subtype except 4a infective class, I2, the persons who are

infected by virus HCV-all subtype except 4a.

2. All types of HCV infections can mutate to HCV subtype 4a in their bodies at a positive

constant rate (m).

3. The virus vertical transmission is rare [9]. All ages of population can be infected by HCV

virus. The basic role of the transmission is blood-to-blood, so susceptible class S moves

in to the infective class (I1), by a positive constant contact rate k1. Also, S moves to the

infected class I2 by a positive constant rate k2.
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4. We assume that the birth and death rates are equal and positive constant rate b.

5. The population is mixing in a homogenous manner, i.e. every person has the same chance

of coming in contact with an infected person.

The SI1I2 model for the spread of virus HCV-subtype 4a can be written as a set of three

coupled nonlinear ordinary differential equations as follows:

dS

dt
¼ 2ðk1I1 þ k2I2ÞS2 bSþ bN; ð1Þ

dI1

dt
¼ k1SI1 2 bI1 þ mI2; ð2Þ

and

dI2

dt
¼ k2SI2 2 bI2 2 mI2; ð3Þ

with

Sþ I1 þ I2 ¼ N:

Equations (1)–(3) represent a nonlinear first order system of differential equations. So, the

solution of the linearized system about an equilibrium points leads to useful information

about the nonlinear system.

2.1 Equilibrium points

Equations (1)–(3) have three equilibrium points as follows:

1. The first is the disease free equilibrium (DFE) point, when the disease is absent in the

population, in this case (I1 ¼ I2 ¼ 0), therefore the population is fully susceptible. Thus,

the first equilibrium point is DFE P1 ; ðN; 0; 0Þ.

2. The second, is the free HCV infection from all types except 4a. So that (I2 ¼ 0) then the

second equilibrium point is

P2 ;
b

k1

;
2b

k1

þ N; 0

� �
:

3. The third point is the endemic from all types of infection. Then (I1 – 0 – I2). Therefore

the third equilibrium point is

P3 ;
bþ m

k2

;
m

k2 2 k1

Nk2

bþ m
2 1

� �
;

Nk2

bþ m
2 1

� �
bk2 2 k1ðbþ mÞ

k2ðk2 2 k1Þ

� �� �
:

Remark. The free HCV type 4a infection, (I*1 ¼ 0 and I2 ¼ þ ve), does not exist, as there is

a positive mutation rate m from infective class, I2, to infective class, I1, so if I*1 ¼ 0 then it

should be that, I*2 ¼ 0 is the (DFE) again.

2.2 The basic reproductive number

The basic reproductive number R0 is defined as the expected number of secondary cases

produced by a single infected individual entering the population at the DFE [5]. Since our
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model has two infection classes (I1 and I2) then there are two basic reproductive numbers:

R01 ¼
k1N

b
; R02 ¼

k2N

bþ m
ð4Þ

Rewriting all the equilibrium points in terms of the basic reproductive numbers (R01, R02):

P1 ; ðN; 0; 0Þ

P2 ; S* ; I*1 ; I
*
2

� �
;

N

R01

;N
R01 2 1

R01

� �
; 0

� �

and

P3 ; S**; I**
1 ; I**

2

� �
;

N

R02

;
m

k2 2 k1

R02 2 1ð Þ;
b

k2 2 k1

R02 2 1ð Þ
R02 2 R01

R02

� �� �

DEFINITION 1. A point (Pi; i ¼ 1, 2, 3) exists if and only if all it’s components are

nonnegative values.

Each of these points exists in the real life under certain conditions as follows:

1. P1 always exists;

2. P2 exists if and only if

3.

R01 . 1; ð5Þ

4. Finally, P3 exists if and only if

5.

R02 . 1 and R02 . R01 ð6Þ

2.3 The stability analysis of the disease equilibrium points

To study the stability behaviour of the solutions at the equilibrium points of the system

(1)–(3), we first use the following transformations:

U ¼ N 2 S; I1 ¼ I1; I2 ¼ I2:

It follows that

dU

dt
¼ ðk1I1 þ k2I2ÞðN 2 UÞ2 bU; ð7Þ

dI1

dt
¼ k1I1ðN 2 UÞ2 bI1 þ mI2; ð8Þ
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and

dI2

dt
¼ k2I2ðN 2 UÞ2 ðbþ mÞI2: ð9Þ

Therefore, the system (7)–(9) has the following equilibrium points P1 ; ð0; 0; 0Þ;
P2 ; ðU* ; I*

1; I
*
2Þ and P3 ; ðU **; I**

1 ; I**
2 Þ where, U* ¼ N 2 S* and U ** ¼ N 2 S**.

Now, using Taylors approximation, we get the linearized version of system (7)–(9) near

P1 is

v 0

w 0

z 0

0
BB@

1
CCA ¼ A

v

w

z

0
BB@

1
CCA ð10Þ

where,

v ¼ U 2 0; w ¼ I1 2 0; z ¼ I2 2 0

and

A ¼

2b k1N k2N

0 k1N 2 b m

0 0 k2N 2 ðbþ mÞ

0
BB@

1
CCA: ð11Þ

It is a fact that, the stability behavior of the system (7)–(9) is the same as the stability

behavior of its linearized system (10). The stability behavior of the system (10) depends on

the eigenvalues of the matrix A of constants.

If all the eigenvalues of A has negative real parts then the equilibrium point P1 is locally

asymptotically stable. If at least one of the eigenvalues of the matrix A has a nonnegative real

part then, the system is unstable at point P1 [1].

LEMMA 1. The equilibrium point P1 is locally asymptotically stable if and only if

maxðR01;R02Þ , 1:

Proof. The eigenvalues of the matrix A are l11 ¼ 2b, l12 ¼ k1N 2 b and

l13 ¼ k2N 2 ðbþ mÞ.

Now, assume that the equilibrium point P1 is locally asymptotically stable, then

ðk1N 2 bÞ , 0 and ðk2N 2 ðbþ mÞÞ , 0. Hence

Nk1

b
, 1 and

Nk2

bþ m
, 1

� �

i.e. (R01 , 1 and R02 , 1), so maxðR01;R02Þ , 1.

Conversely, assume that (R01 , 1 and R02 , 1), then

Nk1

b
, 1 and

Nk2

bþ m
, 1

� �
;

therefore ðk1N 2 bÞ , 0 and ðk2N 2 ðbþ mÞÞ , 0. Thus we deduce that, all eigenvalues

of the matrix A have negative real parts. Hence the equilibrium point P1 is locally

asymptotically stable.
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Similarly, we can show that, the linearized version of system (7)–(9) near P2 is

v 0

w 0

z 0

0
BB@

1
CCA ¼ B

v

w

z

0
BB@

1
CCA ð12Þ

where,

v ¼ U 2 U* ; w ¼ I1 2 I*
1; z ¼ I2

and

B ¼

2Nk1 b bk2

k1

b2 Nk1 0 m

0 0 bk2

k1
2 ðbþ mÞ

0
BBB@

1
CCCA ð13Þ

LEMMA 2. The equilibrium point P2 is locally asymptotically stable if and only if

1 , R02 , R01

Proof. The eigenvalues of the matrix B are

l21 ¼
bk2

k1

2 ðbþ mÞ; l22 ¼
2Nk1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNk1Þ

2 2 4ð2b2 þ Nbk1Þ
p

2
and

l23 ¼
2Nk1

2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNk1Þ

2 2 4ð2b2 þ Nbk1Þ
p

2
:

We start our proof by assuming that the equilibrium point P2 is locally asymptotically

stable. Then, l21 , 0. Hence,

bk2

k1

2 ðbþ mÞ

� �
, 0

� �
:

So,

k2

ðbþ mÞ
,

k1

b

� �
;

i.e. (R02 , R01).

Conversely, assume that R02 , R01 and if the equilibrium point P2 is not locally

asymptotically stable, then at least one of the following cases holds

. l21 $ 0 then (k2/(b þ m)) $ k1/b). Thus (R02 $ R01) which is a contradiction.

. l22 is a complex number with nonnegative real part, i.e. ( 2 Nk1/2 $ 0) which is also a

contradiction with the fact that both (N $ 0 and k1 $ 0).

. l22 is a real number and nonnegative, i.e.

2Nk1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNk1Þ

2 2 4ð2b2 þ Nbk1Þ
p

2
$ 0:

Then, (Nk1/b , 1). This leads to R01 , 1 which contradicts the condition of the existence

of P2. Finally, it is obvious that l23 has a negative real part.
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Therefore we can deduce that, the equilibrium point P2 is locally asymptotically stable.

LEMMA 3. The equilibrium point P3 is locally asymptotically stable if it exists.

Proof. We start of our proof by linearizing the system (7)–(9) near P3. So we have that,

v 0

w 0

z 0

0
BB@

1
CCA ¼ E

v

w

z

0
BB@

1
CCA ð14Þ

where,

v ¼ U 2 U **; w ¼ I1 2 I**
1 ; z ¼ I2 2 I**

2 :

and

E ¼

2 bNk2

bþm
k1ðbþmÞ

k2
bþ m

2k1m
k22k1

Nk2

bþm

� �
2 1 k1ðbþmÞ

k2
2 b m

1 2 Nk2

bþm

� �
bk22k1ðbþmÞ

k22k1

� �
0 0

0
BBBBB@

1
CCCCCA

ð15Þ

Consider the matrix (15), then the eigenvalues of this matrix are

l31 ¼ 2b

l32 ¼
ðM 2

ffiffiffiffi
H

p
Þ

ð2k2ðbþ mÞÞ

l33 ¼
ðM þ

ffiffiffiffi
H

p
Þ

ð2k2ðbþ mÞÞ

where

M ¼ b2k1 2 bk2
2N þ 2bk1mþ k1m

2

and

H ¼ 4bðbðk2 2 k1Þ2 k1mÞk2ðbþ mÞ2ðb2 k2N þ mÞ þ ðb2k1 2 bk2
2N þ 2bk1mþ k1m

2Þ2

Since the equilibrium point P3 is exist, therefore R02 . 1 and R02 . R01. Then l13 is

obviously negative. To show that l23 and l33 have negative real parts, we start by showing

that M , 0. Assume, M $ 0, i.e. ðb2k1 2 bk22N þ 2bk1mþ k1m
2Þ $ 0. Hence, k1=b .

k22=ðbþ mÞ2 so R01 $ R2
02 which contradicts the existence of the equilibrium point P3, then

M , 0.

Now, we have the following possible cases,

. If (H ¼ 0), then (l32 ¼ l33 ¼ M , 0),

. If (H , 0), then the real part of l32 and l33 is M which is negative,

. If (H . 0), then (l33 , 0) and to show that (l32 , 0), we will show ð
ffiffiffiffi
H

p
, jMjÞ, assume
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that ð
ffiffiffiffi
H

p
$ jMjÞ i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðbðk2 2 k1Þ2 k1mÞk2ðbþ mÞ2ðb2 k2N þ mÞ þ b2k1 2 bk2

2N þ 2bk1mþ k1m2
� �2

q

$ b2k1 2 bk2
2N þ 2bk1mþ k1m

2
� ��� ��:

So either (R02 # 1 and R02 $ R01) or (R02 . 1 and R02 , R01) which is a contradiction.

Therefore, ð
ffiffiffiffi
H

p
, jMjÞ:

Then we deduce that the equilibrium point P3 is locally asymptotically stable when

exists.

THEOREM 1. The HCV disease dies out from the population if both R01 , 1 and R02 , 1 and

the disease rises up when either R01 . 1 or R02 . 1 and becomes endemic.

Proof. By Lemmas (1)–(3), the proof has been completed.

3. Numerical simulation

In this section, we shall study ourmodel numerically. The simulation results of ourmodel have

been performed usingMathematica 5.1. Because of the lack of data of this unclear virus, there

is no real data that can be provided for our model. We use some documented data for some

parameters like birth and death rate b ¼ 0.02, take the number of population N ¼ 1,000,000

and then suggest the other parameters such as mutation rate m ¼ 0.02, the contact rates

between S and both of I1 and I2 (k1k2) respectively. Finally, the values of the basic reproductive

numbers (R01, R02) have been suggested to be first, less than one in value and then larger

enough than one to test the stability of the three different equilibrium points of our model.

The numerical simulations of the system (1)–(3) give the predicted numbers of the three

compartments S(t), I1(t) and I2(t) at any time. The basic reproductive numbers, R01, R02, are the

key parameters in our study. First we simulate our system for values of R01 , 1 and R02 , 1,

which are less than the threshold values. In this case, figure 1 shows that the disease dies out and

the equilibrium pointP1 ¼ ðN; 0; 0Þ is asymptotically stable. Secondly, figure 2 shows that, for a

set of parameter values guaranteed that, 1 , R02 , R01, we found that from the simulation

results the long term behaviour of our models tends asymptotically to the equilibrium point

P2 ;
N

R01

;N
R01 2 1

R01

� �
; 0

� �
:

This results confirm our analytical results that, when 1 , R02 , R01 the disease rises up and

becomes endemic in the level of the equilibrium point

P2 ;
N

R01

;N
R01 2 1

R01

� �
; 0

� �
:

Finally figure 3 shows that when R02 . 1 and R02 . R01, the solution of our system tends

asymptotically to the equilibrium point

P3 ;
N

R02

;
m

k2 2 k1

R02 2 1ð Þ;
b

k2 2 k1

R02 2 1ð Þ
R02 2 R01

R02

� �� �
:
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Therefore, the disease becomes endemic at the level of the equilibrium point P3. This also

supports our theoretical results obtained in this paper.

So from our simulation results, we can conclude that, if both R01 and R02 are less than one

then the solutions go to the DFE, P1 ¼ ðN; 0; 0Þ and the disease will die out. On the other

hand if either R01 or R02 is greater than one the solutions go to an endemic equilibrium point

which is either P2 or P3. The existence of one of these two endemic equilibrium points

depends on the values of R01 and R02, who is greater than the other. In this case, the existed

endemic point becomes stable and the disease will take off and becomes endemic on the

200 400 600 800 1000

0

200000

400000

600000

800000

1·106

S

I1

I2

Figure 1. Shows the numerical simulation of our model and gives approximate results of the (S(t), I1(t), I2(t)), when
the basic reproductive numbers have the values (R01;R02) ¼ (0.8, 0.6).
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400000
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I2

Figure 2. Shows the numerical simulation of our model and gives approximate results of the (S(t), I1(t), I2(t)), when
the basic reproductive numbers have the values (R01;R02) ¼ (20.0, 10.0).
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population. While if both of R01 and R02 are greater than one, the mutation rate m plays an

important role to determine which endemic point exists.

4. Discussion

In this paper, we analyze an HCV model with susceptible, infected type one and type four

hepatitis C. We observe from our analysis that the mutation rate in the body of the infected

persons is a major factor to make the HCVendemic in the population. The less the mutation

rate is the less number of infected with type 4a. When the mutation disappears, there is a

chance to control the disease and the model becomes a simple SI epidemic model. Birth rate

of susceptible individuals and the effective contact rates of infected individuals, from the two

investigated types, are important ways to free the population from hepatitis C. Further more,

when the effective contact rates of infected individuals with hepatitis C is sufficiently large,

then two endemic equilibrium points exist. In the other hand, if the effective contact rates of

infected individuals with hepatitis C is insufficient so that, R01 , 1 and R02 , 1, then DFE

point exists and becomes asymptotically stable. Threshold values under which the disease

dies out have been derived. These threshold values are given in terms of the mutation rate,

birth rate, total number of susceptibles and the contact rates. Moreover, our simulation shows

clearly that the solutions given in figures 1–3 represent the stable behavior of our model,

which validate our theoretical analysis of our model. Using our model which is the system of

differential equations (1)–(3), we generate these figures with the help of Mathematica 5.1.

Finally, the impact of the mutation rate m of the disease inside the human body is a key

parameter on the persistence of the disease on the population. This important factor should be

studied more. Also, it interesting to focus on estimating the value of this important factor.

This mutation rate works as a switch from the endemic point P2 to P3. So, m plays an

important role to determine which one of the endemic points exists.

50 100 150 200

0

200000

400000

600000

800000

1·106

S

I1

I2

Figure 3. Shows the numerical simulation of our model and gives approximate results of the (S(t), I1(t), I2(t)), when
the basic reproductive numbers have the values (R01;R02) ¼ (10.0, 20.0).
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